1
|
Liu Z, Li Y, Li N, Wang Y, Li Q, Ge D, Peng G, Zhou M. Dachengqi Decoction alleviates intestinal inflammation in ovalbumin-induced asthma by reducing group 2 innate lymphoid cells in a microbiota-dependent manner. J Tradit Complement Med 2023; 13:183-192. [PMID: 36970460 PMCID: PMC10037070 DOI: 10.1016/j.jtcme.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023] Open
Abstract
Background and aim Dachengqi Decoction (DCQD) as a classic traditional Chinese medicine has been reported to be effective in treating asthma, but its mechanism remains unknown. This study aimed to reveal the mechanisms of DCQD on the intestinal complications of asthma mediated by group 2 innate lymphoid cells (ILC2) and intestinal microbiota. Experimental procedure Ovalbumin (OVA) was used to construct asthmatic murine models. IgE, cytokines (e.g., IL-4, IL-5), fecal water content, colonic length, histopathologic appearance, and gut microbiota were evaluated in asthmatic mice treated with DCQD. Finally, we administered DCQD to antibiotic-treated asthmatic mice to measure the ILC2 in the small intestine and colon. Results and conclusion DCQD decreased pulmonary IgE, IL-4, and IL-5 levels in asthmatic mice. The fecal water content, the colonic length weight loss, and the epithelial damage of jejunum, ileum, and colon of asthmatic mice were ameliorated by DCQD. Meanwhile, DCQD greatly improved intestinal dysbiosis by enriching Allobaculum, Romboutsia and Turicibacter in the whole intestine, and Lactobacillus gasseri only in the colon. However, DCQD caused less abundant Faecalibaculum and Lactobacillus vaginalis in the small intestine of asthmatic mice. A higher ILC2 proportion in different gut segments of asthmatic mice was reversed by DCQD. Finally, significant correlations appeared between DCQD-mediated specific bacteria and cytokines (e.g., IL-4, IL-5) or ILC2. These findings indicate that DCQD alleviated the concurrent intestinal inflammation in OVA-induced asthma by decreasing the excessive accumulation of intestinal ILC2 in a microbiota-dependent manner across different gut locations.
Collapse
|
2
|
Yao J, Miao Y, Zhang Y, Zhu L, Chen H, Wu X, Yang Y, Dai X, Hu Q, Wan M, Tang W. Dao-Chi Powder Ameliorates Pancreatitis-Induced Intestinal and Cardiac Injuries via Regulating the Nrf2-HO-1-HMGB1 Signaling Pathway in Rats. Front Pharmacol 2022; 13:922130. [PMID: 35899121 PMCID: PMC9310041 DOI: 10.3389/fphar.2022.922130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Dao-Chi powder (DCP) has been widely used in the treatment of inflammatory diseases in the clinical practice of traditional Chinese medicine, but has not been used in acute pancreatitis (AP). This study aimed to evaluate the effect of DCP on severe AP (SAP) and SAP-associated intestinal and cardiac injuries. To this end, an SAP animal model was established by retrograde injection of 3.5% taurocholic acid sodium salt into the biliopancreatic ducts of rats. Intragastric DCP (9.6 g/kg.BW) was administered 12 h after modeling. The pancreas, duodenum, colon, heart and blood samples were collected 36 h after the operation for histological and biochemical detection. The tissue distributions of the DCP components were determined and compared between the sham and the SAP groups. Moreover, molecular docking analysis was employed to investigate the interactions between the potential active components of DCP and its targets (Nrf2, HO-1, and HMGB1). Consequently, DCP treatment decreased the serum levels of amylase and the markers of gastrointestinal and cardiac injury, further alleviating the pathological damage in the pancreas, duodenum, colon, and heart of rats with SAP. Mechanistically, DCP rebalanced the pro-/anti-inflammatory cytokines and inhibited MPO activity and MDA levels in these tissues. Furthermore, Western blot and RT-PCR results showed that DCP intervention enhanced the expression of Nrf2 and HO-1 in the duodenum and colon of rats with SAP, while inhibiting the expression of HMGB1 in the duodenum and heart. HPLC-MS/MS analysis revealed that SAP promoted the distribution of ajugol and oleanolic acid to the duodenum, whereas it inhibited the distribution of liquiritigenin to the heart and ajugol to the colon. Molecular docking analysis confirmed that the six screened components of DCP had relatively good binding affinity with Nrf2, HO-1, and HMGB1. Among these, oleanolic acid had the highest affinity for HO-1. Altogether, DCP could alleviated SAP-induced intestinal and cardiac injuries via inhibiting the inflammatory responses and oxidative stress partially through regulating the Nrf2/HO-1/HMGB1 signaling pathway, thereby providing additional supportive evidence for the clinical treatment of SAP.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yumei Zhang
- Department of Traditional Chinese Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Chen
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Xiajia Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Dai
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenfu Tang,
| |
Collapse
|
3
|
Zhao X, Zhu S, Li J, Long D, Wan M, Tang W. Epigenetic changes in inflammatory genes and the protective effect of cooked rhubarb on pancreatic tissue of rats with chronic alcohol exposure. Biomed Pharmacother 2022; 146:112587. [PMID: 35062061 DOI: 10.1016/j.biopha.2021.112587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic alcohol consumption, which is observed worldwide, can damage pancreatic tissue and promote pancreatitis. Rhubarb is a widely used traditional Chinese herbal medicine for treating pancreatitis in China. However, few pharmacological studies have investigated its epigenetic regulation. In this study, we investigated whether chronic exposure to alcohol can alter inflammatory gene expression and the epigenetic regulation effect of cooked rhubarb in the pancreatic tissue of rats. First, changes in inflammatory cytokine DNA methylation (IL-10, IL-1α, TNF-α, NF-κB and TGF-β) were detected in pancreatic tissue of Sprague-Dawley rats with varying alcohol exposure times (4, 6, 8, or 12 weeks), and then with varying doses of cooked rhubarb treatment (3, 6, or 12 g/day). DNA methylation levels, related RNA concentrations and protein expression of specific inflammatory cytokines, and histopathological score were analysed in pancreatic tissue of Sprague-Dawley rats. The results showed that chronic alcohol exposure (8 weeks) reduced the level of IL-1α DNA methylation and increased its protein expression in acinar cells (P < 0.05). In the acinar cells, the level of IL-10 DNA methylation increased, resulting in a reduction of protein expression (P < 0.05). Simultaneously, chronic alcohol exposure increased the pathological damage to the pancreas (P < 0.05). Finally, cooked rhubarb treatment (3 g/kg/day) effectively alleviated these changes in pancreatic tissue from chronic alcohol exposure (P < 0.05). These results indicate that chronic exposure to alcohol leads to changes in DNA methylation and protein expression of inflammatory genes, and cooked rhubarb may have a protective effect on the pancreatic tissue of rats.
Collapse
Affiliation(s)
- Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Shifeng Zhu
- Zhejiang Provincial Tongde Hospital, Hangzhou, Zhejiang, China.
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Sichuan University, Chengdu, Sichuan, China.
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wang D, Wang XH, Yu X, Cao F, Cai X, Chen P, Li M, Feng Y, Li H, Wang X. Pharmacokinetics of Anthraquinones from Medicinal Plants. Front Pharmacol 2021; 12:638993. [PMID: 33935728 PMCID: PMC8082241 DOI: 10.3389/fphar.2021.638993] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
Anthraquinones are bioactive natural products, some of which are active components in medicinal medicines, especially Chinese medicines. These compounds exert actions including purgation, anti-inflammation, immunoregulation, antihyperlipidemia, and anticancer effects. This study aimed to review the pharmacokinetics (PKs) of anthraquinones, which are importantly associated with their pharmacological and toxicological effects. Anthraquinones are absorbed mainly in intestines. The absorption rates of free anthraquinones are faster than those of their conjugated glycosides because of the higher liposolubility. A fluctuation in blood concentration and two absorption peaks of anthraquinones may result from the hepato-intestinal circulation, reabsorption, and transformation. Anthraquinones are widely distributed throughout the body, mainly in blood-flow rich organs and tissues, such as blood, intestines, stomach, liver, lung, kidney, and fat. The metabolic pathways of anthraquinones are hydrolysis, glycuronidation, sulfation, methylation/demethylation, hydroxylation/dehydroxylation, oxidation/reduction (hydrogenation), acetylation and esterification by intestinal flora and liver metabolic enzymes, among which hydrolysis, glycuronidation and sulfation are dominant. Of note, anthraquinones can be transformed into each other. The main excretion routes for anthraquinones are the kidney, recta, and gallbladder. Conclusion: Some anthraquinones and their glycosides, such as aloe-emodin, chrysophanol, emodin, physcion, rhein and sennosides, have attracted the most PK research interest due to their more biological activities and/or detectability. Anthraquinones are mainly absorbed in the intestines and are mostly distributed in blood flow-rich tissues and organs. Transformation into another anthraquinone may increase the blood concentration of the latter, leading to an increased pharmacological and/or toxicological effect. Drug-drug interactions influencing PK may provide insights into drug compatibility theory to enhance or reduce pharmacological/toxicological effects in Chinese medicine formulae and deserve deep investigation.
Collapse
Affiliation(s)
- Dongpeng Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Xian-He Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiongjie Yu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaojun Cai
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Chen
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D. Inhibition of Ferroptosis Attenuates Acute Kidney Injury in Rats with Severe Acute Pancreatitis. Dig Dis Sci 2021; 66:483-492. [PMID: 32219613 DOI: 10.1007/s10620-020-06225-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a frequent complication of severe acute pancreatitis (SAP). Ferroptosis is involved in a range of diseases. However, the role of ferroptosis in SAP-induced AKI has yet to be elucidated. AIMS We aimed to investigate whether ferroptosis is induced in the kidney after SAP and whether inhibition of ferroptosis ameliorates AKI in a rat model of SAP. METHODS Sodium taurocholate (5%) was retrogradely perfused into the biliopancreatic duct to establish a model of SAP with AKI in rats. The levels of serum amylase, lipase, tumor necrosis factor (TNF)-α, interleukin (IL)-6, creatinine (Cr) and blood urea nitrogen (BUN) in rats were measured. We also determined the biochemical and morphological changes associated with ferroptosis in renal tissue, including iron accumulation, lipid peroxidation assays, and mitochondrial shrinkage. H&E staining was used to assess pancreatic and renal histological changes. Western blot analysis, RT-PCR, and immunofluorescence staining were performed to analyze the expression of ferroptosis-related proteins and genes. RESULTS SAP-induced AKI was followed by iron accumulation, increased lipid peroxidation, and upregulation of ferroptosis-related proteins and genes. Twenty-four hours after SAP, TEM confirmed the presence of typical shrunken mitochondria. Furthermore, treatment with liproxstatin-1 lowered the levels of serum amylase, TNF-α, IL-6, Cr and BUN, decreased kidney lipid peroxidation and alleviated pancreatic and renal histopathology injury in SAP rats. CONCLUSION Our findings are the first to demonstrate the involvement of ferroptosis in SAP-associated renal damage and present ferroptosis as a therapeutic target for effective treatment of SAP-induced AKI.
Collapse
Affiliation(s)
- Deliang Ma
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Chang Li
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Pengling Jiang
- Breast Surgery, Qingdao Municipal Hospital, Qingdao University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Yingjian Jiang
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Jiang Wang
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Dianliang Zhang
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China.
| |
Collapse
|
6
|
Hu J, Zhang YM, Miao YF, Zhu L, Yi XL, Chen H, Yang XJ, Wan MH, Tang WF. Effects of Yue-Bi-Tang on water metabolism in severe acute pancreatitis rats with acute lung-kidney injury. World J Gastroenterol 2020; 26:6810-6821. [PMID: 33268963 PMCID: PMC7684462 DOI: 10.3748/wjg.v26.i43.6810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The complications acute lung injury and acute kidney injury caused by severe inflammation are the main reasons of high mortality of severe acute pancreatitis (SAP). These two complications can both lead to water metabolism and acid-base balance disorders, which could act as additional critical factors affecting the disease trend. Aquaporins (AQPs), which can regulate the transmembrane water transport, have been proved to participate in the pathophysiological process of SAP and the associated complications, such as acute lung injury and acute kidney injury. Thus, exploring herbs that can effectively regulate the expression of AQP in SAP could benefit the prognosis of this disease.
AIM To determine whether Yue-Bi-Tang (YBT) can regulate the water metabolism in rats with severe acute pancreatitis via regulating the expression of aquaporins.
METHODS Sprague-Dawley rats were randomly divided into three groups, sham operation group (SOG), model group (MG), and treatment group (TG). SAP was induced with 3.5% sodium taurocholate in the MG and TG. Rats in the TG were administered with YBT while SOG and MG rats were given the same volume of saline. Blood and tissue samples were harvested to detect serum inflammatory cytokines, histopathological changes, malondialdehyde and superoxide dismutase in the lung, and protein and mRNA expression of kidney injury molecule-1, α-smooth muscle actin, and vimentin in the kidney, and AQP1 and 4 in the lung, pancreas, and kidney.
RESULTS The serum interleukin-10, tumor necrosis factor α, and creatinine levels were higher in the MG than in the SOG. Tumor necrosis factor α level in the TG was lower than that in the MG. Malondialdehyde level in lung tissues was higher than in the SOG. The pathological scores and edema scores of the pancreas, lung, and kidney tissues in the MG were all higher than those in the SOG and TG. The protein expression of AQP4 in lung tissues and AQP1 in kidney tissues in the MG were higher than those in the SOG and TG. The expression of vimentin was significantly higher in the MG than in the SOG. The expression of AQP1 mRNA in the lung and kidney, and AQP4 mRNA in the kidney was up-regulated in the MG compared to the SOG.
CONCLUSION YBT might regulate water metabolism to reduce lung and kidney edema of SAP rats via decreasing AQP expression, and alleviate the tissue inflammatory injury.
Collapse
Affiliation(s)
- Jing Hu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Mei Zhang
- Department of Traditional Chinese Medicine, Xiang’an Hospital of Xiamen University, Xiamen 361101, Fujian Province, China
| | - Yi-Fan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Lin Yi
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Traditional Chinese Medicine Da-Cheng-Qi-Tang Ameliorates Impaired Gastrointestinal Motility and Intestinal Inflammatory Response in a Mouse Model of Postoperative Ileus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9074069. [PMID: 32802139 PMCID: PMC7415087 DOI: 10.1155/2020/9074069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
This study was to explore the therapeutic effect and mechanism of the traditional Chinese medicine with the formula Da-Cheng-Qi-Tang (T-DCQT) and a modified Da-Cheng-Qi-Tang (M-DCQT) in a postoperative ileus (POI) mouse model. POI was induced via small bowel manipulation, and T-DCQT or M-DCQT was given by enema. The intestinal motility was measured with a charcoal mixture gavage. The intestinal tissues were collected for further studies by histopathological, qPCR, immunohistochemical staining, and Western blotting. Levels of inflammatory cytokines in blood were determined using a high-throughput liquid chip. We found that gastrointestinal dysfunction was alleviated after administration of either a T-DCQT or M-DCQT enema. Increased expression of NF-κB, p38 MAPK, and TLR4 in the intestinal tissues of POI mice were reversed following treatment. IL-1α, IL-6, MIP-1β, and IL-17 levels were significantly reduced at 24 h and 48 h following treatment, while the MCP-1 level was only observed to be reduced at 24 h after the treatment. Furthermore, compared with the T-DCQT effect, M-DCQT treatment was more effective in alleviating the increased IL-6, MIP-1β, and IL-1α levels. So, we draw a conclusion that T-DCQT or M-DCOT could ameliorate the POI-associated inflammatory response and improve GI motility in a POI mouse model.
Collapse
|
8
|
Yao JQ, Zhu L, Miao YF, Zhu L, Chen H, Yuan L, Hu J, Yi XL, Wu QT, Yang XJ, Wan MH, Tang WF. Optimal dosing time of Dachengqi decoction for protection of extrapancreatic organs in rats with experimental acute pancreatitis. World J Gastroenterol 2020; 26:3056-3075. [PMID: 32587448 PMCID: PMC7304110 DOI: 10.3748/wjg.v26.i22.3056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a pancreatic inflammatory disorder that is commonly complicated by extrapancreatic organ dysfunction. Dachengqi decoction (DCQD) has a potential role in protecting the extrapancreatic organs, but the optimal oral administration time remains unclear.
AIM To screen the appropriate oral administration time of DCQD for the protection of extrapancreatic organs based on the pharmacokinetics and pharmacodynamics of AP rats.
METHODS This study consisted of two parts. In the first part, 24 rats were divided into a sham-operated group and three model groups. The four groups were intragastrically administered with DCQD (10 g/kg) at 4 h, 4 h, 12 h, and 24 h postoperatively, respectively. Tail vein blood was taken at nine time points after administration, and then the rats were euthanized and the extrapancreatic organ tissues were immediately collected. Finally, the concentrations of the major DCQD components in all samples were detected. In the second part, 84 rats were divided into a sham-operated group, as well as 4 h, 12 h, and 24 h treatment groups and corresponding control groups (4 h, 12 h, and 24 h control groups). Rats in the treatment groups were intragastrically administered with DCQD (10 g/kg) at 4 h, 12 h, and 24 h postoperatively, respectively, and rats in the control groups were administered with normal saline at the same time points. Then, six rats from each group were euthanized at 4 h and 24 h after administration. Serum amylase and inflammatory mediators, and pathological scores of extrapancreatic organ tissues were evaluated.
RESULTS For part one, the pharmacokinetic parameters (C max, T max, T 1/2, and AUC 0 → t) of the major DCQD components and the tissue distribution of most DCQD components were better when administering DCQD at the later (12 h and 24 h) time points. For part two, delayed administration of DCQD resulted in lower IL-6 and amylase levels and relatively higher IL-10 levels, and pathological injury of extrapancreatic organ tissues was slightly less at 4 h after administration, while the results were similar between the treatment and corresponding control groups at 24 h after administration.
CONCLUSION Delayed administration of DCQD might reduce pancreatic exocrine secretions and ameliorate pathological injury in the extrapancreatic organs of AP rats, demonstrating that the late time is the optimal dosing time.
Collapse
Affiliation(s)
- Jia-Qi Yao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin Zhu
- Digestive System Department, Sichuan Integrative Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Yi-Fan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing Hu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Lin Yi
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiu-Ting Wu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Application of Traditional Chinese Medicines in Postoperative Abdominal Adhesion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8073467. [PMID: 32419827 PMCID: PMC7199640 DOI: 10.1155/2020/8073467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Adhesion is a frequent complication after abdominal surgery. Although various methods have been applied to prevent and treat postoperative abdominal adhesion (PAA), few modern drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far. There is an imperative to develop some new strategies for the treatment of PAA. Traditional Chinese medicine (TCM) has been widely practiced for thousands of years and played an indispensable role in the prevention and treatment of diseases. Modern medicine researchers have accepted the therapeutic effects of many active components derived from Chinese medicinal herbs. The review stresses the most commonly used TCM treatment, including Chinese medicinal herbals and monomers, TCM formulas, and acupuncture treatment.
Collapse
|
10
|
Protective Effects of Rhubarb in Rats with Acute Pancreatitis and the Role of Its Active Compound Rhein on Mitochondria of Exocrine Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7321352. [PMID: 30140298 PMCID: PMC6081545 DOI: 10.1155/2018/7321352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Abstract
Da-Cheng-Qi-Decoction (DCQD) has been used in the treatment of acute pancreatitis (AP) in China for many years. The aim of the current study was to examine the principal ingredient rhubarb of DCQD and its potential link to the pancreatic repair effects in rats with AP. The pancreatitis was induced in SD rats by intraperitoneal injections of cerulein. The results showed that rhubarb significantly increased blood perfusion of pancreatic tissue, reversed mitochondrial damage, and promoted pancreatic acinar and stellate cell proliferation. In addition, the rhein (from rhubarb) had high distribution in pancreas tissue and protected mitochondria in AR42J cells via the activation of PI3K/AKT/mTOR signaling pathway and activity inhibition of AMPK (P < 0.05). The results provide some preclinical evidence on the protective effects of DCQD for the treatment of acute pancreatitis. Rhein is regarded to be the active compound of rhubarb and can be expected to be a new compound for the treatment of AP.
Collapse
|
11
|
Yuan L, Zhu L, Zhang Y, Chen H, Kang H, Li J, Zhao X, Wan M, Miao Y, Tang W. Effect of Da-Cheng-Qi decoction for treatment of acute kidney injury in rats with severe acute pancreatitis. Chin Med 2018; 13:38. [PMID: 30013616 PMCID: PMC6045888 DOI: 10.1186/s13020-018-0195-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background The traditional Chinese formula Da-Cheng-Qi-decoction (DCQD) has been used to treat acute pancreatitis for decades. DCQD could ameliorate the disease severity and the complications of organ injuries, including those of the liver and lungs. However, the pharmacological effects in the kidney, a target organ, are still unclear. This study aimed to investigate the herbal tissue pharmacology of DCQD for acute kidney injury (AKI) in rats with severe acute pancreatitis (SAP). Methods Rats were randomly divided into the sham-operation group (SG), the model group (MG) and the low-, medium- and high-dose treatment groups (LDG, MDG, and HDG, respectively). Sodium taurocholate (3.5%) was retrogradely perfused into the biliopancreatic duct to establish the model of SAP in rats. Different doses of DCQD were administered to the treatment groups 2 h after the induction of SAP. The major components of DCQD in kidney tissues were detected by HPLC–MS/MS. Inflammatory mediators in the kidney tissues, as well as serum creatinine (Scr), blood urea nitrogen (BUN) and pathologic scores, were also evaluated. Results Ten components of DCQD were detected in the kidneys of the treatment groups, and their concentrations increased dose-dependently. Compared with the SG, the levels of inflammatory mediators, Scr, BUN and pathological scores in the MG were obviously increased (p < 0.05). The high dose of DCQD showed a maximal effect in downregulating the pro-inflammatory mediators interleukin-6 (IL)-6 and tumour necrosis factor-α (TNF-α), upregulating anti-inflammatory mediators IL-4 and IL-10 in the kidney and alleviating the pathological damages. DCQD decreased the pancreas and kidney pathological scores of rats with SAP, especially in the HDG (p < 0.05). Compared with the MG, the level of Scr in the HDG was significantly decreased (p < 0.05). Conclusions DCQD ameliorated AKI in rats with SAP via regulating the inflammatory response, which might be closely related to the distribution of its components in the kidney. Electronic supplementary material The online version of this article (10.1186/s13020-018-0195-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yumei Zhang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Hongxin Kang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Juan Li
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Xianlin Zhao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Meihua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yifan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Wenfu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| |
Collapse
|
12
|
Zhang YM, Zhu L, Zhao XL, Chen H, Kang HX, Zhao JL, Wan MH, Li J, Zhu L, Tang WF. Optimal timing for the oral administration of Da-Cheng-Qi decoction based on the pharmacokinetic and pharmacodynamic targeting of the pancreas in rats with acute pancreatitis. World J Gastroenterol 2017; 23:7098-7109. [PMID: 29093618 PMCID: PMC5656457 DOI: 10.3748/wjg.v23.i39.7098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/27/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify the optimal oral dosing time of Da-Cheng-Qi decoction (DCQD) in rats with acute pancreatitis (AP) based on the pharmacokinetic and pharmacodynamic parameters.
METHODS First, 24 male Sprague-Dawley rats were divided into a sham-operated group [NG(a)] and three model groups [4hG(a), 12hG(a) and 24hG(a)]. The NG(a) and model groups were administered DCQD (10 g/kg.BW) intragastrically at 4 h, 4 h, 12 h and 24 h, respectively, after AP models induced by 3% sodium taurocholate. Plasma samples were collected from the tails at 10 min, 20 min, 40 min, 1 h, 2 h, 4 h, 8 h, 12 h and 24 h after a single dosing with DCQD. Plasma and pancreatic tissue concentrations of the major components of DCQD were determined by high-performance liquid chromatography tandem mass spectroscopy. The pharmacokinetic parameters and serum amylase were detected and compared. Second, rats were divided into a sham-operated group [NG(b)] and three treatment groups [4hG(b), 12hG(b) and 24hG(b)] with three corresponding control groups [MG(b)s]. Blood and pancreatic tissues were collected 24 h after a single dosing with DCQD. Serum amylase, inflammatory cytokines and pathological scores of pancreatic tissues were detected and compared.
RESULTS The concentrations of emodin, naringin, honokiol, naringenin, aloe-emodin, chrysophanol and rheochrysidin in the 12hG(a) group were higher than those in the 4hG(a) group in the pancreatic tissues (P < 0.05). The area under the plasma concentration-time curve from time 0 to the time of the last measurable concentration values (AUC0→t) for rhein, chrysophanol, magnolol and naringin in the 12hG(a) group were larger than those in the 4hG(a) or 24hG(a) groups. The 12hG(a) group had a higher Cmax than the other two model groups. The IL-10 levels in the 12hG(b) and 24hG(b) groups were higher than in the MG(b)s (96.55 ± 7.84 vs 77.46 ± 7.42, 251.22 ± 16.15 vs 99.72 ± 4.7 respectively, P < 0.05), while in the 24hG(b) group, the IL-10 level was higher than in the other two treatment groups (251.22 ± 16.15 vs 154.41 ± 12.09/96.55 ± 7.84, P < 0.05). The IL-6 levels displayed a decrease in the 4hG(b) and 12hG(b) groups compared to the MG(b)s (89.99 ± 4.61 vs 147.91 ± 4.36, 90.82 ± 5.34 vs 171.44 ± 13.43, P < 0.05).
CONCLUSION Late-time dosing may have higher concentrations of the most major components of DCQD, with better pharmacokinetics and pharmacodynamics of anti-inflammation than early-time dosing, which showed the late time to be the optimal dosing time of DCQD for AP.
Collapse
Affiliation(s)
- Yu-Mei Zhang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin Zhu
- Digestive System Department, Sichuan Integrative Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Xian-Lin Zhao
- Department of Integrative Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610016, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Xin Kang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian-Lei Zhao
- Department of Pharmacology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Juan Li
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
13
|
Zhang YM, Ren HY, Zhao XL, Li J, Li JY, Wu FS, Su H, Tang WF. Pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction in the liver of rats with severe acute pancreatitis. World J Gastroenterol 2017; 23:1367-1374. [PMID: 28293083 PMCID: PMC5330821 DOI: 10.3748/wjg.v23.i8.1367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/06/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction (DCQD) in the liver of rats with severe acute pancreatitis (SAP) based on an herbal recipe tissue pharmacology hypothesis.
METHODS Healthy male Sprague-Dawley rats were randomly divided into a sham operation group (SOG); a model group (MG); and low-, median- and high-dose treatment groups (LDG, MDG, and HDG, respectively). Different dosages (6, 12 and 24 g/kg for the LDG, MDG, and HDG, respectively) of DCQD were administered to the rats with SAP. The tissue concentrations of aloe-emodin, rhein, emodin, chrysophanol, honokiol, rheo chrysophanol, magnolol, hesperidin, naringenin and naringin in the liver of the treated rats were detected by high-performance liquid chromatography tandem mass spectrometry. Alanine transaminase (ALT) and aspartate transaminase (AST) in serum, inflammatory mediators in the liver and pathological scores were evaluated.
RESULTS The major components of DCQD were detected in the liver, and their concentrations increased dose-dependently. The high dose of DCQD showed a maximal effect in ameliorating the pathological damages, decreasing the pro-inflammatory mediators tumor necrosis factor-α and interleukin (IL)-6 and increasing anti-inflammatory mediators IL-4 and IL-10 in the liver. The pathological scores in the pancreas for the MG were significantly higher than those for the SOG (P < 0.05). DCQD could reduce the pathological scores in the pancreas and liver of the rats with SAP, especially in the HDG. Compared to the SOG, the ALT and AST levels in serum were higher in the MG (P < 0.05), while there was no statistical difference in the MG and HDG.
CONCLUSION DCQD could alleviate liver damage by altering the inflammatory response in rats with SAP based on the liver distribution of its components.
Collapse
|