1
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
2
|
Pärnänen P, Niikko S, Lähteenmäki H, Räisänen IT, Tervahartiala T, Sorsa T, Ranki A. Lingonberry ( Vaccinium vitis-idaea L.) Fruit Phenolic Bioactivities-A Review of In Vitro and In Vivo Human Studies. Microorganisms 2024; 12:1850. [PMID: 39338523 PMCID: PMC11433667 DOI: 10.3390/microorganisms12091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review is focused on the effects of lingonberry (Vaccinium vitis-idaea L.) fruit phenolic compounds in human in vitro cells and in vivo clinical studies. Studies with lingonberries, lingonberry juice/lingonberry nectar/fermented lingonberry juice, and phenolic fractions with active molecules are reviewed. Lingonberry's bioactive substances have a diverse range of antimicrobial, anti-inflammatory, antiproteolytic, anticancer, and antioxidant properties. Fermentation of lingonberries and modulation of the dysbiotic microbiome to a more symbiotic composition by favoring the growth of lactobacilli and inhibiting the growth of human opportunistic pathogens are discussed. Research results suggest that more studies on humans are needed.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sari Niikko
- Dental Clinic Miun Paikka, 80100 Joensuu, Finland
| | | | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Annamari Ranki
- Department of Dermatology, Allergology, and Venereology, Inflammation Center, University of Helsinki and Helsinki University Central Hospital, 00250 Helsinki, Finland
| |
Collapse
|
3
|
dos Santos CM, Baldivia DDS, de Castro DTH, Carvalho JTDG, Oliveira AS, da Rocha PDS, Campos JF, Balogun SO, de Oliveira CFR, da Silva DB, Carollo CA, de Picoli Souza K, dos Santos EL. Chemical Composition, Antioxidant, and Cytotoxic Effects of Senna rugosa Leaf and Root Extracts on Human Leukemia Cell Lines. Pharmaceuticals (Basel) 2024; 17:974. [PMID: 39204079 PMCID: PMC11357643 DOI: 10.3390/ph17080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Senna rugosa is a species found in the Cerrado and used in folk medicine as a vermifuge and in the treatment of poisonous snakebites accidents. In this work, we identified the main secondary metabolites present in ethanolic extracts of the leaves (ELSR) and roots (ERSR) of S. rugosa and evaluated the potential cytoprotective effect against cellular macromolecular damage, as well as the cytotoxic properties of the extracts on the K562 and Jurkat leukemic cell lines. The identification of metabolites was carried out by liquid chromatography coupled with mass spectrometry. The antioxidant activities were investigated by direct ABTS•+ and DPPH• radical scavenging methods, protection against oxidative damage in proteins, and DNA. Cytotoxic properties were investigated against healthy cells, isolated from human peripheral blood (PBMC) and leukemic cell lines. The leaf extracts contained catechin, rutin, epigallocatechin derivatives, kaempferol glycosides, luteolin, and dimeric and trimeric procyanidins, while the root extract profile showed obtusichromoneside derivatives, 2-methoxystypandrone, stilbene derivatives, naphthopyranones, and flavanone derivatives. The extracts showed antioxidant activity, with an IC50 of 4.86 ± 0.51 μg/mL and 8.33 ± 0.90 μg/mL in the ABTS assay for ELSR and ERSR, respectively. Furthermore, in the DPPH• assay, the IC50 was 19.98 ± 1.96 μg/mL for ELSR and 13.37 ± 1.05 μg/mL for ERSR. The extracts protected macromolecules against oxidative damage at concentrations of 5 μg/mL. The cytotoxicity test against leukemic strains was observed after 24 and 48 h of treatment. After 48 h, results against the K562 cell line demonstrate an IC50 of 242.54 ± 2.38 μg/mL and 223.00 ± 2.34 μg/mL for ELSR and ERSR, respectively. While against the Jurkat cell line, these extracts showed an IC50 of 171.45 ± 2.25 μg/mL and 189.30 ± 2.27 μg/mL, respectively. The results pertaining to PBMC viability demonstrated that the extracts showed selectivity for the leukemic cell lines. Together, our results reveal that the leaves and roots of S. rugosa have completely distinct and complex chemical compositions and expand their significant pharmacological potential in oxidative stress and leukemia conditions.
Collapse
Affiliation(s)
- Cintia Miranda dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - David Tsuyoshi Hiramatsu de Castro
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - José Tarciso de Giffoni Carvalho
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Alex Santos Oliveira
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Paola dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Sikiru Olaitan Balogun
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
- Programa de Pós-Graduação em Ciências de Saúde, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Denise Brentan da Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.B.d.S.); (C.A.C.)
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.B.d.S.); (C.A.C.)
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil; (C.M.d.S.); (D.d.S.B.); (D.T.H.d.C.); (J.T.d.G.C.); (A.S.O.); (P.d.S.d.R.); (J.F.C.); (S.O.B.); (C.F.R.d.O.); (K.d.P.S.)
- Programa de Pós-Graduação em Ciências de Saúde, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, MS, Brazil
| |
Collapse
|
4
|
Wang M, Wu S, Yang B, Ye M, Tan J, Zan L, Yang W. Grape Seed Proanthocyanidins Improve the Quality of Fresh and Cryopreserved Semen in Bulls. Animals (Basel) 2023; 13:2781. [PMID: 37685044 PMCID: PMC10486383 DOI: 10.3390/ani13172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Oxidative stress leads to a decrease in semen quality during semen cryopreservation and fresh semen production. Grape seed proanthocyanidins (GSPs) are endowed with well-recognized antioxidant, anti-inflammatory, anti-cancer, and anti-aging activities. Therefore, the objective of this experiment was to explore the effects of GSPs on the quality of fresh and cryopreserved semen to provide a basis for GSPs as a new dietary additive and semen diluent additive for males' reproduction. Fresh semen from three healthy bulls aged 3 to 5 years old were gathered and mixed with semen diluents dissolved with 0 µg/mL, 30 µg/mL, 40 µg/mL, 50 µg/mL, and 60 µg/mL GSPs respectively. The motility, physiological structures (acrosome integrity, membrane integrity, mitochondrial activity), and antioxidant capacity of frozen-thawed sperm were measured after storage in liquid nitrogen for 7 days (d). Bulls were fed with 20 mg/kg body weight (BW) GSPs in their diet for 60 days; the weight of the bull is about 600 kg. Then, the reproductive performance and antioxidant indexes of bulls were measured before and after feeding. The results demonstrated that GSPs supplementation significantly increased sperm motility, physiological structures, GSH-Px, and CAT enzyme activities and significantly decreased MDA content in sperm during semen cryopreservation. The optimal concentration of GSPs was 40 µg/mL (p < 0.05). After 20 mg/kg (body weight) GSP supplementation, sperm motility was significantly heightened (p < 0.05), the sperm deformity rate was significantly reduced (p < 0.05), and antioxidant enzyme activities (such as SOD, CAT, and GSH-Px) were significantly enhanced (p < 0.05), and the production of MDA was significantly suppressed (p < 0.05) in serum compared with that before feeding. In conclusion, these results reveal that a certain concentration of GSPs has a good protective effect on sperm damage caused by semen cryopreservation and the reproductive performance reduction caused by stress in bulls, which may be attributed to the antioxidant function of GSPs. In summary, GSPs are a useful cryoprotective adjuvant and dietary additive for bull sperm quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (M.W.); (S.W.); (B.Y.); (M.Y.); (J.T.); (L.Z.)
| |
Collapse
|
5
|
Gil-Martínez L, Aznar-Ramos MJ, Del Carmen Razola-Diaz M, Mut-Salud N, Falcón-Piñeiro A, Baños A, Guillamón E, Gómez-Caravaca AM, Verardo V. Establishment of a Sonotrode Extraction Method and Evaluation of the Antioxidant, Antimicrobial and Anticancer Potential of an Optimized Vaccinium myrtillus L. Leaves Extract as Functional Ingredient. Foods 2023; 12:foods12081688. [PMID: 37107483 PMCID: PMC10137389 DOI: 10.3390/foods12081688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Vaccinium myrtillus L. (bilberry) leaves are an important by-product of berry production that may be used as a source of phenolic compounds which have a positive effect on human health. Therefore, an ultrasound-assisted extraction via sonotrode has been used for the first time to recover bioactive compounds from bilberry leaves. The extraction has been optimized using a Box-Behnken design. The influence of ethanol:water ratio (v/v), time of extraction (min) and amplitude (%) were evaluated considering total phenolic content (TPC) and antioxidant capacity (DPPH and FRAP assays) as dependent variables in a response surface methodology (RSM). Optimum values for the independent factors were 30:70 ethanol/water (v/v), 5 min of extraction and 55% amplitude. The empirical values of the independent variables using the optimized conditions were 217.03 ± 4.92 mg GAE/g d.w. (TPC), 271.13 ± 5.84 mg TE/g d.w. (DPPH) and 312.21 ± 9.30 mg TE/g d.w. (FRAP). The validity of the experimental design was confirmed using ANOVA and the optimal extract was characterized using HPLC-MS. A total of 53 compounds were tentatively identified, of which 22 were found in bilberry leaves for the first time. Among them, chlorogenic acid was the most abundant molecule, representing 53% of the total phenolic compounds identified. Additionally, the antimicrobial and anticancer activities of the optimum extract were tested. Gram-positive bacteria demonstrated high sensitivity to bilberry leaves extract in vitro, with MBC values of 6.25 mg/mL for Listeria monocytogenes, Listeria innocua and Enterococcus faecalis, and 0.8 mg/mL for Staphylococcus aureus and Bacillus cereus. Furthermore, bilberry leaves extract exerted in vitro antiproliferative activity against HT-29, T-84 and SW-837 colon tumor cells with IC50 values of 213.2 ± 2.5, 1140.3 ± 5.2 and 936.5 ± 4.6 μg/mL, respectively. Thus, this rapid ultrasound-assisted extraction method has demonstrated to be an efficient technique to obtain bilberry leaves extract with in vitro antioxidant, antimicrobial and anticancer capacities that may be useful for the food industry as natural preservative or even for the production of functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Lidia Gil-Martínez
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - María José Aznar-Ramos
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Maria Del Carmen Razola-Diaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Nuria Mut-Salud
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Ana Falcón-Piñeiro
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Enrique Guillamón
- Department of Chemical Engineering, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
6
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
7
|
Novel Insights of Herbal Remedy into NSCLC Suppression through Inducing Diverse Cell Death Pathways via Affecting Multiple Mediators. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Artemisia species previously have been reported to have antimicrobial, antioxidant, antiulcer, and anticancer properties. In this study, we investigated the prospective antitumor effects of Artemisia santolinifolia ethanol extract (ASE) against two non-small cell lung cancer (NSCLC) cell lines and their molecular mechanisms of action. Morphological observations and flow cytometric analyses showed that ASE induced cell death in A549 and H23 cells but with different action features. Further studies by Western blotting showed that ASE induced caspase-3 cleavage in H23 cells, suggesting caspase-dependent apoptosis was predominantly involved in H23 cell death. Contrarily, ASE treatment selectively altered the glutathione peroxidase (GPX4) protein expression, reactive oxygen species (ROS) generation, and lipid peroxidation in A549 cells, all of which are linked to ferroptosis. Using a ferroptosis inhibitor (desferrioxamine (DFO)), further study showed that DFO could significantly rescue ASE-induced cell death. All these results implied that ASE induced ferroptosis predominately in A549 cells. Several studies have demonstrated that the nuclear factor erythroid 2–related factor 2 (NRF2) can be dual-selectively targeted depending on the cell line. Subsequently, it can exert opposing effects until either being activated or suppressed. This was consistent with our data, which might explain inconsistent observations of the cell death type in this study. In addition, after ASE treatment, signal transduction and activator of transcription 3 (STAT3) were inhibited in both cell lines. Consequently, downstream prosurvival proteins, including heat shock protein 70 (HSP70) and survivin, which play pivotal roles in the STAT3 pathway, decreased after ASE administration. Our findings revealed that ASE inhibited NSCLC cell proliferation by simultaneously downregulating prosurvival protein expressions and activating multiple cell death pathways.
Collapse
|
8
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Qi Q, Chu M, Yu X, Xie Y, Li Y, Du Y, Liu X, Zhang Z, Shi J, Yan N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qianqian Qi
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiuting Yu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanning Xie
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yali Li
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongmei Du
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinmin Liu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
10
|
Peng X, Chen G, Lv B, Lv J. MicroRNA-148a/152 cluster restrains tumor stem cell phenotype of colon cancer via modulating CCT6A. Anticancer Drugs 2022; 33:e610-e621. [PMID: 34486532 DOI: 10.1097/cad.0000000000001198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence has presented that microRNA-148a/152 (miR-148a/152) acts as the tumor inhibitor in various cancers. In this article, we aimed to probe the inhibition of colon cancer stem cells by miR-148a/152 cluster via regulation of CCT6A. miR-148a/152 and CCT6A expression in colon cancer tissues and cells was detected. The relationship between miR-148a/152 expression and the clinicopathological features of patients with colon cancer was analyzed. Colon cancer stem cells (CD44+/CD133+) were selected and high/low expression of miR-148a/152 plasmids were synthesized to intervene CD44+/CD133+ colon cancer stem cells to investigate the function of miR-148a/152 in invasion, migration, proliferation, colony formation and apoptosis of cells. The growth status of nude mice was observed to verify the in-vitro results. The relationship between miR-148a/152 and CCT6A was analyzed. CCT6A upregulated and miR-148a/152 downregulated in colon cancer tissues. MiR-148a/152 expression was correlated with tumor node metastasis stage, lymph node metastasis and differentiation degree. Upregulated miR-148a/152 depressed CCT6A expression and restrained invasion and migration ability, colony formation and proliferation, induced cell apoptosis, depressed OCT4, Nanog and SOX2 mRNA expression of colon cancer stem cells, and descended tumor weight and volume in nude mice. CCT6A was a target gene of miR-148a/152. Overexpression of CCT6A protected colon cancer stem cells. Functional studies showed that upregulation of miR-148a/152 can suppress the migration, invasion and proliferation of CD44+/CD133+ colon cancer stem cells, advance its apoptosis via inhibition of CCT6A expression.
Collapse
Affiliation(s)
- Xin Peng
- Department of Anorectal Surgery, Xinxiang Central Hospital General Surgery III, Xinxiang City, Henan, China
| | | | | | | |
Collapse
|
11
|
Navarro-Hoyos M, Arnáez-Serrano E, Quesada-Mora S, Azofeifa-Cordero G, Wilhelm-Romero K, Quirós-Fallas MI, Alvarado-Corella D, Vargas-Huertas F, Sánchez-Kopper A. HRMS Characterization, Antioxidant and Cytotoxic Activities of Polyphenols in Malus domestica Cultivars from Costa Rica. Molecules 2021; 26:7367. [PMID: 34885949 PMCID: PMC8659030 DOI: 10.3390/molecules26237367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/03/2022] Open
Abstract
There is increasing interest in research into fruits as sources of secondary metabolites because of their potential bioactivities. In this study, the phenolic profiles of Malus domestica Anna and Jonagold cultivars from Costa Rica were determined by Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (HRMS) using a quadrupole-time-of-flight analyzer (UPLC-QTOF-ESI MS), on enriched-phenolic extracts from skins and flesh, obtained through Pressurized Liquid Extraction (PLE). In total, 48 different phenolic compounds were identified in the skin and flesh extracts, comprising 17 flavan-3-ols, 12 flavonoids, 4 chalcones, 1 glycosylated isoprenoid and 14 hydroxycinnamic acids and derivatives. Among extracts, the flesh of Jonagold exhibits a larger number of polyphenols and is especially rich in procyanidin trimers, tetramers and pentamers. Evaluating total phenolic content (TPC) and antioxidant activities using ORAC and DPPH procedures yields higher values for this extract (608.8 mg GAE/g extract; 14.80 mmol TE/g extract and IC50 = 3.96 µg/mL, respectively). In addition, cytotoxicity evaluated against SW620 colon cancer cell lines and AGS gastric cancer cell lines also delivered better effects for Jonagold flesh (IC50 = 62.4 and 60.0 µg/mL, respectively). In addition, a significant negative correlation (p < 0.05) was found between TPC and cytotoxicity values against SW620 and AGS adenocarcinoma (r = -0.908, and -0.902, respectively). Furthermore, a significant negative correlation (p < 0.05) was also found between the number of procyanidins and both antioxidant activities and cytotoxicity towards SW620 (r = -0.978) and AGS (r = -0.894) cell lines. These results align with Jonagold flesh exhibiting the highest abundance in procyanidin oligomers and yielding better cytotoxic and antioxidant results. In sum, our findings suggest the need for further studies on these Costa Rican apple extracts-and particularly on the extracts from Jonagold flesh-to increase the knowledge on their potential benefits for health.
Collapse
Affiliation(s)
- Mirtha Navarro-Hoyos
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | | | - Silvia Quesada-Mora
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (S.Q.-M.); (G.A.-C.)
| | - Gabriela Azofeifa-Cordero
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (S.Q.-M.); (G.A.-C.)
| | - Krissia Wilhelm-Romero
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Maria Isabel Quirós-Fallas
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Diego Alvarado-Corella
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Felipe Vargas-Huertas
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Andrés Sánchez-Kopper
- CEQIATEC, Department of Chemistry, Costa Rica Institute of Technology (TEC), Cartago 7050, Costa Rica;
| |
Collapse
|
12
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
13
|
Ghaffari T, Hong JH, Asnaashari S, Farajnia S, Delazar A, Hamishehkar H, Kim KH. Natural Phytochemicals Derived from Gymnosperms in the Prevention and Treatment of Cancers. Int J Mol Sci 2021; 22:6636. [PMID: 34205739 PMCID: PMC8234227 DOI: 10.3390/ijms22126636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.
Collapse
Affiliation(s)
- Tayyebeh Ghaffari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Abbas Delazar
- Research Center for Evidence based Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Ki-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
14
|
Fayyaz S, Attar R, Xu B, Sabitaliyevich UY, Adylova A, Fares M, Qureshi MZ, Yaylim I, Alaaeddine N. Realizing the Potential of Blueberry as Natural Inhibitor of Metastasis and Powerful Apoptosis Inducer: Tapping the Treasure Trove for Effective Regulation of Cell Signaling Pathways. Anticancer Agents Med Chem 2021; 20:1780-1786. [PMID: 32160854 DOI: 10.2174/1871520620666200311103206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Blueberries belong to the genus Vaccinium of the family Ericaceae. Rapidly accumulating experimentally verified data is uncovering the tremendous pharmacological properties of biologically active constituents of blueberries against different diseases. Our rapidly evolving knowledge about the multifaceted nature of cancer has opened new horizons to search for different strategies to target multiple effectors of oncogenic networks to effectively inhibit cancer onset and progression. Excitingly, whole blueberry powder and various bioactive constituents (pterostilbene, malvidin-3-galactoside) of blueberries have been shown to efficiently inhibit metastasis in animal models. These results are encouraging and future studies must focus on the identification of cell signaling pathways effectively modulated by blueberries in different cancers. It seems exciting to note that researchers are focusing on metastasis inhibitory effects of blueberry; however, to reap full benefits, it is necessary to take a step back and critically re-interpret the mechanisms used by active components of blueberry to inhibit or prevent metastasis. JAK/STAT, TGF/SMAD, Notch, SHH/GLI, and Wnt/ β-Catenin have been shown to be directly involved in the regulation of metastasis. However, because of limited studies, it is difficult to critically assess the true potential of blueberry. Loss of apoptosis, metastasis and deregulation of signaling pathways are branching trajectories of molecular oncology. Accordingly, we have to emphasize on these essential facets to realistically claim blueberry as "Superfood". Different clinical trials have been conducted to gather clinical evidence about the chemopreventive role of blueberry or its bioactive components in cancer patients. But it seems clear that because of the lack of sufficient proof-of-concept studies, we cannot extract significant information about the transition of blueberry into the next phases of clinical trials. Overview of the existing scientific evidence revealed visible knowledge gaps and a better understanding of the targets of blueberry will be helpful in efficient and meaningful translation of laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
- Sundas Fayyaz
- Department of Biochemistry, Rashid Latif Medical College (RLMC), Lahore, Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul, Turkey
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Uteuliyev Y Sabitaliyevich
- Department of Postgraduate Education and Research, Kazakhstan Medical University KSPH, Almaty, Kazakhstan
| | - Aima Adylova
- Department of Postgraduate Education and Research, Kazakhstan Medical University KSPH, Almaty, Kazakhstan
| | | | - Muhammad Z Qureshi
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim, Saudi Arabia
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nada Alaaeddine
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| |
Collapse
|
15
|
Onali T, Kivimäki A, Mauramo M, Salo T, Korpela R. Anticancer Effects of Lingonberry and Bilberry on Digestive Tract Cancers. Antioxidants (Basel) 2021; 10:antiox10060850. [PMID: 34073356 PMCID: PMC8228488 DOI: 10.3390/antiox10060850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Wild berries are part of traditional Nordic diets and are a rich source of phytochemicals, such as polyphenols. Various berry treatments have shown to interfere with cancer progression in vitro and in vivo. Here, we systematically reviewed the anticancer effects of two Nordic wild berries of the Vaccinium genus, lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), on digestive tract cancers. The review was conducted according to the PRISMA 2020 guidelines. Searches included four databases: PubMed, Scopus, Web of Science, and CAB abstracts. Publications not written in English, case-reports, reviews, and conference abstracts were excluded. Moreover, studies with only indirect markers of cancer risk or studies with single compounds not derived from lingonberry or bilberry were not included. Meta-analysis was not performed. The majority (21/26) of studies investigated bilberry and colorectal cancer. Experimental studies on colorectal cancer indicated that bilberry inhibited intestinal tumor formation and cancer cell growth. One uncontrolled pilot human study supported the inhibitory potential of bilberry on colorectal cancer cell proliferation. Data from all 10 lingonberry studies suggests potent inhibition of cancer cell growth and tumor formation. In conclusion, in vitro and animal models support the antiproliferative and antitumor effects of various bilberry and lingonberry preparations on digestive tract cancers.
Collapse
Affiliation(s)
- Tuulia Onali
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Anne Kivimäki
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Mauramo
- Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland;
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90014 Oulu, Finland
| | - Riitta Korpela
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
16
|
Lin X, Wang G, Liu P, Han L, Wang T, Chen K, Gao Y. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation. Exp Ther Med 2021; 21:638. [PMID: 33968169 PMCID: PMC8097205 DOI: 10.3892/etm.2021.10070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the effects of gallic acid (GA) on the proliferation and apoptosis of colon cancer cells and to further clarify the mechanism of GA function associated with SRC and EGFR phosphorylation. HCT116 and HT29 cells were treated with different concentrations of GA for 24 h. Cell proliferation and apoptosis were analyzed using plate clone formation and flow cytometry assays, respectively. In addition, the expression of apoptosis-related proteins was examined by western blotting. Furthermore, the level of STAT3, AKT, SRC and EGFR phosphorylation was analyzed by western blotting and immunofluorescence. Subsequently, the SRC inhibitor PP2 and the EGFR inhibitor gefitinib were used to analyze the GA-associated mechanisms. In addition, a xenograft tumor model was established to confirm the effects of GA in vivo. The results indicated that GA inhibited cell proliferation and promoted cell apoptosis by upregulating the ratio of cleaved caspase-3/pro-caspase-3 and cleaved caspase-9/pro-caspase-9. Concurrently, GA decreased the level of phosphorylated (p)-SRC, p-EGFR, p-AKT and p-STAT3. Following treatment with PP2 and gefitinib in both cancer cell lines and animal model, GA was demonstrated to inhibit EGFR and SRC phosphorylation to downregulate STAT3 and AKT phosphorylation. In vivo, GA prevented tumor growth, promoted tumor apoptosis and decreased the level of p-SRC, p-EGFR, p-STAT3 and p-AKT. In conclusion, GA was indicated to suppress colon cancer proliferation by inhibiting SRC and EGFR phosphorylation.
Collapse
Affiliation(s)
- Xiaoming Lin
- Luye Pharma Group Ltd., Yantai, Shandong 264000, P.R. China
| | - Guangfei Wang
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Ping Liu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Lei Han
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Tong Wang
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Kaili Chen
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Yonglin Gao
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
17
|
Vilkickyte G, Raudone L, Petrikaite V. Phenolic Fractions from Vaccinium vitis-idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants (Basel) 2020; 9:antiox9121261. [PMID: 33322638 PMCID: PMC7763140 DOI: 10.3390/antiox9121261] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Lingonberry leaves and fruits are associated with a range of potential bioactivities related to their phenolic content and composition, but the identification of major biological activity markers remains limited. The present study aimed at the isolation of lingonberry phenolic fractions and biological activity evaluation of them. Crude dry extracts of lingonberry leaves and fruits were fractionated by chromatography using Sephadex LH-20 and analyzed by validated HPLC-PDA method. For each fraction, the anticancer activity against human clear cell renal cell carcinoma (CaKi-1), human colon adenocarcinoma (HT-29), and human malignant melanoma (IGR39) cell lines was determined using MTT assay, and the radical scavenging, reducing, and chelating activities were investigated using ABTS, FRAP, and FIC assays, respectively. Further, 28 phenolics were identified and quantified in the crude extract of lingonberry leaves and 37 in the extract of fruits. These compounds, during fractionation steps, were selectively eluted into active fractions, enriched with different groups of phenolics—monophenols, anthocyanins, phenolic acids, catechins, flavonols, or proanthocyanidins. Fractions of lingonberry leaves and fruits, obtained by the last fractionation step, proved to be the most active against tested cancer cell lines and possessed the greatest antioxidant activity. In this perspective, the predominant compounds of these fractions—polymeric and mainly A-type dimeric proanthocyanidins—also quercetin can be considered to be anticancer and antioxidant activity markers of lingonberries.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
18
|
Cong J, Cui J, Zhang H, Dzah CS, He Y, Duan Y. Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein. Food Res Int 2020; 136:109530. [PMID: 32846594 DOI: 10.1016/j.foodres.2020.109530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
Studies have reported that procyanidins can interact with proteins, thereby affecting their structure, function, and bioaccessibility. In this paper, we investigated the interaction between grape seeds procyanidins (GSP) and animal source protein (from pig, chicken and fish), and the effects on the protein structure, antioxidant capacity and bioaccessibility of GSP. Fluorescence results showed that the binding constant of GSP-protein complex was 10-104 M-1, and the main forces were van der Waals force, hydrogen bonds and hydrophobic interactions. The antioxidant capacity of GSP was masked by GSP-protein complexes formed. The circular dichroism indicated that GSP had an effect on the content of α-helix and β-sheet in the secondary structure of pork and chicken proteins, but had little effect on the secondary structure of fish protein. The results showed that the protein can bind to GSP and affect its antioxidant activity and bioaccessibility. This study can provide reference for further study on the digestion and absorption of the complexes and offer health guidance in the preparation of diets.
Collapse
Affiliation(s)
- Jingli Cong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiemei Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Courage Sedem Dzah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanqing He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Huang XM, Yang ZJ, Xie Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: A mechanistic review. Biomed Pharmacother 2019; 117:109142. [DOI: 10.1016/j.biopha.2019.109142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
|
20
|
Hwang D, Kim M, Park H, Jeong MI, Jung W, Kim B. Natural Products and Acute Myeloid Leukemia: A Review Highlighting Mechanisms of Action. Nutrients 2019; 11:nu11051010. [PMID: 31058874 PMCID: PMC6567155 DOI: 10.3390/nu11051010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Recent findings have shown great potential of alternative interventions such as immunotherapy and natural products for acute myeloid leukemia (AML). This study aims to review the anti-AML effect of various natural compounds. Natural compounds were classified into five groups: alkaloids, carotenoids, nitrogen-containing compounds, organosulfur compounds or phenolics based on each compound’s chemical properties. Fifty-eight studies were collected and reviewed in this article. Phenolics are the most abundant group to have an apoptotic effect over AML cells, while other groups have also shown significant apoptotic effects. Some compounds induced apoptosis by regulating unique mechanism like human telomerase reverse transcriptase (hTERT) or laminin receptor (67LR), while others modified caspases, poly (adp-ribose) polymerase (PARP) and p53. Further study is required to identify side-effects of potent compounds and the synergistic effects of combination of two or more natural compounds or existing conventional anti-AML drugs to treat this dreadful disease.
Collapse
Affiliation(s)
- Dongwon Hwang
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Minsun Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Woojin Jung
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
21
|
Guo F, Hu Y, Niu Q, Li Y, Ding Y, Ma R, Wang X, Li S, Xie J. Grape Seed Proanthocyanidin Extract Inhibits Human Esophageal Squamous Cancerous Cell Line ECA109 via the NF- κB Signaling Pathway. Mediators Inflamm 2018; 2018:3403972. [PMID: 30647533 PMCID: PMC6311955 DOI: 10.1155/2018/3403972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022] Open
Abstract
Esophageal squamous cell carcinoma is the most common type of squamous cell carcinoma. Grape seed proanthocyanidin extract (GSPE) is considered to exhibit anticancer activity against several different types of cancer. We aimed to determine whether GSPE inhibited esophageal squamous cancerous cells and the possible involvement of NF-κB in this process. The human esophageal squamous cancer cell line ECA109 was treated with GSPE (0-80 μg/mL) and BAY11-7082 (10 μmol/L) for 12, 24, and 48 h. The MTT assay was used to determine cell proliferation; alterations in cell apoptosis were detected by flow cytometry; levels of inflammatory factors interleukin-6 and cyclooxygenase-2 and apoptotic proteins Bax/Bcl-2 were measured by ELISA; qRT-PCR and western blots were used to examine the activation of caspase-3 and NF-κB signaling. GSPE inhibited the proliferation of ECA109 cells and induced cellular apoptosis in a time- and dose-dependent manner. ELISA results showed that GSPE and BAY11-7082 reduced the secretion of inflammatory cytokines interleukin-6 and cyclooxygenase-2. The results of PCR and western blotting indicated that GSPE and BAY11-7082 activated caspase-3 and attenuated the activation of the NF-κB signaling pathway. GSPE induced apoptosis in ECA109 cells and inhibited ECA109 cell proliferation via a reduction in the secretion of inflammatory cytokines. This mechanism may be related to the attenuation of NF-κB activity and the sensitization of caspase-3.
Collapse
Affiliation(s)
- Fangming Guo
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Yunhua Hu
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Qiang Niu
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Yusong Ding
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Rulin Ma
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Xianhua Wang
- Department of Quality Control of Changji Autonomous Prefecture Center for Disease Control and Prevention, 831100, China
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, 832000, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
| | - Jianxin Xie
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, 832000, China
- Department of Biochemistry, Shihezi University School of Medicine, 832000, China
| |
Collapse
|
22
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
23
|
Ma L, Sun Z, Zeng Y, Luo M, Yang J. Molecular Mechanism and Health Role of Functional Ingredients in Blueberry for Chronic Disease in Human Beings. Int J Mol Sci 2018; 19:E2785. [PMID: 30223619 PMCID: PMC6164568 DOI: 10.3390/ijms19092785] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Functional ingredients in blueberry have the best health benefits. To obtain a better understanding of the health role of blueberry in chronic disease, we conducted systematic preventive strategies for functional ingredients in blueberry, based on comprehensive databases, especially PubMed, ISI Web of Science, and CNKI for the period 2008⁻2018. Blueberry is rich in flavonoids (mainly anthocyanidins), polyphenols (procyanidin), phenolic acids, pyruvic acid, chlorogenic acid, and others, which have anticancer, anti-obesity, prevent degenerative diseases, anti-inflammation, protective properties for vision and liver, prevent heart diseases, antidiabetes, improve brain function, protective lung properties, strong bones, enhance immunity, prevent cardiovascular diseases, and improve cognitive decline. The anthocyanins and polyphenols in blueberry are major functional ingredients for preventive chronic disease. These results support findings that blueberry may be one of the best functional fruits, and further reveals the mechanisms of anthocyanins and polyphenols in the health role of blueberry for chronic disease. This paper may be used as scientific evidence for developing functional foods, nutraceuticals, and novel drugs of blueberry for preventive chronic diseases.
Collapse
Affiliation(s)
- Luyao Ma
- Economics and Management College, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China.
| | - Zhenghai Sun
- Economics and Management College, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China.
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Mingcan Luo
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China.
| | - Jiazhen Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| |
Collapse
|
24
|
Yao Q, Wang W, Jin J, Min K, Yang J, Zhong Y, Xu C, Deng J, Zhou Y. Synergistic role of Caspase-8 and Caspase-3 expressions: Prognostic and predictive biomarkers in colorectal cancer. Cancer Biomark 2018; 21:899-908. [PMID: 29355114 DOI: 10.3233/cbm-170967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiang Yao
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Jun Jin
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Ke Min
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Jian Yang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Yubing Zhong
- Department of General Surgery, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Chunni Xu
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Jianliang Deng
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Yan Zhou
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, China
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
25
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Davidson KT, Zhu Z, Balabanov D, Zhao L, Wakefield MR, Bai Q, Fang Y. Beyond Conventional Medicine - a Look at Blueberry, a Cancer-Fighting Superfruit. Pathol Oncol Res 2017; 24:733-738. [PMID: 29285736 DOI: 10.1007/s12253-017-0376-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Nearly 40% of men and women will be diagnosed with cancer during their lifetime. Thus, there is a rapidly growing need for novel therapies to combat this deadly disease. One such method is the consumption of blueberries. Long coveted for their powerful antioxidant properties, more recent studies have demonstrated that blueberries also exhibit inherent abilities to prevent carcinogenesis, inhibit the proliferation of neoplastic cells, and reduce the risks of recurrence in patients in remission. This review will focus on the specific activities of blueberry derivatives in cancer cells across many different forms of cancer. Ultimately, such research could be helpful in the development of new strategies to treat cancer.
Collapse
Affiliation(s)
- Kristoffer T Davidson
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Dean Balabanov
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA
| | - Lei Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
27
|
Davidson KT, Zhu Z, Bai Q, Xiao H, Wakefield MR, Fang Y. Blueberry as a Potential Radiosensitizer for Treating Cervical Cancer. Pathol Oncol Res 2017; 25:81-88. [DOI: 10.1007/s12253-017-0319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2017] [Indexed: 12/23/2022]
|
28
|
Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Carlos DA, Sandra A, Fabián CM, Benjamín R, Maria EM. Antiproliferative and pro-apoptotic effects of Andean berry juice (Vaccinium meridionale Swartz) on human colon adenocarcinoma SW480 cells. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jmpr2017.6401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Majewska M, Lewandowska U. The chemopreventive and anticancer potential against colorectal cancer of polyphenol-rich fruit extracts. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1307388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Cires MJ, Wong X, Carrasco-Pozo C, Gotteland M. The Gastrointestinal Tract as a Key Target Organ for the Health-Promoting Effects of Dietary Proanthocyanidins. Front Nutr 2017; 3:57. [PMID: 28097121 PMCID: PMC5206694 DOI: 10.3389/fnut.2016.00057] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022] Open
Abstract
Proanthocyanidins (PACs) are polymers of flavan-3-ols abundant in many vegetable foods and beverages widely consumed in the human diet. There is increasing evidence supporting the beneficial impact of dietary PACs in the prevention and nutritional management of non-communicable chronic diseases. It is considered that PACs with a degree of polymerization >3 remain unabsorbed in the gastrointestinal (GI) tract and accumulate in the colonic lumen. Accordingly, the GI tract may be considered as a key organ for the healthy-promoting effects of dietary PACs. PACs form non-specific complexes with salivary proteins in mouth, originating the sensation of astringency, and with dietary proteins, pancreatic enzymes, and nutrient transporters in the intestinal lumen, decreasing the digestion and absorption of carbohydrates, proteins, and lipids. They also exert antimicrobial activities, interfering with cariogenic or ulcerogenic pathogens in the mouth (Streptococcus mutans) and stomach (Helicobacter pylori), respectively. Through their antioxidant and antiinflammatory properties, PACs decrease inflammatory processes in animal model of gastric and colonic inflammation. Interestingly, they exert prebiotic activities, stimulating the growth of Lactobacillus spp. and Bifidobacterium spp. as well as some butyrate-producing bacteria in the colon. Finally, PACs are also metabolized by the gut microbiota, producing metabolites, mainly aromatic acids and valerolactones, which accumulate in the colon and/or are absorbed into the bloodstream. Accordingly, these compounds could display biological activities on the colonic epithelium or in extra-intestinal tissues and, therefore, contribute to part of the beneficial effects of dietary PACs.
Collapse
Affiliation(s)
- María José Cires
- Faculty of Medicine, Department of Nutrition, University of Chile , Santiago , Chile
| | - Ximena Wong
- Faculty of Medicine, Department of Nutrition, University of Chile , Santiago , Chile
| | | | - Martin Gotteland
- Faculty of Medicine, Department of Nutrition, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Farooqi AA, Gadaleta CD, Ranieri G, Fayyaz S, Marech I. New Frontiers in Promoting TRAIL-Mediated Cell Death: Focus on Natural Sensitizers, miRNAs, and Nanotechnological Advancements. Cell Biochem Biophys 2016; 74:3-10. [PMID: 26972296 DOI: 10.1007/s12013-015-0712-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a multifaceted and genomically complex disease, and rapidly emerging scientific evidence is emphasizing on intra-tumor heterogeneity within subpopulations of tumor cells and rapidly developing resistance against different molecular therapeutics. There is an overwhelmingly increasing list of agents currently being tested for efficacy against cancer. In accordance with the concept that therapeutic agents must have fewer off target effects and considerable efficacy, TRAIL has emerged as one among the most deeply investigated proteins reportedly involved in differential killing of tumor cells. Considerable killing activity of TRAIL against different cancers advocated its entry into clinical trials. However, data obtained through preclinical and cell culture studies are deepening our understanding of wide-ranging mechanisms which induce resistance against TRAIL-based therapeutics. These include downregulation of death receptors, overexpression of oncogenes, inactivation of tumor suppressor genes, imbalance of pro- and anti-apoptotic proteins, and inactivation of intrinsic and extrinsic pathways. Substantial fraction of information has been added into existing pool of knowledge related to TRAIL biology and recently accumulating evidence is adding new layers to regulation of TRAIL-induced apoptosis. Certain hints have emerged underscoring miR135a-3p- and miR-143-mediated regulation of TRAIL-induced apoptosis, and natural agents have shown remarkable efficacy in improving TRAIL-based therapeutics by increasing expression of tumor suppressor miRNAs. In this review, we summarize most recent breakthroughs related to naturopathy and strategies to nanotechnologically deliver TRAIL to the target site in xenografted mice. We also set spotlight on positive and negative regulators of TRAIL-mediated signaling. Comprehensive knowledge of genetics and proteomics of TRAIL-based signaling network obtained from cancer patients of different populations will be helpful in getting a step closer to personalized medicine.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Cosmo Damiano Gadaleta
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ilaria Marech
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|