1
|
Namuga C, Muwonge H, Nasifu K, Sekandi P, Sekulima T, Kirabira JB. Hoslundia opposita vahl; a potential source of bioactive compounds with antioxidant and antibiofilm activity for wound healing. BMC Complement Med Ther 2024; 24:236. [PMID: 38886717 PMCID: PMC11181642 DOI: 10.1186/s12906-024-04540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Biofilms and oxidative stress retard wound healing. The resistance of biofilms to antibiotics has led to a search for alternative approaches in biofilm elimination. Antioxidants work synergistically with antibacterial agents against biofilms. Hence recent research has suggested plants as candidates in the development of new alternatives in biofilm treatments and as antioxidants due to the presence of phytocompounds which are responsible for their bioactivities. Hoslundia opposita Vahl is one of the plants used by traditional healers to treat wounds and other infections, this makes it a potential candidate for drug discovery hence, in this study, we investigate the antibiofilm and antioxidant activity of methanolic extract of hoslundia opposita Vahl from Uganda. We also identify phytochemicals responsible for its bioactivity. METHOD the plant was extracted by maceration using methanol, and the extract was investigated for antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. The antibiofilm activity using microtiter plate assay (MTP) assay where the Minimum biofilm inhibitory concentration required to inhibit 50% or 90% of the biofilm (MBIC50 and MBIC90) and Minimum biofilm eradication concentration required to remove 50% or 90% of the biofilm (MBEC50 and MBEC90) were measured. It was further analysed for its phytochemical composition using quantitative screening, as well as Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography mass-spectrometry (LC-MS). RESULTS H. Opposita Vahl extract showed good antioxidant activity with of 249.6 mg/mL. It inhibited the growth of P. aeruginosa and S. aureus biofilms with MBIC50 of 28.37 mg/mL and 10 mg/mL, respectively. It showed the ability to eradicate P. aeruginosa and S. aureus biofilms with MBEC50 of 23.85 and 39.01 mg/mL respectively. Phytochemical analysis revealed the presence of alkaloids, tannins, flavonoids, and phenols. GC-MS analysis revealed 122 compounds in the extract of which, 23 have evidence of antioxidant or antibiofilm activity in literature. The most abundant compounds were; 1,4- Citric acid, Tetracontane-1,40-diol (43.43.3%, 1, Olean-12-en-28-oic acid, 3-hydroxy-, methyl ester, (3.beta) (15.36%) 9-Octadecenamide (12.50%), Squalene (11.85%) Palmitic Acid 4TMS (11.28%), and alpha Amyrin (11.27%). The LC-MS identified 115 and 57 compounds in multiple reaction mode (MRM) and scan modes respectively. CONCLUSION H. opposita Vahl showed antibiofilm and antioxidant activity due to bioactive compounds identified, hence the study justifies its use for wound healing. It can be utilised in further development of new drugs as antibiofilm and antioxidants.
Collapse
Affiliation(s)
- Catherine Namuga
- Depatment of Polymer, Textile, and Industrial Engineering, Busitema University, P. O. Box 256, Tororo, Uganda.
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Haruna Muwonge
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Kerebba Nasifu
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Peter Sekandi
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Tahalu Sekulima
- Department of Mechanical Engineering, College of Engineering, Design, Art, and Technology, Makerere University, Kampala, Uganda
| | - John Baptist Kirabira
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
2
|
Abbas MG, Azeem M, Bashir MU, Ali F, Mozūratis R, Binyameen M. Chemical Composition, Repellent, and Oviposition Deterrent Potential of Wild Plant Essential Oils against Three Mosquito Species. Molecules 2024; 29:2657. [PMID: 38893531 PMCID: PMC11173646 DOI: 10.3390/molecules29112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 μg/cm2. In time-span bioassays performed at 333 μg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-β-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.
Collapse
Affiliation(s)
- Muhammad Ghazanfar Abbas
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.A.); (F.A.)
| | - Muhammad Umar Bashir
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| | - Fawad Ali
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.A.); (F.A.)
| | - Raimondas Mozūratis
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Muhammad Binyameen
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| |
Collapse
|
3
|
Foláyan MO, Olagunju MT, Abodunrin OR, Alade OT. A scoping review on the use of traditional medicine and oral health in Africa. PLoS One 2024; 19:e0297570. [PMID: 38805486 PMCID: PMC11132499 DOI: 10.1371/journal.pone.0297570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/06/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND This review aimed to chart the landscape of literature concerning the precise applications of traditional medicine in managing specific oral diseases and, in doing so, to pinpoint knowledge gaps surrounding the use of traditional medicine for oral disease management in the African context. METHODS A systematic search of the literature was conducted on PubMed, Web of Science, Scopus, and CINAHL. The search was conducted from the inception of the database till September 2023. A search of related citations and references was also carried out. Only English language publications were included. A summary of studies that met the inclusion criteria was conducted. RESULTS Of the 584 records identified, 11 were duplicates and 12 studies, published between 2006 and 2021, met the inclusion criteria. The studies were published from eight countries located in the five sub-regions on the continent. All the studies were either experimental designs or ethnobotanical surveys and they all utilized plant-based remedies. The five experimental studies aimed to assess the impact of whole plants or plant extracts on the three microorganisms responsible for dental caries and seven responsible for periodontal diseases. The number of plant species identified by the seven ethnobotanical surveys ranged from 29 to 62 while the number of plan families ranged from 15 to 29. The remedies were either topical applied, use as mouth rinses, gargled, or chewed. The systemic routes of administration identified were inhalation and drinking. The remedies were used for the treatment of hard such as dental caries and tooth sensitivity, to soft tissue lesions such as mouth ulcers, gingival bleeding, and mouth thrush. Other oral disorders managed include halitosis, jaw fracture, and oral cancer. CONCLUSIONS Given the increasing prevalence of oral diseases within the region, the shortage of oral healthcare professionals and limited access to financial resources, it becomes imperative to support the generation of empirical evidence to enhance the provision of traditional medicine for oral healthcare in Africa.
Collapse
Affiliation(s)
- Moréniké Oluwátóyìn Foláyan
- Oral Health Initiative, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
- Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Mobolaji Timothy Olagunju
- Department of Epidemiology and Biostatistics, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | - Omolola Titilayo Alade
- Oral Health Initiative, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
- Department of Preventive and Community Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
4
|
Gilles L, Antoniotti S. Chemical and Olfactory Analysis of the Volatile Fraction of Ocimum gratissimum Concrete from Madagascar. Chem Biodivers 2023; 20:e202300252. [PMID: 37366263 DOI: 10.1002/cbdv.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The chemical composition of the volatile fraction of Ocimum gratissimum concrete (romba) from Madagascar has been determined for the first time by GC/MS and GC-FID. A methyl cinnamate chemotype has been determined for this material, along with a set of compounds typical in essential oils and extracts from plants of the Ocimum genus. Variability was mostly observed on terpenes and terpenoids components. GC-O-MS was also used for a sensory evaluation of this material performed by a master perfumer. The chemical composition of this O. gratissimum extract was then compared with literature data to assess subtle differences between chemotypes of the same species and other species of the same genus within natural variability. A mapping illustrates the occurrence of the cinnamate chemotype in Eastern Africa, India and now Madagascar, while other origins generally present eugenol, thymol, camphor, or linalool chemotypes.
Collapse
Affiliation(s)
- Laure Gilles
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Parc Valrose, 06108, Nice cedex 2, France
- Alysophil SAS Bio Parc, 850 bd Sébastien Brant BP 30170, 67405, Illkirch, France
| | - Sylvain Antoniotti
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Parc Valrose, 06108, Nice cedex 2, France
| |
Collapse
|
5
|
Rodríguez-Mesa XM, Contreras Bolaños LA, Mejía A, Pombo LM, Modesti Costa G, Santander González SP. Immunomodulatory Properties of Natural Extracts and Compounds Derived from Bidens pilosa L.: Literature Review. Pharmaceutics 2023; 15:pharmaceutics15051491. [PMID: 37242733 DOI: 10.3390/pharmaceutics15051491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Bidens pilosa L. has been used in different parts of the world mainly to treat diseases associated with immune response disorders, such as autoimmunity, cancer, allergies, and infectious diseases. The medicinal properties of this plant are attributed to its chemical components. Nevertheless, there is little conclusive evidence that describes the immunomodulatory activity of this plant. In this review, a systematic search was carried out in the PubMed-NLM, EBSCO Host and BVS databases focused on the pre-clinical scientific evidence of the immunomodulatory properties of B. pilosa. A total of 314 articles were found and only 23 were selected. The results show that the compounds or extracts of Bidens modulate the immune cells. This activity was associated with the presence of phenolic compounds and flavonoids that control proliferation, oxidative stress, phagocytosis, and the production of cytokines of different cells. Most of the scientific information analyzed in this paper supports the potential use of B. pilosa mainly as an anti-inflammatory, antioxidant, antitumoral, antidiabetic, and antimicrobial immune response modulator. It is necessary that this biological activity be corroborated through the design of specialized clinical trials that demonstrate the effectiveness in the treatment of autoimmune diseases, chronic inflammation, and infectious diseases. Until now there has only been one clinical trial in phase I and II associated with the anti-inflammatory activity of Bidens in mucositis.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez-Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | | | - Antonio Mejía
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Luis Miguel Pombo
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Geison Modesti Costa
- Phytochemistry Research Group (GIFUJ), Pontificia Universidad Javeriana, Bogotá Carrera 7 #40-62, Bogota 110231, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| |
Collapse
|
6
|
Felicia Chukwuma I, Orizu Uchendu N, Onyekachukwu Asomadu R, Favour Chinedu Ezeorba W, Prince Chidike Ezeorba T. African and Holy Basil - A review of ethnobotany, phytochemistry, and toxicity of their Essential oil: Current trends and prospects for antimicrobial/anti-parasitic pharmacology. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
7
|
Ayele TT, Gurmessa GT, Abdissa Z, Melaku Y, Garg A, Bedane KG, Abdissa N. Furoquinoline and bisindole alkaloids from the roots of Teclea nobilis and their in-silico molecular docking analysis. Z NATURFORSCH C 2022; 78:217-227. [PMID: 36367257 DOI: 10.1515/znc-2022-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Teclea nobilis is a medicinal plant widely used to treat oral pathogens, gonorrhea, fever, analgesics, asthma, joint pains, pneumonia, and intestinal worms in Ethiopia. Anticipated by these claims, column chromatographic separation of the roots extract of T. nobilis led to the isolation of eight alkaloids (1–8). The structures of the isolated compounds were identified based on their NMR (1D and 2D) spectral data analysis and comparison with reported literature data. In-silico molecular docking analysis of the isolated compounds were performed against Staphylococcus aureus DNA Gyrase (PDB ID: 2XCT) and human topoisomerase IIβ DNA (PDB ID: 3QX3) by using AutoDock Vina. ADMET analysis were performed by SwissADME, PreADMET, and OSIRIS Property predictions. The study revealed that the isolated compounds exhibited promising binding affinity to DNA gyrase, especially with compound 5 forms a stable drug-protein complex. Whereas the ADME and drug-likeness analysis revealed that compound 5 is less absorbed from the gastrointestinal tract, crossblood brain barrier and a P-glycoprotein substrate. This indicated that compound 5 could be a good candidate as anticancer agent provided that in vivo analysis done for more confirmation.
Collapse
Affiliation(s)
- Tamrat Tesfaye Ayele
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| | - Getahun Tadesse Gurmessa
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| | - Zelalem Abdissa
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry , School of Applied Natural Science, Adama Science and Technology University , Adama , Ethiopia
| | - Ankita Garg
- Department of Applied Chemistry , School of Applied Natural Science, Adama Science and Technology University , Adama , Ethiopia
| | - Kibrom Gebreheiwot Bedane
- Department of Chemistry , College of Computational and Natural Sciences, Addis Ababa University , Addis Ababa , Ethiopia
| | - Negera Abdissa
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| |
Collapse
|
8
|
Visakh NU, Pathrose B, Chellappan M, Ranjith M, Sindhu P, Mathew D. Chemical characterisation, insecticidal and antioxidant activities of essential oils from four Citrus spp. fruit peel waste. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Adewinogo SO, Sharma R, Africa CWJ, Marnewick JL, Hussein AA. Chemical Study and Comparison of the Biological Activities of the Essential Oils of Helichrysum petiolare, H. cymosum, and H. odoratissimum. PLANTS (BASEL, SWITZERLAND) 2022; 11:2606. [PMID: 36235472 PMCID: PMC9573642 DOI: 10.3390/plants11192606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Helichrysum species are prominent South African medicinal plants. From the essential oils (EOs) of three Helichrysum species, H. petiolare, H. odoratissimum, and H. cymosum, sixty-three constituent components were identified, with hydrocarbons and oxygenated monoterpenes and sesquiterpenes as major components. The compounds were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. In H. petiolare EO, the major components were faurinone (20.66%) and (E)-β-ocimene (17.21%). Faurinone was isolated from this EO for the first time. In H. odoratissimum, 1,8-cineole (17.44%) and α-pinene, and γ-curcumene (15.76%) were the major components whereas, in H. cymosum, α-pinene (29.82%) and (E)-caryophyllene (19.20%) were the major components. In the antibacterial activity study, the EOs were tested against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The EOs were found to possess low antibacterial, anti-tyrosinase, and photoprotection activities and moderate antioxidant capacities, thus establishing these Helichrysum EOs as valuable antioxidant agents.
Collapse
Affiliation(s)
- Selena O. Adewinogo
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, Bellville 7535, South Africa
| | - Rajan Sharma
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, Bellville 7535, South Africa
| | | | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, Bellville 7535, South Africa
| |
Collapse
|
10
|
Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms. Pathogens 2022; 11:pathogens11101067. [PMID: 36297124 PMCID: PMC9607486 DOI: 10.3390/pathogens11101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to evaluate the effect of the Cymbopogon citratus essential oil and its association with chlorhexidine on cariogenic microcosm biofilm composition and acidogenicity. Minimum inhibitory and bactericide concentrations from the essential oil and chlorhexidine were determined by broth microdilution assay. Microcosms (polymicrobial) biofilms were produced on glass coverslips, using inoculum from human saliva in McBain culture medium (0.5% sucrose exposure for 6 h/day) for 3 days in 24-well plates. The biofilms were treated twice a day and their composition was evaluated by microorganism quantification. The acidogenicity was evaluated by measuring the pH of the spent culture medium in contact with the biofilm. Overall, the association of C. citratus and chlorhexidine reduced total bacterial counts and aciduric bacteria (maximum reduction of 3.55 log UFC/mL) in microcosm biofilms. This group also presented the lowest acidogenicity even when exposed to sucrose-containing medium. C. citratus essential oil increases the effect of digluconate chlorhexidine on microcosm biofilms. Based on these findings, this study can contribute to the development of new formulations that might allow for the use of mouthwashes for a shorter period, which may reduce undesirable effects and increase patient compliance to the treatment.
Collapse
|
11
|
Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. INSECTS 2022; 13:insects13050480. [PMID: 35621814 PMCID: PMC9146202 DOI: 10.3390/insects13050480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The disposal of agricultural waste products is an emerging concern and an alternative to this is the development of value-added products from these wastes. Here we extracted the essential oil from Citrus maxima (CMEO) and examined its larvicidal and pest control potentials. Results pointed out that CMEO can be effective biopesticides against two major insect pests of stored grains. Furthermore, CMEO had a significant larvicidal action against different mosquito species. This study provided useful information on the compositional aspects and insecticidal properties of CMEO. Abstract The wastes generated during the post-harvest handling of various agricultural commodities is rather under-utlilized. The peels of citrus fruits are often discarded as waste. Citrus peels are rich in essential oils and exhibit toxicity towards various insect species. The essential oils are also an eco-friendly option for insect pest management. The Citrus maxima peel essential oil (CMEO), a waste product, characterized it, and evaluated its potential for insect pest management. The major terpenoids present in CMEO are Limonene and α-Pinene. The CMEO displayed potentials in controlling the insect pests via contact and fumigant toxicity. Moreover, CMEO showed significant larvicidal activities against Culex tritaeniorhynchus and Aedes aegypti species of mosquitoes; however, Armigeres subalbatus was more resistant. The biological safety of the essential oil was also tested against the stored seeds, where no significant inhibition of seed germination was noticed compared to the control. Utilizing a waste product such as citrus peel for pest management can achieve the dual objective of waste utilization and eco-friendly pest management. Overall, the CMEO is therefore found to be a bioactive essential oil extracted from the wastes of pomelo (C. maxima).
Collapse
|
12
|
Omujal F, Tenda KI, Lutoti S, Kirabo I, Kasango SD, Nambatya KG. Phytochemistry and anti-inflammatory activity of ethanolic root bark extract of Vepris nobilis Mziray (Rutaceae family). SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Chaves-Quirós C, Usuga-Usuga JS, Morales-Uchima SM, Tofiño-Rivera AP, Tobón-Arroyave SI, Martínez-Pabón MC. Assessment of cytotoxic and antimicrobial activities of two components of Cymbopogon citratus essential oil. J Clin Exp Dent 2020; 12:e749-e754. [PMID: 32913572 PMCID: PMC7474934 DOI: 10.4317/jced.56863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Background There is a continuing search for compuounds to improve the chemical plaque inhibitory action of oral hygiene products. Although the antibacterial effects of chlorhexidine (CHX) and essential oils components, citral/myrcene, have been described, there is contradictory information regarding their cytotoxic effects in host tissues. This study aimed to evaluate the cytotoxic activity of the major components of the oil C. citratus, citral and myrcene on human periodontal ligament fibroblast (HPLF) cultures and their antimicrobial effect on different bacterial species present in supragingival biofilm. Material and Methods Cytotoxicity of the compounds to HPLF was determined by MTT assay. Antimicrobial activity was tested against reference strains of Enterococcus faecalis, Streptococcus mutans and Lactobacillus rhamnosus and for S. mutans clinical strains by broth microdilution assay. One-way analysis of variance (ANOVA) with Games-Howell post-hoc multiple comparison or unpaired t tests were used for inter- and intragroup comparisons. Results Overall, all of the compounds under study showed a cytotoxic effect to HPLF which varied in a dose-dependant manner. Whilst myrcene did not show bacteriostatic activity at tested concentrations, both citral and CHX exhibited bacteriostatic/bactericidal effects to all strains at specific concentrations, being CHX most effective to inhibit bacterial growth at lower concentrations than what observed for citral. Conclusions Based on these findings, it would possible to conclude that whereas myrcene might be ineffective to control bacterial growth, citral could have a promising antimicrobial activity against dental colonizers with low cytotoxicity, and may be useful for preventing the onset and progression of oral diseases. Key words:Antimicrobial activity, citral, cytotoxicity, chlorhexidine, myrcene.
Collapse
Affiliation(s)
- Carolina Chaves-Quirós
- Graduate Periodontics Resident. Department of Periodontics, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| | - Johnatan-Stiven Usuga-Usuga
- Graduate Periodontics Resident. Department of Periodontics, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| | - Sandra-Milena Morales-Uchima
- MSc Microbiology and Bioanalysis. Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| | - Adriana-Patricia Tofiño-Rivera
- PhD Agrarian Sciences. Motilonia Research Center, Colombian Corporation for Agricultural Research (Agrosavia), Cesar, Colombia
| | - Sergio-Iván Tobón-Arroyave
- Specialist in Stomatology and Oral Surgery. Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| | - María-Cecilia Martínez-Pabón
- MSc Microbiology. Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| |
Collapse
|
14
|
Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, Bongomin O. Antivenin plants used for treatment of snakebites in Uganda: ethnobotanical reports and pharmacological evidences. Trop Med Health 2020; 48:6. [PMID: 32071543 PMCID: PMC7014759 DOI: 10.1186/s41182-019-0187-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Snakebite envenomation is a serious public health concern in rural areas of Uganda. Snakebites are poorly documented in Uganda because most occur in rural settings where traditional therapists end up being the first-line defense for treatment. Ethnobotanical surveys in Uganda have reported that some plants are used to antagonize the activity of various snake venoms. This review was sought to identify antivenin plants in Uganda and some pharmacological evidence supporting their use. A literature survey done in multidisciplinary databases revealed that 77 plant species belonging to 65 genera and 42 families are used for the treatment of snakebites in Uganda. The majority of these species belong to family Fabaceae (31%), Euphorbiaceae (14%), Asteraceae (12%), Amaryllidaceae (10%) and Solanaceae (10%). The main growth habit of the species is shrubs (41%), trees (33%) and herbs (18%). Antivenin extracts are usually prepared from roots (54%) and leaves (23%) through decoctions, infusions, powders, and juices, and are administered orally (67%) or applied topically (17%). The most frequently encountered species were Allium cepa, Carica papaya, Securidaca longipedunculata, Harrisonia abyssinica, and Nicotiana tabacum. Species with global reports of tested antivenom activity included Allium cepa, Allium sativum, Basella alba, Capparis tomentosa, Carica papaya, Cassia occidentalis, Jatropa carcus, Vernonia cinereal, Bidens pilosa, Hoslundia opposita, Maytensus senegalensis, Securinega virosa, and Solanum incanum. There is need to identify and evaluate the antivenom compounds in the claimed plants.
Collapse
Affiliation(s)
- Timothy Omara
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O.Box 3900-30100, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60, Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
| | - Sarah Kagoya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Product Development Directory, Kakira Sugar Limited, P.O. Box 121, Jinja, Uganda
| | - Abraham Openy
- Department of Paediatric and Child Health, Faculty of Medicine, Gulu University, P.O.Box 166, Gulu, Uganda
| | - Tom Omute
- Department of Biochemistry, Faculty of Health Sciences, Lira University, P.O. Box 1035, Lira, Uganda
| | - Stephen Ssebulime
- Directorate of Government Analytical Laboratory, Ministry of Internal Affairs, P.O. Box 2174, Kampala, Uganda
| | - Kibet Mohamed Kiplagat
- Department of Mechanical Engineering, School of Engineering, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Eldoret, Kenya
| | - Ocident Bongomin
- Department of Manufacturing, Industrial and Textile Engineering, School of Engineering, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Eldoret, Kenya
| |
Collapse
|
15
|
Chemical Composition and Antimicrobial Effectiveness of Ocimum gratissimum L. Essential Oil Against Multidrug-Resistant Isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019; 24:molecules24213864. [PMID: 31717766 PMCID: PMC6864855 DOI: 10.3390/molecules24213864] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The study investigated the antimicrobial activity of the essential oil extract of Ocimum gratissimum L. (EOOG) against multiresistant microorganisms in planktonic and biofilm form. Hydrodistillation was used to obtain the EOOG, and the analysis of chemical composition was done by gas chromatography coupled with mass spectrometry (GC/MS) and flame ionization detection (GC/FID). EOOG biological activity was verified against isolates of Staphylococcus aureus and Escherichia coli, using four strains for each species. The antibacterial action of EOOG was determined by disk diffusion, microdilution (MIC/MBC), growth curve under sub-MIC exposure, and the combinatorial activity with ciprofloxacin (CIP) and oxacillin (OXA) were determined by checkerboard assay. The EOOG antibiofilm action was performed against the established biofilm and analyzed by crystal violet, colony-forming unit count, and SEM analyses. EOOG yielded 1.66% w/w, with eugenol as the major component (74.83%). The MIC was 1000 µg/mL for the most tested strains. The growth curve showed a lag phase delay for both species, mainly S. aureus, and reduced the growth level of E. coli by half. The combination of EOOG with OXA and CIP led to an additive action for S. aureus. A significant reduction in biofilm biomass and cell viability was verified for S. aureus and E. coli. In conclusion, EOOG has relevant potential as a natural alternative to treat infections caused by multiresistant strains.
Collapse
|
16
|
Silva ACR, Bizzo HR, Vieira RF, Bringel JBA, Azevedo DA, Uekane TM, Rezende CM. Characterization of volatile and odor‐active compounds of the essential oil from
Bidens graveolens
Mart. (Asteraceae). FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ana C. R. Silva
- Laboratory of Aroma Analysis Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| | | | | | | | - Débora A. Azevedo
- Laboratory of Molecular and Environmental Geochemistry Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| | | | - Claudia M. Rezende
- Laboratory of Aroma Analysis Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
17
|
Investigations of a Possible Chemical Effect of Salvadora persica Chewing Sticks. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2576548. [PMID: 28484501 PMCID: PMC5412162 DOI: 10.1155/2017/2576548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/28/2017] [Indexed: 01/20/2023]
Abstract
Salvadora persica is commonly used chewing sticks in many parts of the world as an oral hygiene tool. This study measured the amount of benzyl isothiocyanate (BITC) released into the mouth and assessed its retention time in saliva. The study also tested if the released amount of BITC could potentially be antibacterial or cytotoxic. Twelve subjects brushed their teeth with fresh Miswak once, twice, and four times. The amount of BITC in the saliva and in the used brushes was quantified using gas chromatography-mass spectrometry. The antibacterial effect of BITC and Miswak essential oil (MEO) was tested against Haemophilus influenzae, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. The cytotoxic effect on gingival fibroblasts and keratinocytes was tested using MTT. The highest amount of the active compounds was detected in saliva after using the Miswak tip for once and immediately. It significantly decreased when the Miswak tip was used more than once and thus after 10 min. The growth of the tested bacteria was inhibited by MEO and BITC in a dose dependent manner, P. gingivalis being the most sensitive. MTT assay showed that BITC and MEO were cytotoxic towards gingival fibroblasts while oral keratinocytes showed resistance. This study suggests that the Miswak tip should be cut before each use to ensure the maximum effect.
Collapse
|
18
|
Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1 β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5357689. [PMID: 27807462 PMCID: PMC5078667 DOI: 10.1155/2016/5357689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum) on human gingival fibroblasts and their effects on proinflammatory mediators' secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL-) 6, IL-8, and prostaglandin E2 (PGE2) secretions by gingival fibroblasts treated with IL-1β (300 pg/mL) were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis.
Collapse
|
19
|
In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Plants and other natural products used in the management of oral infections and improvement of oral health. Acta Trop 2016; 154:6-18. [PMID: 26522671 DOI: 10.1016/j.actatropica.2015.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022]
Abstract
Challenges of resistance to synthetic antimicrobials have opened new vistas in the search for natural products. This article rigorously reviews plants and other natural products used in oral health: Punica granatum L. (pomegranate), Matricaria recutita L. (chamomile), Camellia sinensis (L.) Kuntze (green tea), chewing sticks made from Diospyros mespiliformis Hochst. ex A.D.C., Diospyros lycioides Desf., and Salvadora persica L. (miswak), honey and propolis from the manuka tree (Leptospermum scoparium J.R. Forst. & G. Forst.), rhein from Rheum rhabarbarum L. (rhubarb), dried fruits of Vitis vinifera L. (raisins), essential oils, probiotics and mushrooms. Further, the review highlights plants from Africa, Asia, Brazil, Mexico, Europe, and the Middle East. Some of the plants' antimicrobial properties and chemical principles have been elucidated. While the use of natural products for oral health is prominent in resource-poor settings, antimicrobial testing is mainly conducted in the following countries (in decreasing order of magnitude): India, South Africa, Brazil, Japan, France, Egypt, Iran, Mexico, Kenya, Switzerland, Nigeria, Australia, Uganda, and the United Kingdom. While the review exposes a dire gap for more studies on clinical efficacy and toxicity, the following emerging trend was noted: basic research on plants for oral health is mainly done in Brazil, Europe and Australia. Brazil, China, India and New Zealand generally conduct value addition of natural products for fortification of toothpastes. African countries focus on bioprospecting and primary production of raw plants and other natural products with antimicrobial efficacies. The Middle East and Egypt predominantly research on plants used as chewing sticks. More research and funding are needed in the field of natural products for oral health, especially in Africa where oral diseases are fuelled by human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS).
Collapse
|