1
|
Kim H, Kang S, Go GW. Exploring the multifaceted role of ginkgolides and bilobalide from Ginkgo biloba in mitigating metabolic disorders. Food Sci Biotechnol 2024; 33:2903-2917. [PMID: 39234277 PMCID: PMC11370650 DOI: 10.1007/s10068-024-01656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 09/06/2024] Open
Abstract
The ancient Ginkgo biloba tree grows across various regions, with distinctive leaves emitting a unique fragrance. Its extract contains flavonoids, organic acids, and terpenoids. Ginkgolide and bilobalide, which are G. biloba leaf extracts, offer diverse pharmaceutical benefits, including antioxidant, anti-inflammatory, and neuroprotective properties. The antioxidant and anti-inflammatory properties of these compounds are crucial for mitigating neurodegeneration, particularly in diseases such as Alzheimer's disease. Additionally, their effectiveness in countering oxidative stress and inflammation highlights their potential to prevent cardiovascular ailments. This study also suggests that these compounds have a promising impact on lipid metabolism, suggesting their significance in addressing obesity-related metabolic disorders. In conclusion, ginkgolides and bilobalide exhibit promising effects in sustaining the integrity of the nervous and endocrine systems, along with the modulation of lipid metabolism. The diverse health benefits suggest that these compounds could serve as promising therapeutic interventions for various conditions, including neurological, cardiovascular, and metabolic diseases.
Collapse
Affiliation(s)
- Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
2
|
Netala VR, Teertam SK, Li H, Zhang Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024; 13:1471. [PMID: 39273041 PMCID: PMC11394358 DOI: 10.3390/cells13171471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a major global health concern, representing a leading cause of morbidity and mortality. This review provides a comprehensive examination of CVDs, encompassing their pathophysiology, diagnostic biomarkers, advanced imaging techniques, pharmacological treatments, surgical interventions, and the emerging role of herbal remedies. The review covers various cardiovascular conditions such as coronary artery disease, atherosclerosis, peripheral artery disease, deep vein thrombosis, pulmonary embolism, cardiomyopathy, rheumatic heart disease, hypertension, ischemic heart disease, heart failure, cerebrovascular diseases, and congenital heart defects. The review presents a wide range of cardiac biomarkers such as troponins, C-reactive protein, CKMB, BNP, NT-proBNP, galectin, adiponectin, IL-6, TNF-α, miRNAs, and oxylipins. Advanced molecular imaging techniques, including chest X-ray, ECG, ultrasound, CT, SPECT, PET, and MRI, have significantly enhanced our ability to visualize myocardial perfusion, plaque characterization, and cardiac function. Various synthetic drugs including statins, ACE inhibitors, ARBs, β-blockers, calcium channel blockers, antihypertensives, anticoagulants, and antiarrhythmics are fundamental in managing CVDs. Nonetheless, their side effects such as hepatic dysfunction, renal impairment, and bleeding risks necessitate careful monitoring and personalized treatment strategies. In addition to conventional therapies, herbal remedies have garnered attention for their potential cardiovascular benefits. Plant extracts and their bioactive compounds, such as flavonoids, phenolic acids, saponins, and alkaloids, offer promising cardioprotective effects and enhanced cardiovascular health. This review underscores the value of combining traditional and modern therapeutic approaches to improve cardiovascular outcomes. This review serves as a vital resource for researchers by integrating a broad spectrum of information on CVDs, diagnostic tools, imaging techniques, pharmacological treatments and their side effects, and the potential of herbal remedies.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| |
Collapse
|
3
|
Ramlagan P, Rondeau P, Bourdon E, Bahorun T, Neergheen VS. Insulin Sensitivity of Adipocytes is Improved by Pomegranate Mesocarp Through Reduced Oxidative Stress and Inflammation. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:592-603. [PMID: 38775816 DOI: 10.1080/27697061.2024.2353295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 05/04/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Inflammatory phenomena and increase in oxidative stress in cell physiopathology progression render therapeutic strategies based on nutritional antioxidants necessary. It was thus aimed at assessing the effectiveness of the pomegranate mesocarp extract (PME) on differentiation of preadipocytes to adipocytes in the presence/absence of hydrogen peroxide (H2O2), a model mimicking insulin resistance. METHOD The effect of PME on lipid accumulation, protein expression of antioxidant, inflammatory and adipogenic biomarkers, reactive oxygen species production, activity of antioxidant enzymes and secretion of IL-6 has been evaluated during the differentiation of preadipocytes to adipocytes, in the presence or absence of H2O2. RESULTS H2O2 reduced the expression of the regulator of insulin sensitivity PPARγ and suppressed adipocyte differentiation. PME counteracted the effect of H2O2. The latter induced a higher level of fat accumulation by promoting the expressions of the adipogenic markers PPARγ, C/EBPα, FABP4 and CD36 as compared to the control and the H2O2-treated differentiating cells. During the progression of adipogenesis, highest increase (p < 0.05) in IL-6 secretion, by 3.16 and 3.85 folds, was observed on day 2 of differentiation in control and H2O2-treated cells, respectively, compared to day 0. PME significantly decreased (p < 0.01) the secretion of the cytokine in addition to suppressing the expression of NFκB. PME also prevented the reduction of superoxide dismutase, catalase and glutathione peroxidase activities that occurred during adipogenesis, by at most 33%, 119% and 42%, respectively. CONCLUSION These findings indicate that PME efficiently improves insulin sensitivity and can significantly counteract oxidative stress and inflammation.
Collapse
Affiliation(s)
- Piteesha Ramlagan
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Republic of Mauritius
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Philippe Rondeau
- UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Denis de La Réunion, France
| | - Emmanuel Bourdon
- UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Denis de La Réunion, France
| | - Theeshan Bahorun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Republic of Mauritius
- Mauritius Research and Innovation Council, Ebène, Republic of Mauritius
| | - Vidushi S Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Republic of Mauritius
| |
Collapse
|
4
|
Xie Y, Wei L, Guo J, Jiang Q, Xiang Y, Lin Y, Xie H, Yin X, Gong X, Wan J. Ginkgolide C attenuated Western diet-induced non-alcoholic fatty liver disease via increasing AMPK activation. Inflammation 2024:10.1007/s10753-024-02086-3. [PMID: 38954260 DOI: 10.1007/s10753-024-02086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a metabolic dysregulation-related disorder that is generally characterized by lipid metabolism dysfunction and an excessive inflammatory response. Currently, there are no authorized pharmacological interventions specifically designed to manage NASH. It has been reported that Ginkgolide C exhibits anti-inflammatory effects and modulates lipid metabolism. However, the impact and function of Ginkgolide C in diet-induced NASH are unclear. METHODS In this study, mice were induced by a Western Diet (WD) with different doses of Ginkgolide C with or without Compound C (adenosine 5 '-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor). The effects of Ginkgolide C were evaluated by assessing liver damage, steatosis, fibrosis, and AMPK expression. RESULTS The results showed that Ginkgolide C significantly alleviated liver damage, steatosis, and fibrosis in the WD-induced mice. In addition, Ginkgolide C markedly improved insulin resistance and attenuated hepatic inflammation. Importantly, Ginkgolide C exerted protective effects by activating the AMPK signaling pathway, which was reversed by AMPK inhibition. CONCLUSION Ginkgolide C alleviated NASH induced by WD in mice, potentially via activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yao Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Leyi Wei
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Jiashi Guo
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yang Xiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Huang Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xinru Yin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China.
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
6
|
Imi Y, Amano R, Kasahara N, Obana Y, Hosooka T. Nicotinamide mononucleotide induces lipolysis by regulating ATGL expression via the SIRT1-AMPK axis in adipocytes. Biochem Biophys Rep 2023; 34:101476. [PMID: 37144119 PMCID: PMC10151261 DOI: 10.1016/j.bbrep.2023.101476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) -dependent protein deacetylase SIRT1 plays an important role in the regulation of metabolism. Although the administration of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to ameliorate metabolic disorders, such as insulin resistance and glucose intolerance, the direct effect of NMN on the regulation of lipid metabolism in adipocytes remains unclear. We here investigated the effect of NMN on lipid storage in 3T3-L1 differentiated adipocytes. Oil-red O staining showed that NMN treatment reduced lipid accumulation in these cells. NMN was found to enhance lipolysis in adipocytes since the concentration of glycerol in the media was increased by NMN treatment. Western blotting and real-time RT-PCR analysis revealed that adipose triglyceride lipase (ATGL) expression at both protein and mRNA level was increased with NMN treatment in 3T3-L1 adipocytes. Whereas NMN increased SIRT1 expression and AMPK activation, an AMPK inhibitor compound C restored the NMN-dependent upregulation of ATGL expression in these cells, suggesting that NMN upregulates ATGL expression through the SIRT1-AMPK axis. NMN administration significantly decreased subcutaneous fat mass in mice on a high-fat diet. We also found that adipocyte size in subcutaneous fat was decreased with NMN treatment. Consistent with the alteration of fat mass and adipocyte size, the ATGL expression in subcutaneous fat was slightly, albeit significantly, increased with NMN treatment. These results indicate that NMN suppresses subcutaneous fat mass in diet-induced obese mice, potentially in part via the upregulation of ATGL. Unexpectedly, the reduction in fat mass as well as ATGL upregulation with NMN treatment were not observed in epididymal fat, implying that the effects of NMN are site-specific in adipose tissue. Thus, these findings provide important insights into the mechanism of NMN/NAD+ in the regulation of metabolism.
Collapse
|
7
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
8
|
Nakao T, Otaki S, Kominami Y, Watanabe S, Ito M, Aizawa T, Akahori Y, Ushio H. L-Fucose Suppresses Lipid Accumulation via the AMPK Pathway in 3T3-L1 Adipocytes. Nutrients 2023; 15:nu15030503. [PMID: 36771210 PMCID: PMC9919779 DOI: 10.3390/nu15030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
L-fucose (Fuc), a monosaccharide with different biological functions in various organisms, exhibits potent anti-obesity effects in obese mice. However, the mechanisms underlying its anti-obesity effects remain largely unknown. In this study, we aimed to investigate the effects of Fuc on lipid metabolism and insulin signaling in 3T3-L1 adipocytes. We found that Fuc treatment suppressed lipid accumulation during adipocyte differentiation. Additionally, Fuc treatment enhanced the phosphorylation of AMP-activated kinase (AMPK) and its downstream pathways, responsible for the regulation of fatty acid oxidation and lipolysis. Furthermore, Fuc-induced activation of the AMPK pathway was diminished by the AMPK inhibitor Compound C, and Fuc treatment considerably promoted glucose uptake via Akt activation in an insulin-resistant state. These findings provide a basis for elucidating the mechanism underlying the anti-obesity effect of Fuc, which may, in the future, be considered as a therapeutic compound for treating obesity and related diseases.
Collapse
Affiliation(s)
- Tomohiko Nakao
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Shiro Otaki
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yuri Kominami
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Miho Ito
- Yaizu Suisankagaku Industry Co., Ltd., 5-8-13 Kogawa-shimmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Teruki Aizawa
- Yaizu Suisankagaku Industry Co., Ltd., 5-8-13 Kogawa-shimmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Yusuke Akahori
- Yaizu Suisankagaku Industry Co., Ltd., 5-8-13 Kogawa-shimmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Hideki Ushio
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- Correspondence: ; Tel.: +81-3-5841-7520
| |
Collapse
|
9
|
Xu D, Zhuang L, Gao S, Ma H, Cheng J, Liu J, Liu D, Fu S, Hu G. Orally Administered Ginkgolide C Attenuates DSS-Induced Colitis by Maintaining Gut Barrier Integrity, Inhibiting Inflammatory Responses, and Regulating Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14718-14731. [PMID: 36375817 DOI: 10.1021/acs.jafc.2c06177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC), one of the foremost common forms of inflammatory bowel disease, poses a serious threat to human health. Currently, safe and effective treatments are not available. This study investigated the protective effect of ginkgolide C (GC), a terpene lactone extracted from Ginkgo biloba leaves, on UC and its underlying mechanism. The results showed that GC remarkably mitigated the severity of DSS-induced colitis in mice, as demonstrated by decreased body weight loss, reduced disease activity index, mitigated tissue damage, and increased colon length. Furthermore, GC inhibited DSS-induced hyperactivation of inflammation-related signaling pathways (NF-κB and MAPK) to reduce the production of inflammatory mediators, thereby mitigating the inflammatory response in mice. GC administration also restored gut barrier function by elevating the number of goblet cells and boosting the levels of tight junction-related proteins (claudin-3, occludin, and ZO-1). In addition, GC rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora, elevating the abundance of beneficial bacteria, such as Lactobacillus and Allobaculum, and decreasing the abundance of harmful bacteria, such as Bacteroides, Oscillospira, Ruminococcus, and Turicibacter. Taken together, these results suggest that GC administration effectively alleviates DSS-induced colitis by inhibiting the inflammatory response, maintaining mucosal barrier integrity, and regulating intestinal flora. This study may provide a scientific basis for the rational use of GC in preventing colitis and other related diseases.
Collapse
Affiliation(s)
- Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Lu Zhuang
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing 100853, China
- Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing 100000, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| | - Shan Gao
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| |
Collapse
|
10
|
Thomaz FM, de Jesus Simão J, da Silva VS, Machado MMF, Oyama LM, Ribeiro EB, Alonso Vale MIC, Telles MM. Ginkgo biloba Extract Stimulates Adipogenesis in 3T3-L1 Preadipocytes. Pharmaceuticals (Basel) 2022; 15:ph15101294. [PMID: 36297406 PMCID: PMC9610090 DOI: 10.3390/ph15101294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Smaller adipocytes are related to the reversal of metabolic disorders, suggesting that molecules that can act in the adipogenesis pathway are of great interest. The objective of this study was to investigate the effect of Ginkgo biloba extract (GbE) in modulating the differentiation in preadipocytes. 3T3-L1 preadipocytes were differentiated for 7 days into adipocytes without (control group) and with GbE at 1.0 mg/mL. Lipid content and gene expression were analyzed on day 7 (D7) by Oil Red O staining and PCR Array Gene Expression. Western blotting analysis of the key adipogenesis markers was evaluated during the differentiation process at days 3 (D3), 5 (D5), and 7 (D7). GbE increased lipid content and raised the gene expression of the main adipogenesis markers. Key proteins of the differentiation process were modulated by GbE, since C/EBPβ levels were decreased, while C/EBPα levels were increased at D7. Regarding the mature adipocytes’ markers, GbE enhanced the levels of both FABP4 at D5, and perilipin at D3 and D5. In summary, the present findings showed that GbE modulated the adipogenesis pathway suggesting that the treatment could accelerate the preadipocyte maturation, stimulating the expression of mature adipocyte proteins earlier than expected.
Collapse
Affiliation(s)
- Fernanda Malanconi Thomaz
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Jussara de Jesus Simão
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Viviane Simões da Silva
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Meira Maria Forcelini Machado
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
| | - Lila Missae Oyama
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo—UNIFESP, São Paulo 04023-062, Brazil
| | - Eliane Beraldi Ribeiro
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo—UNIFESP, São Paulo 04023-062, Brazil
| | - Maria Isabel Cardoso Alonso Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
- Correspondence:
| | - Monica Marques Telles
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo—UNIFESP, Diadema 09972-270, Brazil
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo—UNIFESP, São Paulo 04023-062, Brazil
| |
Collapse
|
11
|
Phytochemical Compounds, Antioxidant, and Digestive Enzymes Inhibitory Activities of Different Fractions from Ginkgo biloba L. Nut Shells. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5797727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was designed to investigate the phytochemical compounds, antioxidant, and digestive enzymes inhibitory activities of the free (F), esterified (E), and insoluble-bound (IB) fractions from Ginkgo biloba L. nut shells. Results showed that a total of twelve compounds were detected in G. biloba nut shells by using UHPLC-ESI-HRMS/MS, including two kinds of organic acids, three kinds of phenolic acids, three kinds of flavonoids, and four kinds of terpene lactones. The F fraction contained all identified compounds and had the highest contents of the total phenolics and total flavonoids. All of the three different fractions exhibited good DPPH radical and ABTS radical cation scavenging activities and strong inhibitory effects on the generation of intracellular reactive oxygen species (ROS). Moreover, these three fractions also had good inhibitory effects towards α-glucosidase and pancreatic lipase. Among the three fractions, the F fraction possessed the strongest bioactivities. The findings obtained in the current study may provide some insights and bases for the further investigation and application of G. biloba nut shells in clinical medicine or the nutraceutical industry.
Collapse
|
12
|
Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, Goulart RDA, Tofano RJ, Carvalho ACA, Flato UAP, Capelluppi Tofano VA, Detregiachi CRP, Bueno PCS, Girio RSJ, Araújo AC. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants (Basel) 2022; 11:525. [PMID: 35326176 PMCID: PMC8944638 DOI: 10.3390/antiox11030525] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases, cardiovascular disease (CVD), hypertension, insulin resistance, cancer, and other degenerative processes commonly appear with aging. Ginkgo biloba (GB) is associated with several health benefits, including memory and cognitive improvement, in Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. Its antiapoptotic, antioxidant, and anti-inflammatory actions have effects on cognition and other conditions associated with aging-related processes, such as insulin resistance, hypertension, and cardiovascular conditions. The aim of this study was to perform a narrative review of the effects of GB in some age-related conditions, such as neurodegenerative diseases, CVD, and cancer. PubMed, Cochrane, and Embase databases were searched, and the PRISMA guidelines were applied. Fourteen clinical trials were selected; the studies showed that GB can improve memory, cognition, memory scores, psychopathology, and the quality of life of patients. Moreover, it can improve cerebral blood flow supply, executive function, attention/concentration, non-verbal memory, and mood, and decrease stress, fasting serum glucose, glycated hemoglobin, insulin levels, body mass index, waist circumference, biomarkers of oxidative stress, the stability and progression of atherosclerotic plaques, and inflammation. Therefore, it is possible to conclude that the use of GB can provide benefits in the prevention and treatment of aging-related conditions.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Ricardo José Tofano
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Antonely C. A. Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Patrícia C. Santos Bueno
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Raul S. J. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| |
Collapse
|
13
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Yang XD, Ge XC, Jiang SY, Yang YY. Potential lipolytic regulators derived from natural products as effective approaches to treat obesity. Front Endocrinol (Lausanne) 2022; 13:1000739. [PMID: 36176469 PMCID: PMC9513423 DOI: 10.3389/fendo.2022.1000739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemic obesity is contributing to increases in the prevalence of obesity-related metabolic diseases and has, therefore, become an important public health problem. Adipose tissue is a vital energy storage organ that regulates whole-body energy metabolism. Triglyceride degradation in adipocytes is called lipolysis. It is closely tied to obesity and the metabolic disorders associated with it. Various natural products such as flavonoids, alkaloids, and terpenoids regulate lipolysis and can promote weight loss or improve obesity-related metabolic conditions. It is important to identify the specific secondary metabolites that are most effective at reducing weight and the health risks associated with obesity and lipolysis regulation. The aims of this review were to identify, categorize, and clarify the modes of action of a wide diversity of plant secondary metabolites that have demonstrated prophylactic and therapeutic efficacy against obesity by regulating lipolysis. The present review explores the regulatory mechanisms of lipolysis and summarizes the effects and modes of action of various natural products on this process. We propose that the discovery and development of natural product-based lipolysis regulators could diminish the risks associated with obesity and certain metabolic conditions.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xing-Cheng Ge
- Xiangxing College, Hunan University of Chinese Medicine, Changsha, China
| | - Si-Yi Jiang
- Department of Pharmacy, Medical College, Yueyang Vocational Technical College, YueYang, China
| | - Yong-Yu Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Yong-Yu Yang,
| |
Collapse
|
15
|
Yang MH, Ha IJ, Lee SG, Um JY, Ahn KS. Abrogation of STAT3 activation cascade by Ginkgolide C mitigates tumourigenesis in lung cancer preclinical model. J Pharm Pharmacol 2021; 73:1630-1642. [PMID: 34559878 DOI: 10.1093/jpp/rgab114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Ginkgolide C (GGC) isolated from Ginkgo biloba (Ginkgoaceae) leaf can demonstrate pleiotropic pharmacological actions. However, its anti-oncogenic impact in non-small cell lung cancer (NSCLC) model has not been reconnoitered. As signal transducer and activator of transcription 3 (STAT3) cascade can promote tumour growth and survival, we contemplated that GGC may interrupt this signalling cascade to expend its anti-cancer actions in NSCLC. METHODS The effect of GGC on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation and apoptosis was examined. The in-vivo effect of GGC on the growth of human NSCLC xenograft tumours in athymic nu/nu female mice was also investigated. KEY FINDINGS GGC attenuated the phosphorylation of STAT3 and STAT3 upstream kinases effectively. Exposure to pervanadate modulated GGC-induced down-regulation of STAT3 activation and promoted an elevation in the level of PTPε protein. Indeed, silencing of the PTPε gene reversed the GGC-promoted abrogation of STAT3 activation and apoptosis. Moreover, GGC exposure significantly reduced NSCLC tumour growth without demonstrating significant adverse effects via decreasing levels of p-STAT3 in mice tissues. CONCLUSIONS Overall, the findings support that GGC may exhibit anti-neoplastic actions by mitigation of STAT3 signalling cascade in NSCLC.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
16
|
A Single Dose of Ginkgo biloba Extract Induces Gene Expression of Hypothalamic Anorexigenic Effectors in Male Rats. Brain Sci 2021; 11:brainsci11121602. [PMID: 34942904 PMCID: PMC8699374 DOI: 10.3390/brainsci11121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that Ginkgo biloba extract (GbE) reduces food intake and body mass gain and regulates proteins related to lipid metabolism in obese rats. In ovariectomized rats, GbE restored the hippocampal and hypothalamic serotonergic system activity, favoring the spontaneous feeding decrement. Considering the promising hypophagic effect of GbE, this study aimed to investigate the effect of a single acute dose on hypothalamic pathways that regulate feeding behavior in male rats. Four-month-old Wistar male rats received either a single acute oral GbE dose (500 mg/kg) or vehicle. Food intake and body mass were measured after 1, 4, 12, and 24 h. Rats were euthanized, and hypothalami were removed for mRNA quantification of anorexigenic (POMC/CART) and orexigenic (AgRP/NPY) neuropeptides, leptin/serotonin receptors (5HT1A, 5HT1B, 5HT2C), and serotonin transporters. We also investigated POMC, 5-HT1B, and 5-HT2C protein levels. A single acute GbE dose induced the hypothalamic POMC, CART, and 5-HT2C gene expression but failed to modify orexigenic effectors. No alterations in food intake, body mass, and hypothalamic protein levels were observed. In summary, the present findings demonstrate the rapid stimulation of pivotal hypothalamic anorexigenic pathways in response to a single GbE administration, reinforcing the GbE hypophagic activity. However, more studies are necessary to evaluate its potential as an appetite modulator.
Collapse
|
17
|
Nam YK, Park SJ, Kim MH, Choi LY, Yang WM. Pharmacopuncture of Taraxacum platycarpum extract reduces localized fat by regulating the lipolytic pathway. Biomed Pharmacother 2021; 141:111905. [PMID: 34328114 DOI: 10.1016/j.biopha.2021.111905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Localized fat deposits are associated with health and aesthetic problems that mainly affect a large proportion of individuals. Recently, bioactive constituents of TP have been reported to affect lipid metabolism. In this study, we performed a network pharmacological analysis to assume potential lipolytic effects of TP and investigated the actual lipolytic effects of TP extract injection on local body fat and its underlying mechanism. Using the genes related to active compounds of TP, the network was constructed. Through the Functional Enrichment Analysis, Lipid Metabolism and Fatty Acid Metabolism were expected to be affiliated with the network, which implied possible lipolytic effects of TP. On the comparison between TP network and Obesity-related Gene Sets, about three-fourths of elements were in common with the gene sets, which indicated a high relevance between TP and obesity. Based on the genes in lipolysis-related pathways, Perilipin, CGI-58, ATGL, HSL and MGL were selected to identify the actual lipolytic effects of TP. TP injection reduced the inguinal fat weight. Also, the diameter of the adipocytes was decreased by the TP treatment in HFD-induced obese mice. In addition, TP suppressed lipid accumulation in differentiated 3T3-L1 adipocytes. Moreover, because the expression of Perilipin was increased, CGI-58, ATGL, HSL and MGL were markedly decreased. Furthermore, glycerol release was down-regulated by the TP treatment. TP exerted its lipolytic effects by regulating the lipolysis machinery through stimulation of lipases. Based on the present findings, TP is expected to be a potent component of injection lipolysis for removing localized body fat.
Collapse
Affiliation(s)
- Yeon Kyung Nam
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sang Jun Park
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
18
|
Rahman MS, Kang I, Lee Y, Habib MA, Choi BJ, Kang JS, Park DS, Kim YS. Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and Reduces High-Fat-Diet-Induced Obesity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6032-6042. [PMID: 34008977 DOI: 10.1021/acs.jafc.1c01440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the health benefits of probiotics have been widely known for decades, there has still been limited use of probiotic bacteria in anti-obesity therapy. Herein, we demonstrated the role of Bifidobacterium longum subsp. infantis YB0411 (YB, which was selected by an in vitro adipogenesis assay) in adipogenic differentiation in 3T3-L1 pre-adipocytes. We observed that YB-treatment effectively reduced triglyceride accumulation and the expression of CCAAT/enhancer-binding protein α, β, and δ (C/EBPα, C/EBPβ, and C/EBPδ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (aP2), and acetyl-CoA carboxylase (ACC). YB-treatment also reduced the levels of core autophagic markers (p62 and LC3B) in 3T3-L1 pre-adipocytes. Small-interfering-RNA-mediated knockdown and competitive-chemical-inhibition assays showed that AMP-activated protein kinase (AMPK) commenced the anti-adipogenic effect of YB. In addition, YB supplement markedly reduced body weight and fat accretion in mice with high-fat-diet-induced obesity. Our findings suggest that YB may be used as a potential probiotic candidate to ameliorate obesity.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Inseok Kang
- College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Youri Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Md Ahasun Habib
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Byeong Jo Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| |
Collapse
|
19
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
20
|
Wang G, Wu B, Xu W, Jin X, Wang K, Wang H. The Inhibitory Effects of Juglanin on Adipogenesis in 3T3-L1 Adipocytes. Drug Des Devel Ther 2020; 14:5349-5357. [PMID: 33293796 PMCID: PMC7719332 DOI: 10.2147/dddt.s256504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Deregulation of adipogenesis plays an important role in obesity and other metabolism disorders. PPAR, C/EBP and SREBP1c are key transcriptional factors involved in adipogenesis and lipogenesis. Juglanin is a natural compound belonging to flavonoids, and it has been reported that juglanin has a potent inhibitory effect on inflammation and certain type of cancers. However, the effects of juglanin in adipogenesis have not been reported before. MATERIALS AND METHODS 3T3-L1 preadipocytes were incubated with differentiation induction medium in the presence or absence of 0.5, 2.5, or 5 µM juglanin for an 8-day differentiation period. The lipid droplets accumulated in the cytoplasm were monitored by Oil Red O staining on days 0, 2, 5, and 8. The regulatory effects of juglanin on adipogenesis-related genes and proteins were investigated by real-time polymerase chain reaction and Western blot analysis. RESULTS Juglanin significantly decreased lipid accumulation in differentiated adipocytes. Our findings show that juglanin reduced the expression of C/EBPα, C/EBPβ, and SREBP-1c without affecting PPARα or PPARγ expression. Additionally, juglanin increased the activation of the SIRT1/AMPK signaling pathway through the phosphorylation of AMPKα. Finally, we performed an AMPK inhibitor experiment, which revealed that the inhibitory effects of juglanin on adipogenesis are mediated through AMPK. DISCUSSION Juglanin can prevent adipogenesis by suppressing lipid accumulation and the differentiation of preadipocytes. The mechanism of juglanin regulating adipogenesis requires further investigation. Future clinical study in vivo could shed more light on its implication in modulating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Xuefei Jin
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin Key Laboratory of Urologic Oncology, Changchun, Jilin130033, People’s Republic of China
| | - Kun Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130033, People’s Republic of China
| |
Collapse
|
21
|
Anti-neoplastic Effect of Ginkgolide C through Modulating c-Met Phosphorylation in Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21218303. [PMID: 33167504 PMCID: PMC7664003 DOI: 10.3390/ijms21218303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Ginkgolide C (GGC) derived from Ginkgo biloba, has been reported to exhibit various biological functions. However, the anti-neoplastic effect of GGC and its mechanisms in liver cancer have not been studied previously. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) pathway can regulate tumor growth and metastasis in hepatocellular carcinoma (HCC) cells. This study aimed to evaluate the anti-neoplastic effect of GGC against HCC cells and we observed that GGC inhibited HGF-induced c-Met and c-Met downstream oncogenic pathways, such as PI3K/Akt/mTOR and MEK/ERK. In addition, GGC also suppressed the proliferation of expression of diverse tumorigenic proteins (Bcl-2, Bcl-xL, Survivin, IAP-1, IAP-2, Cyclin D1, and COX-2) and induced apoptosis. Interestingly, the silencing of c-Met by small interfering RNA (siRNA) mitigated c-Met expression and enhanced GGC-induced apoptosis. Moreover, it was noted that GGC also significantly reduced the invasion and migration of HCC cells. Overall, the data clearly demonstrate that GGC exerts its anti-neoplastic activity through modulating c-Met phosphorylation and may be used as an effective therapy against HCC.
Collapse
|
22
|
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front Pharmacol 2020; 11:422. [PMID: 32317975 PMCID: PMC7155419 DOI: 10.3389/fphar.2020.00422] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant health burden with an ever-increasing prevalence. They remain the leading causes of morbidity and mortality worldwide. The use of medicinal herbs continues to be an alternative treatment approach for several diseases including CVDs. Currently, there is an unprecedented drive for the use of herbal preparations in modern medicinal systems. This drive is powered by several aspects, prime among which are their cost-effective therapeutic promise compared to standard modern therapies and the general belief that they are safe. Nonetheless, the claimed safety of herbal preparations yet remains to be properly tested. Consequently, public awareness should be raised regarding medicinal herbs safety, toxicity, potentially life-threatening adverse effects, and possible herb–drug interactions. Over the years, laboratory data have shown that medicinal herbs may have therapeutic value in CVDs as they can interfere with several CVD risk factors. Accordingly, there have been many attempts to move studies on medicinal herbs from the bench to the bedside, in order to effectively employ herbs in CVD treatments. In this review, we introduce CVDs and their risk factors. Then we overview the use of herbs for disease treatment in general and CVDs in particular. Further, data on the ethnopharmacological therapeutic potentials and medicinal properties against CVDs of four widely used plants, namely Ginseng, Ginkgo biloba, Ganoderma lucidum, and Gynostemma pentaphyllum, are gathered and reviewed. In particular, the employment of these four plants in the context of CVDs, such as myocardial infarction, hypertension, peripheral vascular diseases, coronary heart disease, cardiomyopathies, and dyslipidemias has been reviewed, analyzed, and critically discussed. We also endeavor to document the recent studies aimed to dissect the cellular and molecular cardio-protective mechanisms of the four plants, using recently reported in vitro and in vivo studies. Finally, we reviewed and reported the results of the recent clinical trials that have been conducted using these four medicinal herbs with special emphasis on their efficacy, safety, and toxicity.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Duong Thi Bich Thuan
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hoa Thi Phu
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thi Hieu Dung Nguyen
- Department of Physiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
23
|
Hosoda S, Kawazoe Y, Shiba T, Numazawa S, Manabe A. Anti-Obesity Effect of Ginkgo Vinegar, a Fermented Product of Ginkgo Seed Coat, in Mice Fed a High-Fat Diet and 3T3-L1 Preadipocyte Cells. Nutrients 2020; 12:nu12010230. [PMID: 31963184 PMCID: PMC7019924 DOI: 10.3390/nu12010230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Ginkgo seed coat is rarely used and is typically discarded, due to its offensive odor and its toxicity. Ginkgo vinegar is a fermented product of ginkgo seed coat, and fermentation removes the bad smell and most of the toxicity. Thus, ginkgo vinegar contains very low concentrations of toxic components. The present study examined the anti-obesity effect of ginkgo vinegar in mice fed a high-fat diet and its inhibition of adipogenesis in 3T3-L1 cells. Ginkgo vinegar suppressed high-fat diet-induced body weight gain and reduced the size of fat cells in mice. Ginkgo vinegar suppressed the expression of C/EBPδ and PPARγ, key proteins in adipogenesis, and inhibited lipid accumulation in 3T3-L1 cells that were induced to become adipocytes. These results suggested that ginkgo vinegar inhibited adipocyte differentiation. On the other hand, a corresponding concentration of acetic acid had significantly less effect on lipid accumulation and virtually no effect on adipogenic gene expression. These results suggested that, similar to Ginkgo biloba extract, ginkgo vinegar might prevent and improve adiposity. Therefore, ginkgo seed coat could be a useful material for medicinal ingredients.
Collapse
Affiliation(s)
- Shugo Hosoda
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, Ohta-ku, Tokyo 145-0062, Japan; (S.H.); (T.S.); (A.M.)
| | - Yumi Kawazoe
- RegeneTiss Inc., Okaya, Nagano 394-0046, Japan;
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshikazu Shiba
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, Ohta-ku, Tokyo 145-0062, Japan; (S.H.); (T.S.); (A.M.)
- RegeneTiss Inc., Okaya, Nagano 394-0046, Japan;
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
- Correspondence: ; Tel.: +81-3-3784-8205
| | - Atsufumi Manabe
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, Ohta-ku, Tokyo 145-0062, Japan; (S.H.); (T.S.); (A.M.)
| |
Collapse
|
24
|
Bilobalide Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway. Molecules 2019; 24:molecules24193503. [PMID: 31569605 PMCID: PMC6804195 DOI: 10.3390/molecules24193503] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Bilobalide, the only sesquiterpene compound from Ginkgo biloba leaf, exhibits various beneficial pharmaceutical activities, such as antioxidant, anti-inflammation, and protective effects for the central nervous system. Several bioactive components extracted from Ginkgo biloba extract reportedly have the potential to attenuate lipid metabolism. However, the effect of bilobalide on lipid metabolism remains unclear. In this study, we used 3T3-L1 cells as the cell model to investigate the effect of bilobalide on adipogenesis. The results showed that bilobalide inhibited 3T3-L1 preadipocyte differentiation and intracellular lipid accumulation. Quantitative real-time PCR and western blotting results indicated that several specific adipogenic transcription factors and a few important adipogenesis-related genes were significantly down regulated on both mRNA and protein levels in bilobalide treatment groups. By contrast, the expression of some lipolytic genes, such as adipose triglyceride lipase, hormone-sensitive lipase (HSL), and carnitine palmitoyltransferase-1α, were all up-regulated by bilobalide treatment, and the phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase 1, and HSL were stimulated. Furthermore, bilobalide treatment partially restored AMPK activity following its blockade by compound C (dorsomorphin). These results suggested that bilobalide inhibited adipogenesis and promoted lipolysis in 3T3-L1 cells by activating the AMPK signaling pathway.
Collapse
|
25
|
Hirata BKS, Cruz MM, de Sá RDCC, Farias TSM, Machado MMF, Bueno AA, Alonso-Vale MIC, Telles MM. Potential Anti-obesogenic Effects of Ginkgo biloba Observed in Epididymal White Adipose Tissue of Obese Rats. Front Endocrinol (Lausanne) 2019; 10:284. [PMID: 31133986 PMCID: PMC6523993 DOI: 10.3389/fendo.2019.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Exacerbated expansion of adipose tissue seen in diet-induced obesity leads to endocrine dysfunction and disturbance in adipokine secretion, with such abnormal profile positively associated with type 2 diabetes and other mild chronic inflammatory conditions. Ginkgo biloba extract (GbE), a mixture of polyphenols with antioxidant properties, has been recently investigated in a variety of experimental models of endocrine dysfunction, with several potentially beneficial effects identified, including improvement in insulin sensitivity in obese rats, and reduction of weight gain in ovariectomy-induced obesity and diet-induced obesity. The aim of this study was to investigate in high fat diet-induced obese male rats the effects of GbE supplementation for 2 weeks on adipocyte volume and adipose tissue lipid accumulation. GbE supplementation was effective in reducing energy intake in obese rats compared to the saline-treated placebo group. Epididymal adipocyte volume was reduced in GbE-supplemented rats, as were epididymal [1-14C]-acetate incorporation into fatty acids, perilipin (Plin 1) and fatty acid synthase (Fasn) mRNA, and FAS protein levels. Adipocyte hypertrophy in obesity is associated with insulin resistance, and in the present study we observed a reduction in the adipocyte volume of GbE-supplemented obese rats to dimensions equivalent to adipocytes from non-obese rats. GbE supplementation significantly reduced acetate accumulation and tended to reduce [3H]-oleate incorporation, into epididymal adipose tissue, suggesting a potentially anti-obesogenic effect in longer term therapies. Further studies that investigate the effects of GbE supplementation in other experimental models are required to fully elucidate its suggested beneficial effects on mild chronic inflammatory conditions.
Collapse
Affiliation(s)
- Bruna K. S. Hirata
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Maysa M. Cruz
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Roberta D. C. C. de Sá
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Talita S. M. Farias
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Meira M. F. Machado
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Allain A. Bueno
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Maria Isabel C. Alonso-Vale
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Monica M. Telles
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
26
|
Huang WC, Chen YL, Liu HC, Wu SJ, Liou CJ. Ginkgolide C reduced oleic acid-induced lipid accumulation in HepG2 cells. Saudi Pharm J 2018; 26:1178-1184. [PMID: 30532639 PMCID: PMC6260475 DOI: 10.1016/j.jsps.2018.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ginkgolide C, isolated from Ginkgo biloba, is a diterpene lactone that has multiple biological functions and can improve Alzheimer disease and platelet aggregation. Ginkgolide C also inhibits adipogenesis in 3T3-L1 adipocytes. The present study evaluated whether ginkgolide C reduced lipid accumulation and regulated the molecular mechanism of lipogenesis in oleic acid-induced HepG2 hepatocytes. HepG2 cells were treated with 0.5 mM oleic acid for 48 h to induce a fatty liver cell model. Then, the cells were exposed to various concentrations of ginkgolide C for 24 h. Staining with Oil Red O and the fluorescent dye BODIPY 493/503 revealed that ginkgolide C significantly reduced excessive lipid accumulation in HepG2 cells. Ginkgolide C decreased peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein 1c to block the expression of fatty acid synthase. Ginkgolide C treatment also promoted the expression of adipose triglyceride lipase and the phosphorylation level of hormone-sensitive lipase to enhance the decomposition of triglycerides. In addition, ginkgolide C stimulated CPT-1 to activate fatty acid β-oxidation, significantly increased sirt1 and phosphorylation of AMP-activated protein kinase (AMPK), and decreased expression of acetyl-CoA carboxylase for suppressed fatty acid synthesis in hepatocytes. Taken together, our results suggest that ginkgolide C reduced lipid accumulation and increased lipolysis through the sirt1/AMPK pathway in oleic acid-induced fatty liver cells.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Ya-Ling Chen
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Hui-Chia Liu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan 33303, Taiwan
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan
- Department of Nursing, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| |
Collapse
|
27
|
Panigrahy SK, Kumar A, Bhatt R. Hedychium coronarium Rhizomes: Promising Antidiabetic and Natural Inhibitor of α-Amylase and α-Glucosidase. J Diet Suppl 2018; 17:81-87. [DOI: 10.1080/19390211.2018.1483462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Suchitra K. Panigrahy
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India
| | - Renu Bhatt
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
28
|
DUANGJAI ACHARAPORN, NUENGCHAMNONG NITRA, SUPHROM NUNGRUTHAI, TRISAT KANITTAPORN, LIMPEANCHOB NANTEETIP, SAOKAEW SURASAK. Potential of Coffee Fruit Extract and Quinic Acid on Adipogenesis and Lipolysis in 3T3-L1 Adipocytes. THE KOBE JOURNAL OF MEDICAL SCIENCES 2018; 64:E84-E92. [PMID: 30666038 PMCID: PMC6347046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/31/2018] [Indexed: 06/09/2023]
Abstract
This study was to assess the impact of different colors of coffee fruit (green, yellow and red) on adipogenesis and/or lipolysis using 3T3-L1 adipocytes. Characterization of chemical constituents in different colors of coffee fruit extracts was determined by ESI-Q-TOF-MS. The cytotoxicity of the extracts in 3T3-L1 preadipocytes were evaluated by MTT assay. Oil-red O staining and amount of glycerol released in 3T3-L1 adipocytes were measured for lipid accumulation and lipolysis activity. All coffee fruit extracts displayed similar chromatographic profiles by chlorogenic acid > caffeoylquinic acid > caffeic acid. Different colors of raw coffee fruit possessed inhibitory adipogenesis activity in 3T3-L1 adipocytes, especially CRD decreased lipid accumulation approximately 47%. Furthermore, all extracts except CYF and their major compounds (malic, quinic, and chlorogenic acid) increased glycerol release. Our data suggest that different colors of coffee fruit extract have possessed anti-adipogenic and lipolytic properties and may contribute to the anti-obesity effects.
Collapse
Affiliation(s)
- ACHARAPORN DUANGJAI
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - NITRA NUENGCHAMNONG
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - NUNGRUTHAI SUPHROM
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - KANITTAPORN TRISAT
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - NANTEETIP LIMPEANCHOB
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - SURASAK SAOKAEW
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- Centre of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Thailand
| |
Collapse
|
29
|
Thomas SS, Kim M, Lee SJ, Cha YS. Antiobesity Effects of Purple Perilla (Perilla frutescens var. acuta) on Adipocyte Differentiation and Mice Fed a High-fat Diet. J Food Sci 2018; 83:2384-2393. [PMID: 30070698 DOI: 10.1111/1750-3841.14288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/31/2018] [Accepted: 06/24/2018] [Indexed: 02/06/2023]
Abstract
Purple perilla (PE) is a medicinal plant that has several health benefits. In this study, the antiobesity effect of PE was studied in 3T3-L1 preadipocytes and C57BL/6J mice fed high-fat diets. Triglyceride quantification and Oil Red O staining in matured adipocytes revealed that PE reduced lipid accumulation in differentiated adipocytes by downregulating adipogenic gene and upregulating lipolytic gene expressions. Mice were fed normal diet, high-fat diet and high-fat diet supplemented with different concentrations of PE. Treatment with PE significantly prevented body weight gain, improved serum lipids, hepatic lipids and reduced the epididymal fat. Furthermore, in the adipose tissue and liver, expression of genes related to lipolysis and fatty acid β-oxidation were upregulated in PE- treated mice. Thus, our results suggested that PE has antiobesity effects in rodents and can be effective in obesity management. PRACTICAL APPLICATION Purple perilla, rich in polyphenols such as rosmarinic acid, showed lipid lowering in adipocyte cells and prevented body weight gain in mice. Therefore we conclude that purple perilla may be a potential candidate for the development of functional foods or nutraceuticals in managing obesity in humans.
Collapse
Affiliation(s)
- Shalom Sara Thomas
- Dept. of Food Science and Human Nutrition, Chonbuk National Univ., Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Mina Kim
- Div. of Functional Food and Nutrition, Dept. of Agrofood Resources, National Inst. of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Seung Je Lee
- Research and Development Office, Jeonbuk Inst. for Food-Bioindustry, Jeonju, 54810, Republic of Korea
| | - Youn-Soo Cha
- Dept. of Food Science and Human Nutrition, Chonbuk Natl. Univ., Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
30
|
Liang T, Miyakawa T, Yang J, Ishikawa T, Tanokura M. Quantification of terpene trilactones in Ginkgo biloba with a 1H NMR method. J Nat Med 2018; 72:793-797. [PMID: 29569220 DOI: 10.1007/s11418-018-1203-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
Ginkgo biloba L. has been used as a herbal medicine in the traditional treatment of insufficient blood flow, memory deficits, and cerebral insufficiency. The terpene trilactone components, the bioactive agents of Ginkgo biloba L., have also been reported to exhibit useful functionality such as anti-inflammatory and neuroprotective effects. Therefore, in the present research, we attempted to analyze quantitatively the terpene trilactone components in Ginkgo biloba leaf extract, with quantitative 1H NMR (qNMR) and obtained almost identical results to data reported using HPLC. Application of the qNMR method for the analysis of the terpene trilactone contents in commercial Ginkgo extract products, such as soft gel capsules and tablets, produced the same levels noted in package labels. Thus, qNMR is an alternative method for quantification of the terpene trilactone components in commercial Ginkgo extract products.
Collapse
Affiliation(s)
- Tingfu Liang
- Tokiwa Phytochemical Co. Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jinwei Yang
- Tokiwa Phytochemical Co. Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan.
| | - Tsutomu Ishikawa
- Tokiwa Phytochemical Co. Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
31
|
Zhang R, Han D, Li Z, Shen C, Zhang Y, Li J, Yan G, Li S, Hu B, Li J, Liu P. Ginkgolide C Alleviates Myocardial Ischemia/Reperfusion-Induced Inflammatory Injury via Inhibition of CD40-NF-κB Pathway. Front Pharmacol 2018; 9:109. [PMID: 29515442 PMCID: PMC5826377 DOI: 10.3389/fphar.2018.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that inflammation plays a vital role in the occurrence and development of ischemia/reperfusion (I/R). Suppression of excessive inflammation can ameliorate impaired cardiac function, which shows therapeutic potential for clinical treatment of myocardial ischemia/reperfusion (MI/R) diseases. In this study, we investigated whether Ginkgolide C (GC), a potent anti-inflammatory flavone, extenuated MI/R injury through inhibition of inflammation. In vivo, rats with the occlusion of the left anterior descending (LAD) coronary artery were applied to mimic MI/R injury. In vitro, primary cultured neonatal ventricular myocytes exposed to hypoxia/reoxygenation (H/R) were applied to further discuss the anti-H/R injury property of GC. The results revealed that GC significantly improved the symptoms of MI/R injury, as evidenced by reducing infarct size, preventing myofibrillar degeneration and reversing the mitochondria dysfunction. Moreover, histological analysis and Myeloperoxidase (MPO) activity measurement showed that GC remarkably suppressed Polymorphonuclears (PMNs) infiltration and ameliorated the histopathological damage. Furthermore, GC pretreatment was shown to improve H/R-induced ventricular myocytes viability and enhance tolerance of inflammatory insult, as evidenced by suppressing expression of CD40, translocation of NF-κB p65 subunit, phosphorylation of IκB-α, as well as the activity of IKK-β. In addition, downstream inflammatory cytokines modulated by NF-κB signaling were effectively down-regulated both in vivo and in vitro, as determined by immunohistochemistry and ELISA. In conclusion, these results indicate that GC possesses a beneficial effect against MI/R injury via inflammation inhibition that may involve suppression of CD40-NF-κB signal pathway and downstream inflammatory cytokines expression, which may offer an alternative medication for MI/R diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jun Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shasha Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Hu
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
32
|
Corrigendum to "Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway". EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:4293429. [PMID: 29333182 PMCID: PMC5733136 DOI: 10.1155/2017/4293429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022]
|
33
|
Wang SJ, Lu WY, Liu KY. Adiponectin receptor agonist AdipoRon suppresses adipogenesis in C3H10T1/2 cells through the adenosine monophosphate‑activated protein kinase signaling pathway. Mol Med Rep 2017; 16:7163-7169. [PMID: 28901521 DOI: 10.3892/mmr.2017.7450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of AdipoRon, an adiponectin receptor agonist, on adipogenesis in C3H10T1/2 cells and to explore the underlying mechanisms. C3H10T1/2 cells were treated with increasing doses of AdipoRon for 8 days, and Oil Red O staining was used to assess lipid accumulation. The protein and mRNA expression levels of adipogenic transcription factors and adipocyte‑specific genes were examined by western blotting and reverse transcription quantitative polymerase chain reaction, respectively. AdipoRon treatment inhibited lipid accumulation in C3H10T1/2 cells in a dose‑dependent manner and significantly suppressed the expression of adipogenic transcription factors, including peroxisome proliferator‑activated receptor γ, CAAT/enhancer binding protein (C/EBP)‑β and C/EBPα. In addition, cells treated with AdipoRon exhibited a significant decrease in the expression of adipocyte‑specific genes, including fatty acid binding protein 4, fatty acid synthase, leptin, adiponectin, and stearoyl‑CoA desaturase‑1. Notably, AdipoRon significantly increased the phosphorylation of adenosine monophosphate‑activated protein kinase (AMPK) and acetyl‑CoA carboxylase (ACC). The results indicated that AdipoRon exerted an inhibitory effect on adipogenesis in C3H10T1/2 cells by downregulating the expression of adipogenic transcription factors and adipocyte‑specific genes and by promoting the phosphorylation of AMPK and ACC, which suggested that AdipoRon may be a potential drug to prevent and treat diseases caused by abnormal adipogenesis, such as obesity.
Collapse
Affiliation(s)
- Shu-Juan Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital and Institute of Hematology, Beijing 100044, P.R. China
| | - Wen-Yi Lu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital and Institute of Hematology, Beijing 100044, P.R. China
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital and Institute of Hematology, Beijing 100044, P.R. China
| |
Collapse
|
34
|
Liou CJ, Wu SJ, Chen LC, Yeh KW, Chen CY, Huang WC. Acacetin from Traditionally Used Saussurea involucrata Kar. et Kir. Suppressed Adipogenesis in 3T3-L1 Adipocytes and Attenuated Lipid Accumulation in Obese Mice. Front Pharmacol 2017; 8:589. [PMID: 28900399 PMCID: PMC5581916 DOI: 10.3389/fphar.2017.00589] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/15/2017] [Indexed: 02/01/2023] Open
Abstract
Acacetin, a flavone that can be isolated from the Saussurea involucrata plant, has anti-tumor and anti-inflammatory properties that ameliorate airway hyperresponsiveness in asthmatic mice. This study investigated whether acacetin has anti-adipogenic effects in 3T3-L1 adipocytes and whether it regulates the inflammatory response in adipocytes and macrophages. It also investigated whether acacetin ameliorates lipid accumulation in high-fat diet- (HFD) induced obese mice. Differentiated 3T3-L1 cells were treated with acacetin. The glycerol levels in the culture medium were measured, and the expression of proteins and genes involved in adipogenesis and lipolysis were assayed by Western blot and real-time PCR, respectively. Inflammatory cytokine signaling pathway activity was assessed in macrophages that were treated with acacetin and cultured with differentiated medium from 3T3-L1 cells. Intraperitoneal injections of acacetin were administered to HFD-induced obese mice twice a week for 10 weeks. Acacetin significantly increased the levels of glycerol in the culture medium and significantly inhibited lipid accumulation in adipocytes. Acacetin reduced the expression of adipogenesis-related transcription factors, including the expression of the CCAAT/enhancer-binding protein; it also increased sirtuin 1 expression and AMPK phosphorylation in adipocytes. In macrophages cultured with differentiated media from 3T3-L1 adipocytes, acacetin reduced the levels of inflammatory mediators and the activity of the mitogen-activated protein kinase and NF-κB pathways. In obese mice, acacetin reduced both body weight and visceral adipose tissue weight. These results demonstrate that acacetin inhibited adipogenesis in adipocytes and in obese mice. Acacetin also reduced the inflammatory response of macrophages that were stimulated with differentiated media from 3T3-L1 cells.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Department of Nursing, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and TechnologyTaoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and TechnologyTaoyuan, Taiwan.,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Chih-Ying Chen
- Department of Nutrition and Health Sciences, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial HospitalTaoyuan, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
35
|
Huang WC, Chen CY, Wu SJ. Almond Skin Polyphenol Extract Inhibits Inflammation and Promotes Lipolysis in Differentiated 3T3-L1 Adipocytes. J Med Food 2017; 20:103-109. [PMID: 28146410 DOI: 10.1089/jmf.2016.3806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies have shown that polyphenols reduce the risk of inflammation-related diseases and upregulates energy expenditure in adipose tissue. Here, we investigated the mechanism of the anti-inflammatory and antiobesity effects of almond skin polyphenol extract (ASP) in differentiated 3T3-L1 adipocytes. The antioxidant effects of ASP were measured based on DPPH radical scavenging activity, Trolox equivalent antioxidant capacity, and total phenolic content. Differentiated 3T3-L1 cells were treated with ASP. Subsequently, lipolysis proteins and transcription factors of adipogenesis were measured. The proinflammatory mediators monocyte chemotactic protein-1 (MCP-1) and chemokine ligand 5 (CCL-5) were determined by enzyme-linked immunosorbent assay. We found that ASP significantly promoted phosphorylation of AMP-activated protein kinase (AMPK), increased activity of adipose triglyceride lipase and hormone-sensitive lipase, and inhibited adipogenesis-related transcription factors. In addition, ASP inhibited the tumor necrosis factor-α (TNF-α)-induced cell inflammatory response via downregulation of MCP-1 and CCL-5 secretion. This study suggests that ASP regulates lipolysis through activation of AMPK, reduced adipogenesis, and suppresses proinflammatory cytokines in adipocytes.
Collapse
Affiliation(s)
- Wen-Chung Huang
- 1 Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan City, Taiwan
| | - Chi-Yuan Chen
- 1 Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan City, Taiwan
| | - Shu-Ju Wu
- 2 Department of Nutrition and Health Sciences, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan City, Taiwan .,3 Department of Dermatology, Aesthetic Medical Center , Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
36
|
Tung YC, Hsieh PH, Pan MH, Ho CT. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J Food Drug Anal 2017; 25:100-110. [PMID: 28911527 PMCID: PMC9333434 DOI: 10.1016/j.jfda.2016.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
Dietary phytochemicals from food and herbs have been studied for their health benefits for a long time. The incidence of obesity has seen an incredible increase worldwide. Although dieting, along with increased physical activity, seems an easy method in theory to manage obesity, it is hard to apply in real life. Obesity treatment drugs and surgery are not successful or targeted for everyone and can have significant side effects. This low rate of success is the major reason that the overweight as well as the pharmaceutical industry seek alternative methods, including phytochemicals. Therefore, more and more research has focused on the role of phytochemicals to alleviate lipid accumulation or enhance energy expenditure in adipocytes. This review discusses selected phytochemicals from food and herbs and their effects on adipogenesis, lipogenesis, lipolysis, oxidation of fatty acids, and browning in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
| | - Pei-Hsuan Hsieh
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402,
Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354,
Taiwan
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| |
Collapse
|
37
|
Han YH, Li Z, Um JY, Liu XQ, Hong SH. Anti-adipogenic effect of Glycoside St-E2 and Glycoside St-C1 isolated from the leaves of Acanthopanax henryi (Oliv.) Harms in 3T3-L1 cells. Biosci Biotechnol Biochem 2016; 80:2391-2400. [PMID: 27494072 DOI: 10.1080/09168451.2016.1217150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acanthopanax henryi (Oliv.) Harms has been used in the treatment of arthritis, rheumatism, and abdominal pain. This study evaluated whether natural compounds isolated from the leaves of A. henryi (Oliv.) Harms could inhibit adipocyte differentiation by regulating transcriptional factors such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). AMP-activated protein kinase (AMPK) activity was also evaluated. Among the several compounds isolated from the leaves of A. henryi (Oliv.) Harms, Glycoside St-C1 and Glycoside St-E2 significantly decreased lipid accumulation and the expressions of PPARγ and C/EBPα. Glycoside St-C1 and Glycoside St-E2 were found to activate AMPK when they regulated PPARγ and C/EBPα. Results confirmed that Glycoside St-C1 and Glycoside St-E2 isolated from the leaves of A. henryi (Oliv.) Harms can inhibit adipogenesis through the AMPK-PPARγ-C/EBPα mechanism. Thus, this study suggests that Glycoside St-C1 and Glycoside St-E2 have a therapeutic effect due to activation of the AMPKα.
Collapse
Affiliation(s)
- Yo-Han Han
- a Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute , Wonkwang University , Iksan , Republic of Korea
| | - Zhi Li
- b School of Pharmacy , Hunan University of Chinese Medicine , Changsha , China
| | - Jae-Young Um
- c College of Korean Medicine, Institute of Korean Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Xiang Qian Liu
- b School of Pharmacy , Hunan University of Chinese Medicine , Changsha , China
| | - Seung-Heon Hong
- a Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute , Wonkwang University , Iksan , Republic of Korea
| |
Collapse
|