1
|
Personalized Medicine Approach in a DCM Patient with LMNA Mutation Reveals Dysregulation of mTOR Signaling. J Pers Med 2022; 12:jpm12071149. [PMID: 35887646 PMCID: PMC9323361 DOI: 10.3390/jpm12071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Mutations in the Lamin A/C (LMNA) gene are responsible for about 6% of all familial dilated cardiomyopathy (DCM) cases which tend to present at a young age and follow a fulminant course. Methods: We report a 47-year-old DCM patient with severely impaired left ventricular ejection fraction and NYHA functional class IV despite optimal heart failure treatment. Whole-exome sequencing revealed an LMNA E161K missense mutation as the pathogenetic cause for DCM in this patient. We generated a patient-specific LMNA-knock in (LMNA-KI) in vitro model using mES cells. Results: Beta adrenergic stimulation of cardiomyocytes derived from LMNA-KI mES cells resulted in augmented mTOR signaling and increased dysregulation of action potentials, which could be effectively prevented by the mTOR-inhibitor rapamycin. A cardiac biopsy confirmed strong activation of the mTOR-signaling pathway in the patient. An off-label treatment with oral rapamycin was initiated and resulted in an improvement in left ventricular ejection fraction (27.8% to 44.5%), NT-BNP (8120 ng/L to 2210 ng/L) and NYHA functional class. Conclusion: We have successfully generated the first in vitro model to recapitulate a patient-specific LMNA E161K mutation which leads to a severe form of DCM. The model may serve as a template for individualized and specific treatment of heart failure.
Collapse
|
2
|
van Ham WB, Kessler EL, Oerlemans MI, Handoko ML, Sluijter JP, van Veen TA, den Ruijter HM, de Jager SC. Clinical Phenotypes of Heart Failure With Preserved Ejection Fraction to Select Preclinical Animal Models. JACC Basic Transl Sci 2022; 7:844-857. [PMID: 36061340 PMCID: PMC9436760 DOI: 10.1016/j.jacbts.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
To better define HFpEF clinically, patients are nowadays often clustered into phenogroups, based on their comorbidities and symptoms Many animal models claim to mimic HFpEF, but phenogroups are not yet regularly used to cluster them HFpEF animals models often lack reports of clinical symptoms of HF, therefore mainly presenting as extended models of LVDD, clinically seen as a prestate of HFpEF We investigated if clinically relevant phenogroups can guide selection of animal models aiming at better defined animal research
At least one-half of the growing heart failure population consists of heart failure with preserved ejection fraction (HFpEF). The limited therapeutic options, the complexity of the syndrome, and many related comorbidities emphasize the need for adequate experimental animal models to study the etiology of HFpEF, as well as its comorbidities and pathophysiological changes. The strengths and weaknesses of available animal models have been reviewed extensively with the general consensus that a “1-size-fits-all” model does not exist, because no uniform HFpEF patient exists. In fact, HFpEF patients have been categorized into HFpEF phenogroups based on comorbidities and symptoms. In this review, we therefore study which animal model is best suited to study the different phenogroups—to improve model selection and refinement of animal research. Based on the published data, we extrapolated human HFpEF phenogroups into 3 animal phenogroups (containing small and large animals) based on reports and definitions of the authors: animal models with high (cardiac) age (phenogroup aging); animal models focusing on hypertension and kidney dysfunction (phenogroup hypertension/kidney failure); and models with hypertension, obesity, and type 2 diabetes mellitus (phenogroup cardiometabolic syndrome). We subsequently evaluated characteristics of HFpEF, such as left ventricular diastolic dysfunction parameters, systemic inflammation, cardiac fibrosis, and sex-specificity in the different models. Finally, we scored these parameters concluded how to best apply these models. Based on our findings, we propose an easy-to-use classification for future animal research based on clinical phenogroups of interest.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elise L. Kessler
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University of Utrecht, Utrecht, the Netherlands
| | | | - M. Louis Handoko
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Joost P.G. Sluijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University of Utrecht, Utrecht, the Netherlands
| | - Toon A.B. van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester M. den Ruijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia C.A. de Jager
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Address for correspondence: Dr Saskia C.A. de Jager, Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| |
Collapse
|
3
|
Al-Shamasi AA, Elkaffash R, Mohamed M, Rayan M, Al-Khater D, Gadeau AP, Ahmed R, Hasan A, Eldassouki H, Yalcin HC, Abdul-Ghani M, Mraiche F. Crosstalk between Sodium-Glucose Cotransporter Inhibitors and Sodium-Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases. Int J Mol Sci 2021; 22:12677. [PMID: 34884494 PMCID: PMC8657861 DOI: 10.3390/ijms222312677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormality in glucose homeostasis due to hyperglycemia or insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM). These metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy leading to heart failure. New antihyperglycemic agents including glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to attenuate endothelial dysfunction at the cellular level. In addition, they improved cardiovascular safety by exhibiting cardioprotective effects. The mechanism by which these drugs exert their cardioprotective effects is unknown, although recent studies have shown that cardiovascular homeostasis occurs through the interplay of the sodium-hydrogen exchangers (NHE), specifically NHE1 and NHE3, with SGLT2i. Another theoretical explanation for the cardioprotective effects of SGLT2i is through natriuresis by the kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This review outlines the possible mechanisms responsible for causing diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in cardiovascular diseases.
Collapse
Affiliation(s)
- Al-Anood Al-Shamasi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Rozina Elkaffash
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meram Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Dhabya Al-Khater
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alain-Pierre Gadeau
- INSERM, Biology of Cardiovascular Disease, University of Bordeaux, U1034 Pessac, France;
| | - Rashid Ahmed
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Anwarul Hasan
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hussein Eldassouki
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | | | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 7703, USA;
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 2020; 9:jcm9092770. [PMID: 32859027 PMCID: PMC7564493 DOI: 10.3390/jcm9092770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin’s length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin’s mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin’s contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.
Collapse
|
5
|
Tharp CA, Haywood ME, Sbaizero O, Taylor MRG, Mestroni L. The Giant Protein Titin's Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Front Physiol 2019; 10:1436. [PMID: 31849696 PMCID: PMC6892752 DOI: 10.3389/fphys.2019.01436] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, sudden cardiac death and heart transplant. DCM is inherited in approximately 50% of cases, in which the most frequent genetic defects are truncation variants of the titin gene (TTNtv). TTN encodes titin, which is the largest protein in the body and is an essential component of the sarcomere. Titin serves as a biological spring, spanning half of the sarcomere and connecting the Z-disk to the M-line, with scaffold and signaling functions. Truncations of titin are believed to lead to either haploinsufficiency and loss-of-function, or to a “poison peptide” effect. However, other titin mechanisms are postulated to influence cardiac function including post-translational modifications, in particular changes in titin phosphorylation that alters the stiffness of the protein, and diversity of alternative splicing that generates different titin isoforms. In this article, we review the role of TTN mutations in development of DCM, how differential expression of titin isoforms relate to DCM pathophysiology, and discuss how post-translational modifications of titin can affect cardiomyocyte function. Current research efforts aim to elucidate the contribution of titin to myofibril assembly, stability, and signal transduction, and how mutant titin leads to cardiac dysfunction and human disease. Future research will need to translate this knowledge toward novel therapeutic approaches that can modulate titin transcriptional and post-translational defects to treat DCM and heart failure.
Collapse
Affiliation(s)
- Charles A Tharp
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mary E Haywood
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Luisa Mestroni
- Adult Medical Genetics Program and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Huttner IG, Wang LW, Santiago CF, Horvat C, Johnson R, Cheng D, von Frieling-Salewsky M, Hillcoat K, Bemand TJ, Trivedi G, Braet F, Hesselson D, Alford K, Hayward CS, Seidman JG, Seidman CE, Feneley MP, Linke WA, Fatkin D. A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002135. [PMID: 30354343 DOI: 10.1161/circgen.118.002135] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.
Collapse
Affiliation(s)
- Inken G Huttner
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.)
| | - Louis W Wang
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - Celine F Santiago
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.)
| | - Claire Horvat
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Renee Johnson
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Delfine Cheng
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia (D.C., F.B.)
| | | | - Karen Hillcoat
- Kevin Alford Cardiology, Port Macquarie, NSW Australia (K.H., K.A.)
| | - Timothy J Bemand
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Gunjan Trivedi
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Filip Braet
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia (D.C., F.B.).,Cellular Imaging Facility, Charles Perkins Centre (F.B.).,Australian Centre for Microscopy and Microanalysis (F.B.)
| | - Dan Hesselson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,University of Sydney, Camperdown, NSW, Australia. Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia (D.H.)
| | - Kevin Alford
- Kevin Alford Cardiology, Port Macquarie, NSW Australia (K.H., K.A.)
| | - Christopher S Hayward
- Cardiac Physiology and Transplantation Division (C.S.H., M.P.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - J G Seidman
- Howard Hughes Medical Institute, MD (J.G.S.).,Department of Genetics, Harvard Medical School (J.G.S., C.E.S.)
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School (J.G.S., C.E.S.).,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.)
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division (C.S.H., M.P.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Germany (M.v.F.-S., W.A.L.)
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| |
Collapse
|
7
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Barandiarán Aizpurua A, Schroen B, van Bilsen M, van Empel V. Targeted HFpEF therapy based on matchmaking of human and animal models. Am J Physiol Heart Circ Physiol 2018; 315:H1670-H1683. [PMID: 30239232 DOI: 10.1152/ajpheart.00024.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The diversity in clinical phenotypes and poor understanding of the underlying pathophysiology of heart failure with preserved ejection fraction (HFpEF) is the main reason why no effective treatments have been found yet. Targeted, instead of one size fits all, treatment seems the only promising approach for treating HFpEF. To be able to design a targeted, phenotype-specific HFpEF treatment, the matrix relating clinical phenotypes and underlying pathophysiological mechanisms has to be clarified. This review discusses the opportunities for additional evaluation of the underlying pathophysiological processes, e.g., to evaluate biological phenotypes on top of clinical routine, to guide us toward a phenotype-specific HFpEF treatment. Moreover, a translational approach with matchmaking of animal models to biological HFpEF phenotypes will be a valuable step to test the effectiveness of novel, targeted interventions in HFpEF. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/personalized-medicine-in-hfpef/ .
Collapse
Affiliation(s)
- Arantxa Barandiarán Aizpurua
- Department of Cardiology, Maastricht University Medical Centre , Maastricht , The Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Maastricht University Medical Centre , Maastricht , The Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, Maastricht University Medical Centre , Maastricht , The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Centre , Maastricht , The Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre , Maastricht , The Netherlands
| |
Collapse
|
9
|
Ye L, Su L, Wang C, Loo S, Tee G, Tan S, Khin SW, Ko S, Su B, Cook SA. Truncations of the titin Z-disc predispose to a heart failure with preserved ejection phenotype in the context of pressure overload. PLoS One 2018; 13:e0201498. [PMID: 30063764 PMCID: PMC6067738 DOI: 10.1371/journal.pone.0201498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/15/2018] [Indexed: 01/02/2023] Open
Abstract
Titin (TTN) Truncating variants (TTNtv) in the A-band of TTN predispose the mouse heart to systolic dysfunction when subjected to pressure-loading. However, the effects of TTNtv of the Z-disc are largely unexplored. A rat model of pressure-loaded heart is developed by trans-aortic constriction (TAC). Rats with TTNtv of the Z-disc were randomly assigned to TAC (Z-TAC) or sham-surgery (Z-Sham) and wildtype (WT) littermates served as controls (WT-TAC or WT-Sham). Left ventricular (LV) function was assessed by echocardiography. Pressure volume (PV) loops, histology and molecular profiling were performed eight months after surgery. Pressure-load by TAC increased LV mass in all cases when compared with Sham animals. Notably, systolic function was preserved in TAC animals throughout the study period, which was confirmed by terminal PV loops. Diastolic function was impaired in Z-disc TTNtv rats at baseline as compared to WT and became impaired further after TAC (dp/dtmin, mmHg/s): Z-TAC = -3435±763, WT-TAC = -6497±1299 (p<0.01). Z-TAC animals had greater cardiac fibrosis, with elevated collagen content and decreased vascular density as compared to WT-TAC animals associated with enhanced apoptosis of myocyte and non-myocyte populations. In the context of pressure overload, Z-disc TTNtv is associated with cardiac fibrosis, diastolic dysfunction, and capillary rarefaction in the absence of overt systolic dysfunction.
Collapse
Affiliation(s)
- Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- * E-mail:
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Chenxu Wang
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Szejie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Guizhen Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sandar Win Khin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Shijie Ko
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Boyang Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Wang LW, Kesteven SH, Huttner IG, Feneley MP, Fatkin D. High-Frequency Echocardiography ― Transformative Clinical and Research Applications in Humans, Mice, and Zebrafish ―. Circ J 2018; 82:620-628. [DOI: 10.1253/circj.cj-18-0027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Louis W. Wang
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute
- St Vincent’s Hospital
- Faculty of Medicine, UNSW Sydney
| | - Scott H. Kesteven
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute
| | - Inken G. Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute
- St Vincent’s Hospital
- Faculty of Medicine, UNSW Sydney
| | - Michael P. Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute
- St Vincent’s Hospital
- Faculty of Medicine, UNSW Sydney
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute
- St Vincent’s Hospital
- Faculty of Medicine, UNSW Sydney
| |
Collapse
|
11
|
Abstract
Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management.
Collapse
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| | - Luisa Mestroni
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| |
Collapse
|
12
|
Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón J, Gimeno J. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin Genet 2017; 93:3-14. [DOI: 10.1111/cge.13027] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. Sabater-Molina
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
- Internal Medicine Department, University of Murcia; Murcia Spain
| | - I. Pérez-Sánchez
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
| | - J.P. Hernández del Rincón
- Internal Medicine Department, University of Murcia; Murcia Spain
- Pathology Department; Institute of Legal Medicine; Murcia Spain
| | - J.R. Gimeno
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
- Internal Medicine Department, University of Murcia; Murcia Spain
| |
Collapse
|
13
|
Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophys Rev 2017; 9:207-223. [PMID: 28510119 PMCID: PMC5498329 DOI: 10.1007/s12551-017-0265-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome defined by the inability of the heart to pump enough blood to meet the body's metabolic demands. Major causes of HF are cardiomyopathies (diseases of the myocardium associated with mechanical and/or electrical dysfunction), among which the most common form is dilated cardiomyopathy (DCM). DCM is defined by ventricular chamber enlargement and systolic dysfunction with normal left ventricular wall thickness, which leads to progressive HF. Over 60 genes are linked to the etiology of DCM. Titin (TTN) is the largest known protein in biology, spanning half the cardiac sarcomere and, as such, is a basic structural and functional unit of striated muscles. It is essential for heart development as well as mechanical and regulatory functions of the sarcomere. Next-generation sequencing (NGS) in clinical DCM cohorts implicated truncating variants in titin (TTNtv) as major disease alleles, accounting for more than 25% of familial DCM cases, but these variants have also been identified in 2-3% of the general population, where these TTNtv blur diagnostic and clinical utility. Taking into account the published TTNtv and their association to DCM, it becomes clear that TTNtv harm the heart with position-dependent occurrence, being more harmful when present in the A-band TTN, presumably with dominant negative/gain-of-function mechanisms. However, these insights are challenged by the depiction of position-independent toxicity of TTNtv acting via haploinsufficient alleles, which are sufficient to induce cardiac pathology upon stress. In the current review, we provide an overview of TTN and discuss studies investigating various TTN mutations. We also present an overview of different mechanisms postulated or experimentally validated in the pathogenicity of TTNtv. DCM-causing genes are also discussed with respect to non-truncating mutations in the etiology of DCM. One way of understanding pathogenic variants is probably to understand the context in which they may or may not affect protein-protein interactions, changes in cell signaling, and substrate specificity. In this regard, we also provide a brief overview of TTN interactions in situ. Quantitative models in the risk assessment of TTNtv are also discussed. In summary, we highlight the importance of gene-environment interactions in the etiology of DCM and further mechanistic studies used to delineate the pathways which could be targeted in the management of DCM.
Collapse
|
14
|
|
15
|
Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy. Int J Cardiol 2017; 230:634-641. [DOI: 10.1016/j.ijcard.2016.12.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 12/25/2016] [Indexed: 01/21/2023]
|