1
|
Gaweł M, Domalik-Pyzik P, Douglas TEL, Reczyńska-Kolman K, Pamuła E, Pielichowska K. The Effect of Chitosan on Physicochemical Properties of Whey Protein Isolate Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2023; 15:3867. [PMID: 37835916 PMCID: PMC10575415 DOI: 10.3390/polym15193867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
New scaffolds, based on whey protein isolate (WPI) and chitosan (CS), have been proposed and investigated as possible materials for use in osteochondral tissue repair. Two types of WPI-based hydrogels modified by CS were prepared: CS powder was incorporated into WPI in either dissolved or suspended powder form. The optimal chemical composition of the resulting WPI/CS hydrogels was chosen based on the morphology, structural properties, chemical stability, swelling ratio, wettability, mechanical properties, bioactivity, and cytotoxicity evaluation. The hydrogels with CS incorporated in powder form exhibited superior mechanical properties and higher porosity, whereas those with CS incorporated after dissolution showed enhanced wettability, which decreased with increasing CS content. The introduction of CS powder into the WPI matrix promoted apatite formation, as confirmed by energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analyses. In vitro cytotoxicity results confirmed the cytocompatibility of CS powder modified WPI hydrogels, suggesting their suitability as cell scaffolds. These findings demonstrate the promising potential of WPI/CS scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Martyna Gaweł
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| |
Collapse
|
2
|
Liu W, Feng Y, Delaplace G, André C, Chen XD. Effect of calcium on the reversible and irreversible thermal denaturation pathway of β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Pramudita D, Humjaa S, Tsotsas E. Droplet drying and whey protein denaturation in pulsed gas flow - A modeling study. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
|
5
|
Jeong EW, Park GR, Kim J, Yun SY, Imm JY, Lee HG. Effect of Modified Casein to Whey Protein Ratio on Dispersion Stability, Protein Quality and Body Composition in Rats. Food Sci Anim Resour 2021; 41:855-868. [PMID: 34632404 PMCID: PMC8460334 DOI: 10.5851/kosfa.2021.e42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
The present study was designed to investigate the effects of protein formula with different casein (C) to whey protein (W) ratios on dispersion stability, protein quality and body composition in rats. Modification of the casein to whey protein (CW) ratio affected the extent of protein aggregation, and heated CW-2:8 showed a significantly increased larger particle (>100 μm) size distribution. The largest protein aggregates were formed by whey protein self-aggregation. There were no significant differences in protein aggregation when the CW ratios changed from 10:0 to 5:5. Based on the protein quality assessment (CW-10:0, CW-8:2, CW-5:5, and CW-2:8) for four weeks, CW-10:0 showed a significantly higher feed intake (p<0.05), but the high proportion of whey protein in the diet (CW-5:5 and CW-2:8) increased the feed efficiency ratio, protein efficiency ratio, and net protein ratio compared to other groups. Similarly, CW-2:8 showed greater true digestibility compared to other groups. No significant differences in fat mass and lean mass analyzed by dual-energy x-ray absorptiometry were observed. A significant difference was found in the bone mineral density between the CW-10:0 and CW-2:8 groups (p<0.05), but no difference was observed among the other groups. Based on the results, CW-5:5 improved protein quality without causing protein instability problems in the dispersion.
Collapse
Affiliation(s)
- Eun Woo Jeong
- Department of Food and Nutrition, Hanyang
University, Seoul 04763, Korea
| | - Gyu Ri Park
- Department of Food and Nutrition, Hanyang
University, Seoul 04763, Korea
| | - Jiyun Kim
- Department of Food and Nutrition, Hanyang
University, Seoul 04763, Korea
| | - So-Yul Yun
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang
University, Seoul 04763, Korea,Corresponding author : Hyeon
Gyu Lee, Department of Food and Nutrition, Hanyang University, Seoul 04763,
Korea. Tel: +82-2-2220-1201, Fax: +82-2-2292-1226, E-mail:
| |
Collapse
|
6
|
Calcium Chelation by Phosphate Ions and Its Influence on Fouling Mechanisms of Whey Protein Solutions in a Plate Heat Exchanger. Foods 2021; 10:foods10020259. [PMID: 33513744 PMCID: PMC7912470 DOI: 10.3390/foods10020259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022] Open
Abstract
Fouling of plate heat exchangers (PHEs) is a recurring problem when pasteurizing whey protein solutions. As Ca2+ is involved in denaturation/aggregation mechanisms of whey proteins, the use of calcium chelators seems to be a way to reduce the fouling of PHEs. Unfortunately, in depth studies investigating the changes of the whey protein fouling mechanism in the presence of calcium chelators are scarce. To improve our knowledge, reconstituted whey protein isolate (WPI) solutions were prepared with increasing amounts of phosphate, expressed in phosphorus (P). The fouling experiments were performed on a pilot-scale PHE, while monitoring the evolution of the pressure drop and heat transfer coefficient. The final deposit mass distribution and structure of the fouling layers were investigated, as well as the whey protein denaturation kinetics. Results suggest the existence of two different fouling mechanisms taking place, depending on the added P concentration in WPI solutions. For added P concentrations lower or equal to 20 mg/L, a spongy fouling layer consists of unfolded protein strands bound by available Ca2+. When the added P concentration is higher than 20 mg/L, a heterogeneously distributed fouling layer formed of calcium phosphate clusters covered by proteins in an arborescence structure is observed.
Collapse
|
7
|
Dynamic model to predict heat-induced protein denaturation and fouling in a Direct Contact Steam Condensation process. CHEMICAL ENGINEERING SCIENCE: X 2020. [DOI: 10.1016/j.cesx.2020.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
New experimental set-up for testing microwave technology to continuously heat fouling-sensitive food products like milk concentrates. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Blanpain-Avet P, André C, Azevedo-Scudeller L, Croguennec T, Jimenez M, Bellayer S, Six T, Martins G, Delaplace G. Effect of the phosphate/calcium molar ratio on fouling deposits generated by the processing of a whey protein isolate in a plate heat exchanger. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Gu Y, Bouvier L, Tonda A, Delaplace G. A mathematical model for the prediction of the whey protein fouling mass in a pilot scale plate heat exchanger. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Zouaghi S, Abdallah M, André C, Chihib N, Bellayer S, Delaplace G, Celzard A, Jimenez M. Graphite-based composites for whey protein fouling and bacterial adhesion management. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Wilson DI. Fouling during food processing – progress in tackling this inconvenient truth. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Zouaghi S, Barry ME, Bellayer S, Lyskawa J, André C, Delaplace G, Grunlan MA, Jimenez M. Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel. BIOFOULING 2018; 34:769-783. [PMID: 30332896 DOI: 10.1080/08927014.2018.1502275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Pasteurization of dairy products is plagued by fouling, which induces significant economic, environmental and microbiological safety concerns. Herein, an amphiphilic silicone coating was evaluated for its efficacy against fouling by a model dairy fluid in a pilot pasteurizer and against foodborne bacterial adhesion. The coating was formed by modifying an RTV silicone with a PEO-silane amphiphile comprised of a PEO segment and flexible siloxane tether ([(EtO)3Si-(CH2)2-oligodimethylsiloxanem-block-(OCH2CH2)n-OCH3]). Contact angle analysis of the coating revealed that the PEO segments were able to migrate to the aqueous interface. The PEO-modified silicone coating applied to pretreated stainless steel was exceptionally resistant to fouling. After five cycles of pasteurization, these coated substrata were subjected to a standard clean-in-place process and exhibited a minor reduction in fouling resistance in subsequent tests. However, the lack of fouling prior to cleaning indicates that harsh cleaning is not necessary. PEO-modified silicone coatings also showed exceptional resistance to adhesion by foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Sawsen Zouaghi
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Mikayla E Barry
- b Biomedical Engineering, Materials Science & Engineering , Texas A&M University , College Station , Texas , USA
| | - Séverine Bellayer
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Joël Lyskawa
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| | - Christophe André
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
- c Hautes Etudes d'Ingénieur , Lille , France
| | - Guillaume Delaplace
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
- d INRA (Institut National de la Recherche Agronomique) , Villeneuve d'Ascq , France
| | - Melissa A Grunlan
- b Biomedical Engineering, Materials Science & Engineering , Texas A&M University , College Station , Texas , USA
| | - Maude Jimenez
- a UMET (Unité Matériaux et Transformations) , Université de Lille , Lille , France
| |
Collapse
|
14
|
Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Khaldi M, Croguennec T, André C, Ronse G, Jimenez M, Bellayer S, Blanpain-Avet P, Bouvier L, Six T, Bornaz S, Jeantet R, Delaplace G. Effect of the calcium/protein molar ratio on β-lactoglobulin denaturation kinetics and fouling phenomena. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Ovissipour M, Rasco B, Tang J, Sablani S. Kinetics of Protein Degradation and Physical Changes in Thermally Processed Atlantic Salmon (Salmo salar). FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1958-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Blanpain-Avet P, André C, Khaldi M, Bouvier L, Petit J, Six T, Jeantet R, Croguennec T, Delaplace G. Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of β-lactoglobulin and the bulk temperature profiles. J Dairy Sci 2016; 99:9611-9630. [PMID: 27720151 DOI: 10.3168/jds.2016-10957] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022]
Abstract
Fouling of plate heat exchangers (PHE) is a severe problem in the dairy industry, notably because the relationship between the build-up of protein fouling deposits and the chemical reactions taking place in the fouling solution has not yet been fully elucidated. Experiments were conducted at pilot scale in a corrugated PHE, and fouling deposits were generated using a model β-lactoglobulin (β-LG) fouling solution for which the β-LG thermal denaturation reaction constants had been previously determined experimentally. Then 18 different bulk temperature profiles within the PHE were imposed. Analysis of the fouling runs shows that the dry deposit mass per channel versus the ratio R=kunf/kagg (with kunf and kagg representing, respectively, the unfolding and aggregation rate constants computed from both the identification of the β-LG thermal denaturation process and knowledge of the imposed bulk temperature profile into the PHE channel) is able to gather reasonably well the experimental fouling mass data into a unique master curve. This type of representation of the results clearly shows that the heat-induced reactions (unfolding and aggregation) of the various β-LG molecular species in the bulk fluid are essential to capture the trend of the fouling mass distribution inside a PHE. This investigation also illustrates unambiguously that the release of the unfolded β-LG (also called β-LG molten globule) within the bulk fluid (and the absence of its consumption in the form of aggregates) is a key phenomenon that controls the extent of protein fouling as well as its location inside the PHE.
Collapse
Affiliation(s)
- P Blanpain-Avet
- INRA, PIHM-UR638 (Processus aux Interfaces et Hygiène des Matériaux), UMET (Unité Matériaux Et Transformations) UMR CNRS 8207, 369, rue Jules Guesde, BP 20039, 59651 Villeneuve d'Ascq Cedex, France.
| | - C André
- HEI (Ecole des hautes Etudes d'Ingénieur), Département Chimie, Textiles et Process Innovants, 13, rue de Toul, 59046 Lille Cedex, France
| | - M Khaldi
- INRA, PIHM-UR638 (Processus aux Interfaces et Hygiène des Matériaux), UMET (Unité Matériaux Et Transformations) UMR CNRS 8207, 369, rue Jules Guesde, BP 20039, 59651 Villeneuve d'Ascq Cedex, France
| | - L Bouvier
- INRA, PIHM-UR638 (Processus aux Interfaces et Hygiène des Matériaux), UMET (Unité Matériaux Et Transformations) UMR CNRS 8207, 369, rue Jules Guesde, BP 20039, 59651 Villeneuve d'Ascq Cedex, France
| | - J Petit
- ENSAIA-Université de Lorraine-Laboratoire d'Ingénierie des Biomolécules (LiBio), 2 avenue de la Forêt de Haye-TSA 40602, 54518 Vandoeuvre-les-Nancy cedex, France
| | - T Six
- INRA, PIHM-UR638 (Processus aux Interfaces et Hygiène des Matériaux), UMET (Unité Matériaux Et Transformations) UMR CNRS 8207, 369, rue Jules Guesde, BP 20039, 59651 Villeneuve d'Ascq Cedex, France
| | - R Jeantet
- Agrocampus Ouest, UMR 1253, STLO (Science et Technologie du Lait et de l'Oeuf), 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes, France
| | - T Croguennec
- Agrocampus Ouest, UMR 1253, STLO (Science et Technologie du Lait et de l'Oeuf), 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes, France
| | - G Delaplace
- INRA, PIHM-UR638 (Processus aux Interfaces et Hygiène des Matériaux), UMET (Unité Matériaux Et Transformations) UMR CNRS 8207, 369, rue Jules Guesde, BP 20039, 59651 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
18
|
Petit J, Moreau A, Ronse G, Debreyne P, Bouvier L, Blanpain-Avet P, Jeantet R, Delaplace G. Role of Whey Components in the Kinetics and Thermodynamics of β-Lactoglobulin Unfolding and Aggregation. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1726-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Corrigendum to “Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger”. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1155/2016/4924250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|