1
|
Demir SA, Seyrantepe V. Abnormally accumulated GM2 ganglioside contributes to skeletal deformity in Tay-Sachs mice. J Mol Med (Berl) 2024; 102:1517-1526. [PMID: 39514043 DOI: 10.1007/s00109-024-02498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Tay-Sachs Disease is a rare lysosomal storage disorder caused by mutations in the HEXA gene, responsible for the degradation of ganglioside GM2. In addition to progressive neurodegeneration, Tay-Sachs patients display bone anomalies, including kyphosis. Tay-Sachs disease mouse model (Hexa-/-Neu3-/-) shows both neuropathological and clinical abnormalities of the infantile-onset disease phenotype. In this study, we investigated the effects of GM2 accumulation on bone remodeling activity. Here, we evaluated the bone phenotype of 5-month-old Hexa-/-Neu3-/- mice with age-matched control groups using gene expression analysis, bone plasma biomarker analysis, and micro-computed tomography. We demonstrated lower plasma alkaline phosphatase activity and calcium levels with increased tartrate-resistant acid phosphatase levels, indicating reduced bone remodeling activity in mice. Consistently, gene expression analysis confirmed osteoblast reduction and osteoclast induction in the femur of mice. Micro-computed tomography and analysis show reduced trabecular bone volume, mineral density, number, and thickness in Hexa-/-Neu3-/- mice. In conclusion, we demonstrated that abnormal GM2 ganglioside accumulation significantly triggers skeletal abnormality in Tay-Sachs mice. We suggest that further investigation of the molecular basis of bone structure anomalies is necessary to elucidate new therapeutic targets that prevent the progression of bone symptoms and improve the life standards of Tay-Sachs patients. KEY MESSAGES: We detected the markers of bone loss-associated disorders such as osteopenia and osteoporosis in the Tay-Sachs disease mice model Hexa-/-Neu3-/-. We also demonstrated for the first time there is an increase in trabecular spacing and a reduction in trabecular thickness and number indicating skeletal abnormalities in mice model using micro-CT analysis.
Collapse
Affiliation(s)
| | - Volkan Seyrantepe
- Izmir Institute of Technology, IYTEDEHAM, Urla, Izmir, Turkey.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
2
|
D’Amore S, Poole KE, Ramaswami U, Hughes D, Page K, Solimando AG, Vacca A, Cox TM, Deegan P. Changes in Angiogenesis and Bone Turnover Markers in Patients with Gaucher Disease Developing Osteonecrosis. Metabolites 2024; 14:601. [PMID: 39590837 PMCID: PMC11596658 DOI: 10.3390/metabo14110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Patients with Gaucher disease have a high risk of bone disease, with osteonecrosis representing the most debilitating complication. The pathogenesis of osteonecrosis has not been fully elucidated yet, and there is an unmet need for predictive biomarkers of bone complications. We aimed to assess the utility of angiogenesis and bone turnover biomarkers as predictors of osteonecrosis in Gaucher disease. Methods: Angiogenesis and bone turnover biomarkers were measured in 146 Gaucher disease patients (70M:76F, median age 49.5 [IQR 36.7 to 61]) with/without osteonecrosis enrolled in the UK-based registry GAUCHERITE [enrolment 2015-2017]. Receiver-operating characteristic curve analysis was used to compare the osteonecrosis predictive value of angiogenesis and bone turnover biomarkers and determine the optimal cut-off values for each biomarker. Results: Sixty-two patients had osteonecrosis before study enrolment, 11 had osteonecrosis during follow-up, and 73 remained osteonecrosis-free. Patients with osteonecrosis showed increased osteopontin and matrix metalloproteinase (MMP)-2 levels and decreased MMP-9 and vascular endothelial growth factor (VEGF)-C compared with those free from osteonecrosis. MMP-9 predicted future osteonecrosis with higher sensitivity and specificity (area under the receiver operating characteristic curve [AUC] 0.84 [95% CI 0.84-0.99]; sensitivity/specificity 82%/75%; cutoff value ≤ 72,420 pg/mL) than osteopontin, MMP-2 and VEGF-C when taken alone. The combination of MMP-9 and VEGF-C further increased the discriminating accuracy. Conclusions: The osteopontin-MMPs-VEGF axis is dysregulated in Gaucher disease patients with osteonecrosis. The combination of MMP-9 and VEGF-C circulating levels may serve to identify Gaucher disease patients at risk of osteonecrosis.
Collapse
Affiliation(s)
- Simona D’Amore
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
- Department of Precision and Regenerative Medicine—Ionian Pole, School of Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.G.S.); (A.V.)
| | - Kenneth Eric Poole
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| | - Uma Ramaswami
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK; (U.R.); (D.H.)
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK; (U.R.); (D.H.)
| | - Kathleen Page
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine—Ionian Pole, School of Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.G.S.); (A.V.)
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine—Ionian Pole, School of Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.G.S.); (A.V.)
| | - Timothy Martin Cox
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| | - Patrick Deegan
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| |
Collapse
|
3
|
Şoroğlu CV, Berkay EG. Old disease-New reflections: Gaucher, immunity, and inflammation. J Cell Mol Med 2024; 28:e70087. [PMID: 39463025 PMCID: PMC11513444 DOI: 10.1111/jcmm.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease. It is a multisystemic metabolic disease caused by GBA pathogenic mutations. Although the general symptoms have been known for a long time, new treatment possibilities, the detection of different biomarkers, and innovations in diagnosis and follow-up have paved the way for further studies. Recent studies have shown that the immune system has become an essential factor associated with disease progression. The role of Gaucher cells in the disease is well characterized. In addition to phagocytic macrophage cells, lymphocytes, complement system, and inflammatory pathway elements are also implicated in GD as they were shown to be the underlying factors causing associated pathologies such as Parkinson's. In this article, the relationship between the GD and the immune system has been examined and reviewed in light of new findings.
Collapse
Affiliation(s)
- Can Veysel Şoroğlu
- Department of Medical BiotechnologyAcıbadem Mehmet Ali Aydınlar University, Institute of Health SciencesIstanbulTurkey
| | - Ezgi Gizem Berkay
- Department of Basic Sciences, Dentistry FacultyIstanbul Kent UniversityIstanbulTurkey
| |
Collapse
|
4
|
Yu B, Whitmarsh T, Riede P, McDonald S, Kaggie JD, Cox TM, Poole KES, Deegan P. Deep learning-based quantification of osteonecrosis using magnetic resonance images in Gaucher disease. Bone 2024; 186:117142. [PMID: 38834102 DOI: 10.1016/j.bone.2024.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Gaucher disease is one of the most common lysosomal storage disorders. Osteonecrosis is a principal clinical manifestation of Gaucher disease and often leads to joint collapse and fractures. T1-weighted (T1w) modality in MRI is widely used to monitor bone involvement in Gaucher disease and to diagnose osteonecrosis. However, objective and quantitative methods for characterizing osteonecrosis are still limited. In this work, we present a deep learning-based quantification approach for the segmentation of osteonecrosis and the extraction of characteristic parameters. We first constructed two independent U-net models to segment the osteonecrosis and bone marrow unaffected by osteonecrosis (UBM) in spine and femur respectively, based on T1w images from patients in the UK national Gaucherite study database. We manually delineated parcellation maps including osteonecrosis and UBM from 364 T1w images (176 for spine, 188 for femur) as the training datasets, and the trained models were subsequently applied to all the 917 T1w images in the database. To quantify the segmentation, we calculated morphological parameters including the volume of osteonecrosis, the volume of UBM, and the fraction of total marrow occupied by osteonecrosis. Then, we examined the correlation between calculated features and the bone marrow burden score for marrow infiltration of the corresponding image, and no strong correlation was found. In addition, we analyzed the influence of splenectomy and the interval between the age at first symptom and the age of onset of treatment on the quantitative measurements of osteonecrosis. The results are consistent with previous studies, showing that prior splenectomy is closely associated with the fractional volume of osteonecrosis, and there is a positive relationship between the duration of untreated disease and the quantifications of osteonecrosis. We propose this technique as an efficient and reliable tool for assessing the extent of osteonecrosis in MR images of patients and improving prediction of clinically important adverse events.
Collapse
Affiliation(s)
- Boliang Yu
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | | | - Philipp Riede
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Scott McDonald
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Patrick Deegan
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Ivanova MM, Dao J, Loynab N, Noor S, Kasaci N, Friedman A, Goker-Alpan O. The Expression and Secretion Profile of TRAP5 Isoforms in Gaucher Disease. Cells 2024; 13:716. [PMID: 38667330 PMCID: PMC11049511 DOI: 10.3390/cells13080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA; (J.D.); (N.K.); (O.G.-A.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Banerjee D, Ivanova MM, Celik N, Kim MH, Derman ID, Limgala RP, Ozbolat IT, Goker-Alpan O. Biofabrication of an in-vitrobone model for Gaucher disease. Biofabrication 2023; 15:045023. [PMID: 37703870 PMCID: PMC10515412 DOI: 10.1088/1758-5090/acf95a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Gaucher disease (GD), the most prevalent lysosomal disorder, is caused byGBA1gene mutations, leading to deficiency of glucocerebrosidase, and accumulation of glycosphingolipids in cells of the mononuclear phagocyte system. While skeletal diseases are the leading cause of morbidity and reduced quality of life in GD, the pathophysiology of bone involvement is not yet fully understood, partly due to lack of relevant human model systems. In this work, we present the first 3D human model of GD using aspiration-assisted freeform bioprinting, which enables a platform tool with a potential for decoding the cellular basis of the developmental bone abnormalities in GD. In this regard, human bone marrow-derived mesenchymal stem cells (obtained commercially) and peripheral blood mononuclear cells derived from a cohort of GD patients, at different severities, were co-cultured to form spheroids and differentiated into osteoblast and osteoclast lineages, respectively. Co-differentiated spheroids were then 3D bioprinted into rectangular tissue patches as a bone tissue model for GD. The results revealed positive alkaline phosphatase (ALP) and tartrate-resistant ALP activities, with multi-nucleated cells demonstrating the efficacy of the model, corroborating with gene expression studies. There were no significant changes in differentiation to osteogenic cells but pronounced morphological deformities in spheroid formation, more evident in the 'severe' cohort, were observed. Overall, the presented GD model has the potential to be adapted to personalized medicine not only for understanding the GD pathophysiology but also for personalized drug screening and development.
Collapse
Affiliation(s)
- Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA, United States of America
| | - Margarita M Ivanova
- Lysosomal & Rare Disorders Research & Treatment Center—LDRTC, Fairfax, VA, United States of America
| | - Nazmiye Celik
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
| | - Myoung Hwan Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States of America
| | - Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
| | - Renuka Pudi Limgala
- Lysosomal & Rare Disorders Research & Treatment Center—LDRTC, Fairfax, VA, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States of America
- Materials Research Institute, Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, United States of America
- Medical Oncology, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| | - Ozlem Goker-Alpan
- Lysosomal & Rare Disorders Research & Treatment Center—LDRTC, Fairfax, VA, United States of America
| |
Collapse
|
8
|
Capp JP, Bataille R. The Ins and Outs of Endosteal Niche Disruption in the Bone Marrow: Relevance for Myeloma Oncogenesis. BIOLOGY 2023; 12:990. [PMID: 37508420 PMCID: PMC10376322 DOI: 10.3390/biology12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Multiple Myeloma (MM) and its preexisting stage, termed Monoclonal Gammopathy of Undetermined Significance (MGUS), have long been considered mainly as genomic diseases. However, the bone changes observed in both conditions have led to a reassessment of the role of the bone microenvironment, mainly the endosteal niche in their genesis. Here, we consider the disruption of the endosteal niche in the bone marrow, that is, the shift of the endosteal niche from an osteoblastic to an osteoclastic profile produced by bone senescence and inflammaging, as the key element. Thus, this disrupted endosteal niche is proposed to represent the permissive microenvironment necessary not only for the emergence of MM from MGUS but also for the emergence and maintenance of MGUS. Moreover, the excess of osteoclasts would favor the presentation of antigens (Ag) into the endosteal niche because osteoclasts are Ag-presenting cells. As such, they could significantly stimulate the presentation of some specific Ag and the clonal expansion of the stimulated cells as well as favor the expansion of such selected clones because osteoclasts are immunosuppressive. We also discuss this scenario in the Gaucher disease, in which the high incidence of MGUS and MM makes it a good model both at the bone level and the immunological level. Finally, we envisage that this endosteal niche disruption would increase the stochasticity (epigenetic and genetic instability) in the selected clones, according to our Tissue Disruption-induced cell Stochasticity (TiDiS) theory.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, 31077 Toulouse, France
| | - Régis Bataille
- School of Medicine, University of Angers, 49045 Angers, France
| |
Collapse
|
9
|
Valero-Tena E, Roca-Espiau M, Verdú-Díaz J, Diaz-Manera J, Andrade-Campos M, Giraldo P. Advantages of digital technology in the assessment of bone marrow involvement in Gaucher's disease. Front Med (Lausanne) 2023; 10:1098472. [PMID: 37250646 PMCID: PMC10213682 DOI: 10.3389/fmed.2023.1098472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Gaucher disease (GD) is a genetic lysosomal disorder characterized by high bone marrow (BM) involvement and skeletal complications. The pathophysiology of these complications is not fully elucidated. Magnetic resonance imaging (MRI) is the gold standard to evaluate BM. This study aimed to apply machine-learning techniques in a cohort of Spanish GD patients by a structured bone marrow MRI reporting model at diagnosis and follow-up to predict the evolution of the bone disease. In total, 441 digitalized MRI studies from 131 patients (M: 69, F:62) were reevaluated by a blinded expert radiologist who applied a structured report template. The studies were classified into categories carried out at different stages as follows: A: baseline; B: between 1 and 4 y of follow-up; C: between 5 and 9 y; and D: after 10 years of follow-up. Demographics, genetics, biomarkers, clinical data, and cumulative years of therapy were included in the model. At the baseline study, the mean age was 37.3 years (1-80), and the median Spanish MRI score (S-MRI) was 8.40 (male patients: 9.10 vs. female patients: 7.71) (p < 0.001). BM clearance was faster and deeper in women during follow-up. Genotypes that do not include the c.1226A>G variant have a higher degree of infiltration and complications (p = 0.017). A random forest machine-learning model identified that BM infiltration degree, age at the start of therapy, and femur infiltration were the most important factors to predict the risk and severity of the bone disease. In conclusion, a structured bone marrow MRI reporting in GD is useful to standardize the collected data and facilitate clinical management and academic collaboration. Artificial intelligence methods applied to these studies can help to predict bone disease complications.
Collapse
Affiliation(s)
- Esther Valero-Tena
- Departamento de Medicina Interna y Reumatología, Hospital MAZ, Zaragoza, Spain
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras Lisosomales (FEETEG), Zaragoza, Spain
| | - Mercedes Roca-Espiau
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras Lisosomales (FEETEG), Zaragoza, Spain
| | - Jose Verdú-Díaz
- John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcio Andrade-Campos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras Lisosomales (FEETEG), Zaragoza, Spain
- Grupo Español de Enfermedades de Depósito Lisosomal de la SEHH (GEEDL), Madrid, Spain
- Grupo de Investigación en Hematología, Instituto de Investigación Hospital del Mar, IMIM-Parc de Salut Mar, Barcelona, Spain
| | - Pilar Giraldo
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras Lisosomales (FEETEG), Zaragoza, Spain
- Grupo Español de Enfermedades de Depósito Lisosomal de la SEHH (GEEDL), Madrid, Spain
| |
Collapse
|
10
|
Capp JP, Bataille R. A bone paradigm challenging the standard model of myeloma oncogenesis. Crit Rev Oncol Hematol 2022; 172:103640. [PMID: 35183697 DOI: 10.1016/j.critrevonc.2022.103640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
The standard model of multiple myeloma (MM) oncogenesis from monoclonal gammopathy of undetermined significance (MGUS) relies on genetic instability in the normal counterparts of MM cells. However, the importance of both MGUS-associated and MM-induced bone changes has been recently re-appraised, emphasizing the bone microenvironment (BME) as a tissue of significance. In this review, we propose that early BME alterations (bone senescence and inflammation, i.e. bone inflamm'aging) at the pre-MGUS stage could be causal, and not simply permissive, and creative of phenotypic instability and genetic alterations thanks to the concept of tissue disruption-induced cell stochasticity (TiDiS). This article offers a bone scenario challenging the chromosome-and-gene-centric standard model of MM oncogenesis. The high incidence of both MGUS and MM in Gaucher disease supports such a scenario.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, 135, avenue de Rangueil, 31077 Toulouse, cedex 04, France.
| | - Régis Bataille
- University of Angers, School of Medecine, rue Haute de Reculée, 49045 Angers, cedex 01, France
| |
Collapse
|
11
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
12
|
Ivanova MM, Dao J, Kasaci N, Friedman A, Noll L, Goker-Alpan O. Wnt signaling pathway inhibitors, sclerostin and DKK-1, correlate with pain and bone pathology in patients with Gaucher disease. Front Endocrinol (Lausanne) 2022; 13:1029130. [PMID: 36506070 PMCID: PMC9730525 DOI: 10.3389/fendo.2022.1029130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with Gaucher disease (GD) have progressive bone involvement that clinically presents with debilitating bone pain, structural bone changes, bone marrow infiltration (BMI), Erlenmeyer (EM) flask deformity, and osteoporosis. Pain is referred by the majority of GD patients and continues to persist despite the type of therapy. The pain in GD is described as chronic deep penetrating pain; however, sometimes, patients experience severe acute pain. The source of bone pain is mainly debated as nociceptive pain secondary to bone pathology or neuropathic or inflammatory origins. Osteocytes constitute a significant source of secreted molecules that coordinate bone remodeling. Osteocyte markers, sclerostin (SOST) and Dickkopf-1 (DKK-1), inactivate the canonical Wnt signaling pathway and lead to the inhibition of bone formation. Thus, circulated sclerostin and DKK-1 are potential biomarkers of skeletal abnormalities. This study aimed to assess the circulating levels of sclerostin and DKK-1 in patients with GD and their correlation with clinical bone pathology parameters: pain, bone mineral density (BMD), and EM deformity. Thirty-nine patients with GD were classified into cohorts based on the presence and severity of bone manifestations. The serum levels of sclerostin and DKK-1 were quantified by enzyme-linked immunosorbent assays. The highest level of sclerostin was measured in GD patients with pain, BMI, and EM deformity. The multiparameter analysis demonstrated that 95% of GD patients with pain, BMI, and EM deformity had increased levels of sclerostin. The majority of patients with elevated sclerostin also have osteopenia or osteoporosis. Moreover, circulating sclerostin level increase with age, and GD patients have elevated sclerostin levels when compared with healthy control from the same age group. Pearson's linear correlation analysis showed a positive correlation between serum DKK-1 and sclerostin in healthy controls and GD patients with normal bone mineral density. However, the balance between sclerostin and DKK-1 waned in GD patients with osteopenia or osteoporosis. In conclusion, the osteocyte marker, sclerostin, when elevated, is associated with bone pain, BMI, and EM flask deformity in GD patients. The altered sclerostin/DKK-1 ratio correlates with the reduction of bone mineral density. These data confirm that the Wnt signaling pathway plays a role in GD-associated bone disease. Sclerostin and bone pain could be used as biomarkers to assess patients with a high risk of BMI and EM flask deformities.
Collapse
|
13
|
Chis BA, Chis AF, Dumitrascu DL. Gaucher disease - therapeutic aspects in Romania. Med Pharm Rep 2021; 94:S51-S53. [PMID: 34527911 DOI: 10.15386/mpr-2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gaucher disease is a rare autosomal recessive disease caused by the beta-glicosidase activity deficiency, which will lead to substrate accumulation mainly in the liver, spleen or bone marrow. The main symptoms are liver and spleen enlargement, anemia and low platelet count, bone crisis and fatigue. Several treatment options are available, as enzyme replacement therapy, substrate reduction therapy, or chaperones treatment whose effect is still studied. There are 77 adult patients treated at this time in Romania, 54 with intravenous enzyme replacement ant 23 with oral substrate reduction therapy. No severe adverse effects have been reported by now. All patients had improved disease related symptoms after the receiving of the treatment.
Collapse
Affiliation(s)
- Bogdan Augustin Chis
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana Florica Chis
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Lucian Dumitrascu
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Serfecz JC, Saadin A, Santiago CP, Zhang Y, Bentzen SM, Vogel SN, Feldman RA. C5a Activates a Pro-Inflammatory Gene Expression Profile in Human Gaucher iPSC-Derived Macrophages. Int J Mol Sci 2021; 22:9912. [PMID: 34576075 PMCID: PMC8466165 DOI: 10.3390/ijms22189912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme β-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of GluCer and its metabolite glucosylsphingosine (GluSph) in a number of tissues and organs. In the immune system, GCase deficiency deregulates signal transduction events, resulting in an inflammatory environment. It is known that the complement system promotes inflammation, and complement inhibitors are currently being considered as a novel therapy for GD; however, the mechanism by which complement drives systemic macrophage-mediated inflammation remains incompletely understood. To help understand the mechanisms involved, we used human GD-induced pluripotent stem cell (iPSC)-derived macrophages. We found that GD macrophages exhibit exacerbated production of inflammatory cytokines via an innate immune response mediated by receptor 1 for complement component C5a (C5aR1). Quantitative RT-PCR and ELISA assays showed that in the presence of recombinant C5a (rC5a), GD macrophages secreted 8-10-fold higher levels of TNF-α compared to rC5a-stimulated control macrophages. PMX53, a C5aR1 blocker, reversed the enhanced GD macrophage TNF-α production, indicating that the observed effect was predominantly C5aR1-mediated. To further analyze the extent of changes induced by rC5a stimulation, we performed gene array analysis of the rC5a-treated macrophage transcriptomes. We found that rC5a-stimulated GD macrophages exhibit increased expression of genes involved in TNF-α inflammatory responses compared to rC5a-stimulated controls. Our results suggest that rC5a-induced inflammation in GD macrophages activates a unique immune response, supporting the potential use of inhibitors of the C5a-C5aR1 receptor axis to mitigate the chronic inflammatory abnormalities associated with GD.
Collapse
Affiliation(s)
- Jacquelyn C. Serfecz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| | - Afsoon Saadin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| | - Clayton P. Santiago
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD 21201, USA; (Y.Z.); (S.M.B.)
| | - Søren M. Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD 21201, USA; (Y.Z.); (S.M.B.)
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| | - Ricardo A. Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.S.); (A.S.); (S.N.V.)
| |
Collapse
|
15
|
TRAP5b and RANKL/OPG Predict Bone Pathology in Patients with Gaucher Disease. J Clin Med 2021; 10:jcm10102217. [PMID: 34065531 PMCID: PMC8160801 DOI: 10.3390/jcm10102217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Background and objective: Bone involvement occurs in 75% of patients with Gaucher disease (GD), and comprises structural changes, debilitating pain, and bone density abnormalities. Osteoporosis is a silent manifestation of GD until a pathologic fracture occurs. Thus, early diagnosis is crucial for identifying high-risk patients in order to prevent irreversible complications. Methods: Thirty-three patients with GD were assessed prospectively to identify predictive markers associated with bone density abnormalities, osteopenia (OSN), and osteoporosis (OSR). Subjects were categorized into three cohorts based on T- or Z-scores of bone mineral density (BMD). The first GD cohort consisted of those with no bone complications (Z-score ≥ −0.9; T-scores ≥ −1), the second was the OSN group (−1.8 ≥ Z-score ≥ −1; −2.5 ≥ T-score ≥ −1), and the third was the OSR group (Z-score ≤ −1.9; T-scores ≤ −2.5). Serum levels of TRAP5b, RANKL, OPG, and RANK were quantified by enzyme-linked immunosorbent assays. Results: TRAP5b levels were increased in GD patients, and showed a positive correlation with GD biomarkers, including plasma glucosylsphingosine (lyso-Gb1) and macrophage activation markers CCL18 and chitotriosidase. The highest level of TRAP5b was measured in patients with osteoporosis. The elevation of RANKL and RANKL/OPG ratio correlated with osteopenia in GD. Conclusion: TRAP5b, RANKL, and RANKL/OPG elevation indicate osteoclast activation in GD. TRAP5b is a potential bone biomarker for GD with the ability to predict the progression of bone density abnormalities.
Collapse
|
16
|
Gulati V, Chalian M, Yi J, Thakur U, Chhabra A. Sclerotic bone lesions caused by non-infectious and non-neoplastic diseases: a review of the imaging and clinicopathologic findings. Skeletal Radiol 2021; 50:847-869. [PMID: 33040177 DOI: 10.1007/s00256-020-03644-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023]
Abstract
Bone sclerosis is a focal, multifocal, or diffuse increase in the density of the bone matrix on radiographs or computed tomography (CT) imaging. This radiological finding can be caused by a broad spectrum of diseases, such as congenital and developmental disorders, depositional disorders, and metabolic diseases. The differential diagnosis can be effectively narrowed by an astute radiologist in the light of the clinical picture and typical findings on imaging. Some of these lesions are rare and have been described as case reports and series in the literature. This article aims to collate the clinical-radiologic findings of non-infectious and non-neoplastic causes of bone sclerosis with relevant imaging illustrations.
Collapse
Affiliation(s)
| | - Majid Chalian
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA, USA
| | - Jaehyuck Yi
- Department of Radiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Uma Thakur
- Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Avneesh Chhabra
- Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
- Musculoskeletal Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9178, USA.
- Johns Hopkins University, Baltimore, MD, USA.
- Walton Centre of Neurosciences, Liverpool, UK.
| |
Collapse
|
17
|
Rozenfeld PA, Crivaro AN, Ormazabal M, Mucci JM, Bondar C, Delpino MV. Unraveling the mystery of Gaucher bone density pathophysiology. Mol Genet Metab 2021; 132:76-85. [PMID: 32782168 DOI: 10.1016/j.ymgme.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Despite the existence of a variety of specific treatments for GD, they cannot completely reverse bone complications. Many studies have evidenced the impairment in bone tissue of GD, and molecular mechanisms of bone density alterations in GD are being studied during the last years and different reports emphasized its efforts trying to unravel why and how bone tissue is affected. The cause of skeletal density affection in GD is a matter of debates between research groups. and there are two opposing hypotheses trying to explain reduced bone mineral density in GD: increased bone resorption versus impaired bone formation. In this review, we discuss the diverse mechanisms of bone alterations implicated in GD revealed until the present, along with a presentation of normal bone physiology and its regulation. With this information in mind, we discuss effectiveness of specific therapies, introduce possible adjunctive therapies and present a novel model for GD-associated bone density pathogenesis. Under the exposed evidence, we may conclude that both sides of the balance of remodeling process are altered. In GD the observed osteopenia/osteoporosis may be the result of contribution of both reduced bone formation and increased bone resorption.
Collapse
Affiliation(s)
- P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| | - A N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Av. Córdoba 2351, (C1120ABG), Buenos Aires, Argentina
| |
Collapse
|
18
|
Adusumilli G, Kaggie JD, D’Amore S, Cox TM, Deegan P, MacKay JW, McDonald S. Improving the quantitative classification of Erlenmeyer flask deformities. Skeletal Radiol 2021; 50:361-369. [PMID: 32734372 PMCID: PMC7736022 DOI: 10.1007/s00256-020-03561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/02/2023]
Abstract
The Erlenmeyer flask deformity is a common skeletal modeling deformity, but current classification systems are binary and may restrict its utility as a predictor of associated skeletal conditions. A quantifiable 3-point system of severity classification could improve its predictive potential in disease. Ratios were derived from volumes of regions of interests drawn in 50 Gaucher's disease patients. ROIs were drawn from the distal physis to 2 cm proximal, 2 cm to 4 cm, and 4 cm to 6 cm. Width was also measured at each of these boundaries. Two readers rated these 100 femurs using a 3-point scale of severity classification. Weighted kappa indicated reliability and one-way analysis of variance characterized ratio differences across the severity scale. Accuracy analyses allowed determination of clinical cutoffs for each ratio. Pearson's correlations assessed the associations of volume and width with a shape-based concavity metric of the femur. The volume ratio incorporating the metaphyseal region from 0 to 2 cm and the diametaphyseal region at 4-6 cm was most accurate at distinguishing femurs on the 3-point scale. Receiver operating characteristic curves for this ratio indicated areas of 0.95 to distinguish normal and mild femurs and 0.93 to distinguish mild and severe femurs. Volume was moderately associated with the degree of femur concavity. The proposed volume ratio method is an objective, proficient method at distinguishing severities of the Erlenmeyer flask deformity with the potential for automation. This may have application across diseases associated with the deformity and deficient osteoclast-mediated modeling of growing bone.
Collapse
Affiliation(s)
- Gautam Adusumilli
- grid.5335.00000000121885934Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK ,Present Address: St. Louis, USA
| | - Joshua D. Kaggie
- grid.5335.00000000121885934Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Simona D’Amore
- grid.5335.00000000121885934Department of Medicine, Addenbrookes Hospital, University of Cambridge, Box 157, Hills Rd, Cambridge, CB2 0QQ UK
| | - Timothy M. Cox
- grid.5335.00000000121885934Department of Medicine, Addenbrookes Hospital, University of Cambridge, Box 157, Hills Rd, Cambridge, CB2 0QQ UK
| | - Patrick Deegan
- grid.5335.00000000121885934Department of Medicine, Addenbrookes Hospital, University of Cambridge, Box 157, Hills Rd, Cambridge, CB2 0QQ UK
| | - James W. MacKay
- grid.5335.00000000121885934Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Scott McDonald
- grid.5335.00000000121885934Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | | |
Collapse
|
19
|
Menkovic I, Boutin M, Alayoubi A, Mercier FE, Rivard GÉ, Auray-Blais C. Identification of a Reliable Biomarker Profile for the Diagnosis of Gaucher Disease Type 1 Patients Using a Mass Spectrometry-Based Metabolomic Approach. Int J Mol Sci 2020; 21:ijms21217869. [PMID: 33114153 PMCID: PMC7660648 DOI: 10.3390/ijms21217869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Gaucher disease (GD) is a rare autosomal recessive multisystemic lysosomal storage disorder presenting a marked phenotypic and genotypic variability. GD is caused by a deficiency in the glucocerebrosidase enzyme. The diagnosis of GD remains challenging because of the large clinical spectrum associated with the disease. Moreover, GD biomarkers are often not sensitive enough and can be subject to polymorphic variations. The main objective of this study was to perform a metabolomic study using an ultra-performance liquid chromatography system coupled to a time-of-flight mass spectrometer to identify novel GD biomarkers. Following the analysis of plasma samples from patients with GD, and age- and gender-matched control samples, supervised statistical analyses were used to find the best molecules to differentiate the two groups. Targeted biomarkers were structurally elucidated using accurate mass measurements and tandem mass spectrometry. This metabolomic study was successful in highlighting seven biomarkers associated with GD. Fragmentation tests revealed that these latter biomarkers were lyso-Gb1 (glucosylsphingosine) and four related analogs (with the following modifications on the sphingosine moiety: -C2H4, -H2, -H2+O, and +H2O), sphingosylphosphorylcholine, and N-palmitoyl-O-phosphocholineserine. Based on the plasma biomarker distribution, we suggest the evaluation of this GD biomarker profile, which might facilitate early diagnosis, monitoring, and follow-up of patients.
Collapse
Affiliation(s)
- Iskren Menkovic
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l’Estrie-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (I.M.); (M.B.)
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l’Estrie-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (I.M.); (M.B.)
| | - Abdulfatah Alayoubi
- Divisions of Experimental Medicine and Hematology, Department of Medicine, Faculty of Medicine, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755, Côte Sainte-Catherine, Montreal, QC H3T 1E2, Canada; (A.A.); (F.E.M.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, University Road, Madinah 42353, Saudi Arabia
| | - François E. Mercier
- Divisions of Experimental Medicine and Hematology, Department of Medicine, Faculty of Medicine, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755, Côte Sainte-Catherine, Montreal, QC H3T 1E2, Canada; (A.A.); (F.E.M.)
| | - Georges-Étienne Rivard
- Division of Hemato-Oncology, Department of Pediatrics, Faculty of Medicine, Centre Hospitalier Universitaire Sainte-Justine, 3175, Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada;
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CIUSSS de l’Estrie-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (I.M.); (M.B.)
- Correspondence:
| |
Collapse
|
20
|
Effect of Substrate Reduction Therapy in Comparison to Enzyme Replacement Therapy on Immune Aspects and Bone Involvement in Gaucher Disease. Biomolecules 2020; 10:biom10040526. [PMID: 32244296 PMCID: PMC7226435 DOI: 10.3390/biom10040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gaucher disease (GD) is caused by mutations in the GBA gene, leading to deficient activity of the lysosomal enzyme glucocerebrosidase. Among all the symptoms across various organ systems, bone disease is a major concern as it causes high morbidity and reduces quality of life. Enzyme replacement therapy (ERT) is the most accepted treatment; however, there are still unmet needs. As an alternative, substrate reduction therapy (SRT) was developed using glucosylceramide synthase inhibitors. In the current study, the effects of ERT vs. SRT were compared, particularly the immunological and bone remodeling aspects. GD subjects were divided into three cohorts based on their treatment at initial visit: ERT, SRT, and untreated (UT). Immunophenotyping showed no significant immune cell alterations between the cohorts. Expression of RANK/RANKL/Osteoprotegerin pathway components on immune cells and the secreted markers of bone turnover were analyzed. In the ERT cohort, no significant changes were observed in RANK, RANKL or serum biomarkers. RANKL on T lymphocytes, Osteopontin and MIP-1β decreased with SRT treatment indicating probable reduction in osteoclast activity. Other secreted factors, Osteocalcin and RANKL/Osteoprotegerin did not change with the treatment status. Insights from the study highlight personalized differences between subjects and possible use of RANK pathway components as markers for bone disease progression.
Collapse
|
21
|
Oliveri B, González D, Quiroga F, Silva C, Rozenfeld P. A Comprehensive Study of Bone Manifestations in Adult Gaucher Disease Type 1 Patients in Argentina. Calcif Tissue Int 2019; 104:650-657. [PMID: 30790003 DOI: 10.1007/s00223-019-00536-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/12/2019] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is the most prevalent lysosomal storage disease, and bone involvement is the most disabling condition. The aim of the present study was to evaluate bone involvement in adult patients with GD, using an observational cross-sectional study. Patients were evaluated using X-rays, bone densitometry (BMD), trabecular bone score (TBS), magnetic resonance imaging (MRI), and biochemical bone markers. Thirty-two type 1GD patients were included (mean age: 40 ± 16 years). Patients had received velaglucerase for 2.7 ± 1.4 years; 19/32 had been treated previously with imiglucerase. Ninety-four percent of subjects met therapeutic goals for hematological parameters, and eight were splenectomized (SPX). Nineteen patients had irreversible bone lesions (IL), i.e., avascular necrosis, bone infarction, and/or vertebral fractures. MRI showed marrow infiltration in 71% of patients. Patients with IL had higher bone marrow burden than those without (p = 0.001). All SPX patients had IL, a higher prevalence of bone marrow edema (p = 0.02), and lower TBS (p = 0.03) than non-SPX patients. Only 18.7% of patients had abnormal BMD, with no correlation with fractures (FX). TBS values were < 1350 in 53% of patients and tended to be lower in those with FX (p = 0.06). Patients with P1NP in the lower quartile had lower TBS (p = 0.03) than those with P1NP in the higher quartiles. TBS correlated moderately but not significantly with P1NP (r = 0.32) and BMB (r = - 0.44). A high prevalence of IL was documented. Bone quality was more affected than BMD in fracture patients. Low bone formation, active bone marrow infiltration, and splenectomy might be implicated in IL.
Collapse
Affiliation(s)
- Beatriz Oliveri
- Laboratorio de Osteoporosis y Enf. Metabólicas Oseas, INIGEM (UBA-CONICET) Hosp.de Clínicas JSM, Cordoba 2351-Piso 8, 1120, Ciudad Autonoma de Buenos Aires, Argentina.
| | - Diana González
- Mautalen Salud e Investigación, Azcuenaga, 1860-Piso 6, 1128, Ciudad Autonoma de Buenos Aires, Argentina
| | - Felisa Quiroga
- Diagnóstico Maipú, Av. Maipú 1660, Vicente López, 1602, Buenos Aires, Argentina
| | - Claudio Silva
- Diagnóstico Maipú, Av. Maipú 1660, Vicente López, 1602, Buenos Aires, Argentina
| | - Paula Rozenfeld
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, Calle 47 y 115-La Plata, 1900, Buenos Aires, Argentina
| |
Collapse
|
22
|
Winter AW, Salimi A, Ospina LH, Roos JCP. Ophthalmic manifestations of Gaucher disease: the most common lysosomal storage disorder. Br J Ophthalmol 2019; 103:315-326. [PMID: 30612093 DOI: 10.1136/bjophthalmol-2018-312846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 11/04/2022]
Abstract
Gaucher disease (GD) results from a deficiency of glucocerebrosidase activity and the subsequent accumulation of the enzyme's metabolites, principally glucosylsphingosine and glucosylceramide. There are three principal forms: Type I, which is the most common, is usually considered non-neuronopathic. Type II, III and IIIc manifest earlier and have neurological sequelae due to markedly reduced enzyme activity. Gaucher's can be associated with ophthalmological sequelae but these have not been systematically reviewed. We therefore performed a comprehensive literature review of all such ophthalmic abnormalities associated with the different types of Gaucher disease. We systematically searched the literature (1950 - present) for functional and structural ocular abnormalities arising in patients with Gaucher disease and found that all subtypes can be associated with ophthalmic abnormalities; these range from recently described intraocular lesions to disease involving the adnexae, peripheral nerves and brain. In summary, Gaucher can affect most parts of the eye. Rarely is it sight-threatening; some but not all manifestations are amenable to treatment, including with enzyme replacement and substrate reduction therapy. Retinal involvement is rare but patients with ocular manifestations should be monitored and treated early to reduce the risk of progression and further complications. As Gaucher disease is also associated with Parkinsons disease and may also confer an increased risk of malignancy (particularly haematological forms and melanoma), any ocular abnormalities should be fully investigated to exclude these potential underlying conditions.
Collapse
Affiliation(s)
- Aaron W Winter
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ali Salimi
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Luis H Ospina
- Department of Pediatric Ophthalmology and Neuro-Ophthalmology, Sainte-Justine Hospital, University of Montréal, Montréal, Québec, Canada
| | - Jonathan C P Roos
- Department of Ophthalmology, Norfolk & Norwich University Hospitals, Norfolk, UK .,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Panicker LM, Srikanth MP, Castro-Gomes T, Miller D, Andrews NW, Feldman RA. Gaucher disease iPSC-derived osteoblasts have developmental and lysosomal defects that impair bone matrix deposition. Hum Mol Genet 2019; 27:811-822. [PMID: 29301038 DOI: 10.1093/hmg/ddx442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid β-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/β catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3β inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/β catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thiago Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Diana Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Mullin S, Hughes D, Mehta A, Schapira AHV. Neurological effects of glucocerebrosidase gene mutations. Eur J Neurol 2018; 26:388-e29. [PMID: 30315684 PMCID: PMC6492454 DOI: 10.1111/ene.13837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The association between Gaucher disease (GD) and Parkinson disease (PD) has been described for almost two decades. In the biallelic state (homozygous or compound heterozygous) mutations in the glucocerebrosidase gene (GBA) may cause GD, in which glucosylceramide, the sphingolipid substrate of the glucocerebrosidase enzyme (GCase), accumulates in visceral organs leading to a number of clinical phenotypes. In the biallelic or heterozygous state, GBA mutations increase the risk for PD. Mutations of the GBA allele are the most significant genetic risk factor for idiopathic PD, found in 5%–20% of idiopathic PD cases depending on ethnicity. The neurological consequences of GBA mutations are reviewed and the proposition that GBA mutations result in a disparate but connected range of clinically and pathologically related neurological features is discussed. The literature relating to the clinical, biochemical and genetic basis of GBA PD, type 1 GD and neuronopathic GD is considered highlighting commonalities and distinctions between them. The evidence for a unifying disease mechanism is considered.
Collapse
Affiliation(s)
- S Mullin
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.,Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, UK
| | - D Hughes
- LSD Unit/Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK
| | - A Mehta
- LSD Unit/Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK
| | - A H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
25
|
Demirci U, Çizmecioglu A, Aydogdu I. Actual reason for bone fractures in the case of a patient followed-up with the osteogenesis imperfecta: Gaucher's Disease. ACTA ACUST UNITED AC 2018; 14:336-339. [PMID: 29354164 DOI: 10.11138/ccmbm/2017.14.3.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gaucher's disease (GD) is a rare disease characterized by a β-glucocerebroside accumulation in the reticulo-endothelial system. Patients may refer to the clinic with complaints of bone pain, hepatosplenomegaly, anemia, thrombocytopenia, growth retardation, interstitial pulmonary disease, pulmonary hypertension, and skeletal disorders. Skeletal system involvement is observed commonly in Gaucher patients and a significant cause of morbidity. Our patient was followed for several years as a glass child - osteogenesis imperfecta and he had joint deformities due to skeletal fractures. We wanted to present this case to raise awareness of GD's skeletal involvement and effects of late diagnosis.
Collapse
Affiliation(s)
| | - Ahmet Çizmecioglu
- Department of Internal Medicine, Private Konya Anit Hospital, Konya, Turkey
| | - Ismet Aydogdu
- Department of Hematology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
26
|
Rigante D, Cipolla C, Basile U, Gulli F, Savastano MC. Overview of immune abnormalities in lysosomal storage disorders. Immunol Lett 2017; 188:79-85. [PMID: 28687233 DOI: 10.1016/j.imlet.2017.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
The critical relevance of the lysosomal compartment for normal cellular function can be proved by numbering the clinical phenotypes that arise in lysosomal storage disorders (LSDs), a group of around 70 different monogenic autosomal or X-linked syndromes, caused by specific lysosomal enzyme deficiencies: all LSDs are characterized by progressive accumulation of heterogeneous biologic materials in the lysosomes of various parts of the body such as viscera, skeleton, skin, heart, and central nervous system. At least a fraction of LSDs has been associated with mixed abnormalities involving the immune system, while some patients with LSDs may result more prone to autoimmune phenomena. A large production of proinflammatory cytokines has been observed in Gaucher and Fabry diseases, and wide different autoantibody production has been also reported in both. Many immune-mediated reactions are crucial to the pathogenesis of different inflammatory signs in mucopolysaccharidoses, and subverted heparan sulphate catabolism might dysregulate cellular homeostasis in the brain of these patients. Furthermore, an inappropriate activation of microglia is implicated in the neurodegenerative foci of Niemann-Pick disease, in which abnormal signalling pathways are activated by impaired sphingolipid metabolism. In addition, not the simple impaired catabolism of gangliosides per se, but also the production of anti-ganglioside autoantibodies contributes to the neurological disease of gangliosidoses. Even if the exact relationship between the modification of lysosomal activities and modulation of the immune system remains obscure, there is emerging evidence of different impaired immunity responses in a variety of LSDs: in this review we investigate and summarize the immune abnormalities and/or clinical data about immune system irregularities which have been described in a subset of LSDs.
Collapse
Affiliation(s)
- Donato Rigante
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy.
| | - Clelia Cipolla
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Umberto Basile
- Department of Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Francesca Gulli
- Laboratory of Clinical Pathology, Ospedale M.G. Vannini, Institute Figlie S. Camillo, Rome, Italy
| | | |
Collapse
|
27
|
Kwee TC, de Klerk JMH, Nix M, Heggelman BGF, Dubois SV, Adams HJA. Benign Bone Conditions That May Be FDG-avid and Mimic Malignancy. Semin Nucl Med 2017; 47:322-351. [PMID: 28583274 DOI: 10.1053/j.semnuclmed.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Positron emission tomography with the radiotracer 18F-fluoro-2-deoxy-d-glucose (FDG) plays an important role in the evaluation of bone pathology. However, FDG is not a cancer-specific agent, and knowledge of the differential diagnosis of benign FDG-avid bone alterations that may resemble malignancy is important for correct patient management, including the avoidance of unnecessary additional invasive tests such as bone biopsy. This review summarizes and illustrates the spectrum of benign bone conditions that may be FDG-avid and mimic malignancy, including osteomyelitis, bone lesions due to benign systemic diseases (Brown tumor, Erdheim-Chester disease, Gaucher disease, gout and other types of arthritis, Langerhans cell histiocytosis, and sarcoidosis), benign primary bone lesions (bone cysts, chondroblastoma, chondromyxoid fibroma, desmoplastic fibroma, enchondroma, giant cell tumor and granuloma, hemangioma, nonossifying fibroma, and osteoid osteoma and osteoblastoma), and a group of miscellaneous benign bone conditions (post bone marrow biopsy or harvest status, bone marrow hyperplasia, fibrous dysplasia, fractures, osteonecrosis, Paget disease of bone, particle disease, and Schmorl nodes). Several ancillary clinical and imaging findings may be helpful in discriminating benign from malignant FDG-avid bone lesions. However, this distinction is sometimes difficult or even impossible, and tissue acquisition will be required to establish the final diagnosis.
Collapse
Affiliation(s)
- Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands.
| | - John M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Maarten Nix
- Department of Radiology, Meander Medical Center, Amersfoort, The Netherlands
| | - Ben G F Heggelman
- Department of Radiology, Meander Medical Center, Amersfoort, The Netherlands
| | - Stefan V Dubois
- Department of Pathology, Meander Medical Center, Amersfoort, The Netherlands
| | - Hugo J A Adams
- Department of Radiology and Nuclear Medicine, Deventer Ziekenhuis, Deventer, The Netherlands
| |
Collapse
|
28
|
Larroudé MS, Aguilar G, Rossi I, Drelichman G, Fernandez Escobar N, Basack N, Slago M, Schenone A, Fynn A, Cuello MF, Fernandez R, Ruiz A, Reichel P, Guelbert N, Robledo H, Watman N, Bolesina M, Elena G, Veber SE, Pujal G, Galvan G, Chain JJ, Arizo A, Bietti J, Aznar M, Dragosky M, Marquez M, Feldman L, Muller K, Zirone S, Buchovsky G, Lanza V, Fernandez I, Jaureguiberry R, Barbieri MA, Maro A, Zarate G, Fernandez G, Rapetti M, Degano A, Kantor G, Albina A, Alvarez Bollea M, Arrocena H, Bacciedoni V, Del Rio F. Evaluation of Bone Mineral Density in Patients with Type 1 Gaucher Disease in Argentina. J Clin Densitom 2016; 19:444-449. [PMID: 27574779 DOI: 10.1016/j.jocd.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to evaluate the frequency of osteoporosis (OP) in patients with Gaucher disease (GD) in Argentina. GD patients from 28 centers were consecutively included from April 2012 to 2014. Bone mineral density (BMD) was determined by dual X-ray absorptiometry in the lumbar spine and the femoral neck or the total proximal femur for patients ≥20 yr of age, and by whole-body scan in the lumbar spine in patients <20 yr of age. In children, mineral density was calculated using the chronological age and Z height. OP diagnosis was determined following adult and pediatric official position of the International Society for Clinical Densitometry. A total of 116 patients were included, of which 62 (53.5%) were women. The median age was 25.8 yr. All patients received enzyme replacement therapy, with a median time of 9.4 yr. Normal BMD was found in 89 patients (76.7%), whereas low bone mass (LBM) or osteopenia was found in 15 patients (13%) and OP in 12 patients (10.3%). The analysis of the pediatric population revealed that 4 patients (9.3%) had LBM and 3 (7%) had OP (Z-score ≤ -2 + fractures height-adjusted by Z), whereas in the adult population (n = 73), 11 patients (15%) had LBM or osteopenia and 9 (12.3%) had OP. Bone marrow infiltration and the presence of fractures were significantly correlated with the presence of OP (p = 0.04 and <0.001, respectively). This is the first study in Argentina and in the region describing the frequency of OP or LBM in GD patients treated with imiglucerase using the official position of the International Society for Clinical Densitometry.
Collapse
Affiliation(s)
- M S Larroudé
- Departamento de Densitometría ósea, Centro de Diagnóstico E. Rossi, Buenos Aires, Argentina; Departamento de Densitometría ósea, Hospital Cesar Milstein, Buenos Aires, Argentina.
| | - G Aguilar
- Departamento de Densitometría ósea, Centro de Diagnóstico E. Rossi, Buenos Aires, Argentina
| | - I Rossi
- Departamento de Densitometría ósea, Centro de Diagnóstico E. Rossi, Buenos Aires, Argentina
| | - G Drelichman
- Hospital de Niños "Ricardo Gutiérrez," CABA, Buenos Aires, Argentina
| | | | - N Basack
- Hospital de Niños "Ricardo Gutiérrez," CABA, Buenos Aires, Argentina
| | - M Slago
- Department of Hematology, Laboratorio de Neuroquímica "Dr. N.A. Chamoles," Buenos Aires, Argentina
| | - A Schenone
- Department of Hematology, Laboratorio de Neuroquímica "Dr. N.A. Chamoles," Buenos Aires, Argentina
| | - A Fynn
- Department of Hematology, Hospital de Niños "Sor María Ludovica," La Plata, Argentina
| | - M F Cuello
- Department of Hematology, Hospital de Niños "Sor María Ludovica," La Plata, Argentina
| | - R Fernandez
- Department of Hematology, Hospital de Niños "Sor María Ludovica," La Plata, Argentina
| | - A Ruiz
- Department of Hematology, Hospital CEpsi Eva Perón, Santiago del Estero, Argentina
| | - P Reichel
- Department of Hematology, Hospital CEpsi Eva Perón, Santiago del Estero, Argentina
| | - N Guelbert
- Department of Hematology, Hospital Provincial de Niños "Santa Trinidad," Córdoba, Argentina
| | - H Robledo
- Department of Hematology, Hospital Provincial de Niños "Santa Trinidad," Córdoba, Argentina
| | - N Watman
- Hospital Ramos Mejía, CABA, Buenos Aires, Argentina
| | - M Bolesina
- Hospital Ramos Mejía, CABA, Buenos Aires, Argentina
| | - G Elena
- Hospital de Niños Pedro de Elizalde, CABA, Buenos Aires, Argentina
| | - S E Veber
- Hospital de Niños Pedro de Elizalde, CABA, Buenos Aires, Argentina
| | - G Pujal
- Department of Hematology, Hospital "Dr. Julio C. Perrando," Chaco, Argentina
| | - G Galvan
- Department of Hematology, Hospital "Dr. Julio C. Perrando," Chaco, Argentina
| | - J J Chain
- Department of Hematology, Hospital del Niño Jesús, Tucumán, Argentina
| | - A Arizo
- Department of Hematology, Hospital Iturraspe, Santa Fe, Argentina
| | - J Bietti
- Department of Hematology, Hospital Iturraspe, Santa Fe, Argentina
| | - M Aznar
- Department of Hematology, Instituto Médico Platense, La Plata, Argentina
| | - M Dragosky
- Department of Hematology, Hospital de Oncología "M. Curie," Buenos Aires, Argentina
| | - M Marquez
- Department of Hematology, Hospital de Oncología "M. Curie," Buenos Aires, Argentina
| | - L Feldman
- Clínica Modelo de Tandil, Pcia, Buenos Aires, Argentina
| | - K Muller
- Clínica Modelo de Tandil, Pcia, Buenos Aires, Argentina
| | - S Zirone
- Department of Hematology, Clínica del Niño del Rosario, Santa Fe, Argentina
| | - G Buchovsky
- Department of Hematology, Hospital Escuela de Corrientes, Corrientes, Argentina
| | - V Lanza
- Hospital Materno Infantil de Mar del Plata, Pcia, Buenos Aires, Argentina
| | - I Fernandez
- Hospital de Del Viso, Pcia, Buenos Aires, Argentina
| | - R Jaureguiberry
- Department of Hematology, Hospital de San Martín, La Plata, Argentina
| | | | - A Maro
- Hospital Alemán, CABA, Buenos Aires, Argentina
| | - G Zarate
- Hospital Pirovano, CABA, Buenos Aires, Argentina
| | - G Fernandez
- Hospital Pirovano, CABA, Buenos Aires, Argentina
| | - M Rapetti
- Hospital de Niños de San Justo, Pcia, Buenos Aires, Argentina
| | - A Degano
- Sanatorio General Sarmiento, Pcia, Buenos Aires, Argentina
| | - G Kantor
- Hospital Durand, CABA, Buenos Aires, Argentina
| | - A Albina
- Consultorio Particular, Mar Del Plata, Prov, Buenos Aires, Argentina
| | - M Alvarez Bollea
- Department of Hematology, Sanatorio Allende de Córdoba, Córdoba, Argentina
| | - H Arrocena
- Hospital Centenario, Gualeguychu, Entre Ríos, Argentina
| | - V Bacciedoni
- Department of Hematology, Hospital Lagomaggiore, Mendoza, Argentina
| | - F Del Rio
- Department of Hematology, Hospital Lagomaggiore, Mendoza, Argentina
| |
Collapse
|