1
|
Garcia-Silva MR, Montenegro S, Dacosta S, Tosar JP, Cayota A. PIWIL1 is recruited to centrosomes during mitosis in colorectal cancer cells and is linked to cell cycle progression. Sci Rep 2024; 14:23928. [PMID: 39397093 PMCID: PMC11471757 DOI: 10.1038/s41598-024-75098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
PIWI proteins, traditionally associated with germline development, have recently gained attention for their expression in various cancers, including colorectal cancer. However, the molecular mechanisms underlying their reactivation and impact on cancer initiation and progression remain elusive. Here, we found that PIWIL1 is expressed at relatively high levels in CRC-derived samples and cell lines, where it undergoes a dynamic relocalization to the centrosome during mitosis. Knockdown of PIWIL1 induces G2/M arrest associated with disruption of the mitotic spindle and aberrant metaphase events, highlighting its role in cell cycle progression. We also found that the expression of PIWIL1 is lost during the differentiation of Caco-2 cells into enterocytes and that PIWIL1 is expressed in cells at the base of the intestinal crypts in normal human colon tissue, where intestinal stem cells are known to reside. Thus, it is possible that the presence of PIWIL1 in cancer cells reflects a physiological role of this protein in stem cell maintenance, which would argue in favor of the proposed stem cell origin of CRC. Supporting this view, dedifferentiation of human fibroblasts into induced pluripotent stem cells (iPSCs) involves the reactivation of PIWIL2 expression, another member of the PIWI protein family. Overall, our findings suggest a role of PIWIL1 in mediating cell cycle dynamics, both in colorectal cancer cells and possibly also in intestinal stem cells. In a broader aspect, we provide evidence supporting an involvement of PIWI proteins in somatic stem cell maintenance, thus expanding the known non-gonadal functions of this protein family.
Collapse
Affiliation(s)
| | - Sofía Montenegro
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Sofía Dacosta
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento Básico de Medicina, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Kunnummal M, Raveendran PS, Basu B, Rani SV, Paul RA, Kuppusamy K, Angelin M, Issac J, James J, Das AV. HPV16 E6/E7-mediated regulation of PiwiL1 expression induces tumorigenesis in cervical cancer cells. Cell Oncol (Dordr) 2024; 47:917-937. [PMID: 38036929 DOI: 10.1007/s13402-023-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE PiwiL1 has been reported to be over-expressed in many cancers. However, the molecular mechanism by which these proteins contribute to tumorigenesis and their regulation in cancer cells is still unclear. We intend to understand the role of PiwiL1 in tumorigenesis and also its regulation in cervical cells. METHODS We studied the effect of loss of PiwiL1 function on tumor properties of cervical cancer cells in vitro and in vivo. Also we have looked into the effect of PiwiL1 overexpression in the malignant transformation of normal cells both in vitro and in vivo. Further RNA-seq and RIP-seq analyses were done to get insight of the direct and indirect targets of PiwiL1 in the cervical cancer cells. RESULTS Here, we report that PiwiL1 is not only over-expressed, but also play a major role in tumor induction and progression. Abolition of PiwiL1 in CaSki cells led to a decrease in the tumor-associated properties, whereas, its upregulation conferred malignant transformation of normal HaCaT cells. Our study delineates a new link between HPV oncogenes, E6 and E7 with PiwiL1. p53 and E2F1 directly bind and differentially regulate PiwiL1 promoter in a context-dependant manner. Further, RNA-seq together with RIP-RNA-seq suggested a strong and direct role for PiwiL1 in promoting metastasis in cervical cancer cells. CONCLUSION Our study demonstrates that PiwiL1 act as an oncogene in cervical cancer by inducing tumor-associated properties and EMT pathway. The finding that HPV oncogenes, E6/E7 can positively regulate PiwiL1 suggests a possible mechanism behind HPV-mediated tumorigenesis in cervical cancer.
Collapse
Affiliation(s)
- Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Pooja Sherly Raveendran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
- Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana, 121001, India
| | - Sheri Vidya Rani
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Riya Ann Paul
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, 695011, Kerala, India
| | - Krithiga Kuppusamy
- Bioscience Research and Training Centre, Kerala Veterinary and Animal Science University, Thonnakkal, Thiruvananthapuram, 695317, Kerala, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Joby Issac
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India.
| |
Collapse
|
3
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O, Sedo A, Busek P, Sana J. Critical appraisal of the piRNA-PIWI axis in cancer and cancer stem cells. Biomark Res 2024; 12:15. [PMID: 38303021 PMCID: PMC10836005 DOI: 10.1186/s40364-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Small noncoding RNAs play an important role in various disease states, including cancer. PIWI proteins, a subfamily of Argonaute proteins, and PIWI-interacting RNAs (piRNAs) were originally described as germline-specific molecules that inhibit the deleterious activity of transposable elements. However, several studies have suggested a role for the piRNA-PIWI axis in somatic cells, including somatic stem cells. Dysregulated expression of piRNAs and PIWI proteins in human tumors implies that, analogously to their roles in undifferentiated cells under physiological conditions, these molecules may be important for cancer stem cells and thus contribute to cancer progression. We provide an overview of piRNA biogenesis and critically review the evidence for the role of piRNA-PIWI axis in cancer stem cells. In addition, we examine the potential of piRNAs and PIWI proteins to become biomarkers in cancer.
Collapse
Affiliation(s)
- Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic.
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
4
|
Wang Y, Yao L, Teng Y, Yin H, Wu Q. PIWIL1 Drives Chemoresistance in Multiple Myeloma by Modulating Mitophagy and the Myeloma Stem Cell Population. Front Oncol 2022; 11:783583. [PMID: 35083142 PMCID: PMC8784391 DOI: 10.3389/fonc.2021.783583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
As an important member of the Argonaute protein family, PIWI-like protein 1 (PIWIL1) plays a key role in tumor cell viability. However, the exact function of PIWIL1 in multiple myeloma (MM) and the underlying mechanism remain unclear. Here, we revealed that PIWIL1 was highly expressed in myeloma cell lines and newly diagnosed MM patients, and that its expression was notably higher in refractory/relapsed MM patients. PIWIL1 promoted the proliferation of MM cells and conferred resistance to chemotherapeutic agents both in vitro and in vivo. More importantly, PIWIL1 enhanced the formation of autophagosomes, especially mitophagosomes, by disrupting mitochondrial calcium signaling and modulating mitophagy-related canonical PINK1/Parkin pathway protein components. Mitophagy/autophagy inhibitors overcome PIWIL1-induced chemoresistance. In addition, PIWIL1 overexpression increased the proportion of side population (SP) cells and upregulated the expression of the stem cell-associated genes Nanog, OCT4, and SOX2, while its inhibition resulted in opposite effects. Taken together, our findings demonstrated that PIWIL1 induced drug resistance by activating mitophagy and regulating the MM stem cell population. PIWIL1 depletion significantly overcame drug resistance and could be used as a novel therapeutic target for reversing resistance in MM patients.
Collapse
Affiliation(s)
- Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
6
|
Dong P, Xiong Y, Konno Y, Ihira K, Xu D, Kobayashi N, Yue J, Watari H. Critical Roles of PIWIL1 in Human Tumors: Expression, Functions, Mechanisms, and Potential Clinical Implications. Front Cell Dev Biol 2021; 9:656993. [PMID: 33718392 PMCID: PMC7952444 DOI: 10.3389/fcell.2021.656993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a class of small non-coding RNA molecules that are 24-31 nucleotides in length. PiRNAs are thought to bind to PIWI proteins (PIWL1-4, a subfamily of Argonaute proteins), forming piRNA/PIWI complexes that influence gene expression at the transcriptional or post-transcriptional levels. However, it has been recently reported that the interaction of PIWI proteins with piRNAs does not encompass the entire function of PIWI proteins in human tumor cells. PIWIL1 (also called HIWI) is specifically expressed in the testis but not in other normal tissues. In tumor tissues, PIWIL1 is frequently overexpressed in tumor tissues compared with normal tissues. Its high expression is closely correlated with adverse clinicopathological features and shorter patient survival. Upregulation of PIWIL1 drastically induces tumor cell proliferation, epithelial-mesenchymal transition (EMT), invasion, cancer stem-like properties, tumorigenesis, metastasis and chemoresistance, probably via piRNA-independent mechanisms. In this article, we summarize the current existing literature on PIWIL1 in human tumors, including its expression, biological functions and regulatory mechanisms, providing new insights into how the dysregulation of PIWIL1 contributes to tumor initiation, development and chemoresistance through diverse signaling pathways. We also discuss the most recent findings on the potential clinical applications of PIWIL1 in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Department of Gynecology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Lin Y, Zheng J, Lin D. PIWI-interacting RNAs in human cancer. Semin Cancer Biol 2020; 75:15-28. [PMID: 32877760 DOI: 10.1016/j.semcancer.2020.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
P-element-induced wimpy testis (PIWI) interacting RNAs (piRNAs) are a class of small regulatory RNAs mechanistically similar to but much less studied than microRNAs and small interfering RNAs. Today the best understood function of piRNAs is transposon control in animal germ cells, which has earned them the name 'guardians of the germline'. Several molecular/cellular characteristics of piRNAs, including high sequence diversity, lack of secondary structures, and target-oriented generation seem to serve this purpose. Recently, aberrant expressions of piRNAs and PIWI proteins have been implicated in a variety of malignant tumors and associated with cancer hallmarks such as cell proliferation, inhibited apoptosis, invasion, metastasis and increased stemness. Researchers have also demonstrated multiple mechanisms of piRNA-mediated target deregulation associated with cancer initiation, progression or dissemination. We review current research findings on the biogenesis, normal functions and cancer associations of piRNAs, highlighting their potentials as cancer diagnostic/prognostic biomarkers and therapeutic tools. Whenever applicable, we draw connections with other research fields to encourage intercommunity conversations. We also offer recommendations and cautions regarding the general process of cancer-related piRNA studies and the methods/tools used at each step. Finally, we call attention to some issues that, if left unsolved, might impede the future development of this field.
Collapse
Affiliation(s)
- Yuan Lin
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
8
|
Molecular and Functional Characterization of the Somatic PIWIL1/piRNA Pathway in Colorectal Cancer Cells. Cells 2019; 8:cells8111390. [PMID: 31694219 PMCID: PMC6912267 DOI: 10.3390/cells8111390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023] Open
Abstract
PIWI-like (PIWIL) proteins and small non-coding piRNAs, involved in genome regulation in germline cells, are found aberrantly expressed in human tumors. Gene expression data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the European Genome-Phenome Archive (EGA) indicate that the PIWIL1 gene is ectopically activated in a significant fraction of colorectal cancers (CRCs), where this is accompanied by promoter demethylation, together with germline factors required for piRNA production. Starting from this observation, the PIWIL/piRNA pathway was studied in detail in COLO 205 CRC cells, which express significant levels of this protein, to investigate role and significance of ectopic PIWIL1 expression in human tumors. RNA sequencing and cell and computational biology led to the demonstration that PIWIL1 localizes in a nuage-like structure located in the perinuclear region of the cell and that a significant fraction of the piRNAs expressed in these cells are methylated, and, therefore, present in an active form. This was further supported by RNA immunoprecipitation, which revealed how several piRNAs can be found loaded into PIWIL1 to form complexes also comprising their target mRNAs. The mature transcripts associated with the PIWIL-piRNA complex encode key regulatory proteins involved in the molecular mechanisms sustaining colorectal carcinogenesis, suggesting that the PIWI/piRNA pathway may actively contribute to the establishment and/or maintenance of clinico-pathological features of CRCs.
Collapse
|
9
|
Diagnostic and Prognostic Value of B4GALT1 Hypermethylation and Its Clinical Significance as a Novel Circulating Cell-Free DNA Biomarker in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101598. [PMID: 31635093 PMCID: PMC6826707 DOI: 10.3390/cancers11101598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene B4GALT1 in colorectal cancer (CRC) patients. A Kaplan–Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of B4GALT1. Quantitative methylation-specific PCR (QMSP) and droplet digital quantitative methylation-specific PCR (dd-QMSP) were respectively used to detect hypermethylated B4GALT1 in metastasis and plasma in four cohorts of metastatic CRC cases (mCRC). Both the downregulated expression and promoter hypermethylation of B4GALT1 have a negative prognostic impact on CRC. Interestingly a low expression level of B4GALT1 was significantly associated with poor cetuximab response (progression-free survival (PFS) p = 0.01) particularly in wild-type (WT)-KRAS patients (p = 0.03). B4GALT1 promoter was aberrantly methylated in liver and lung metastases. The detection of hypermethylated B4GALT1 in plasma of mCRC patients showed a highly discriminative receiver operating characteristic (ROC) curve profile (area under curve (AUC) value 0.750; 95% CI: 0.592–0.908, p = 0.008), clearly distinguishing mCRC patients from healthy controls. Based on an optimal cut-off value defined by the ROC analysis, B4GALT1 yield a 100% specificity and a 50% sensitivity. These data support the potential value of B4GALT1 as an additional novel biomarker for the prediction of cetuximab response, and as a specific and sensitive diagnostic circulating biomarker that can be detected in CRC.
Collapse
|
10
|
Stöhr CG, Steffens S, Polifka I, Jung R, Kahlmeyer A, Ivanyi P, Weber F, Hartmann A, Wullich B, Wach S, Taubert H. Piwi-like 1 protein expression is a prognostic factor for renal cell carcinoma patients. Sci Rep 2019; 9:1741. [PMID: 30741998 PMCID: PMC6370845 DOI: 10.1038/s41598-018-38254-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
The Piwi-like genes belong to the Argonaute gene family and are conserved in plants, animals and humans. In addition to their essential role in the germ line and as stem cell-associated genes, Piwi-like proteins play a role in different cancer types but have yet to be studied in renal cell carcinoma (RCC). We investigated tissue micro arrays (TMAs) with tumor samples of two independent cohorts of RCC patients (N = 265 and N = 345); we used immunohistochemistry to assess the protein expression of Piwi-like 1. Applying an immunoreactive score (IRS), we found Piwi-like 1 positivity (IRS > 0) in 28.3% and 14.8% of the tumors in cohorts 1 and 2, respectively. Piwi-like 1 positivity was correlated with Fuhrman grade, tumor stage and the presence of distant metastasis (P < 0.005). Moreover, in univariate and multivariate analyses (adjusted to Fuhrman grade and tumor stage), Piwi-like 1 positivity was associated with a shorter cancer-specific survival in the patients in the second cohort. In addition, Piwi-like 1 expression allowed to further distinguish the RCC patients with high Fuhrman grade, high tumor stage, distant metastasis or high pre-operative levels of C-reactive protein, as Piwi-like 1 positivity was associated with a shorter cancer-specific survival in both cohorts. Our data encourage further investigations to enlighten the role of Piwi-like 1 and its function as a marker of poor prognosis in RCC patients.
Collapse
Affiliation(s)
- Christine G Stöhr
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Steffens
- Clinic for Urology, University Hospital Muenster, Muenster, Germany.,Department of Urology, Hannover Medical School, Hannover, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Rudolf Jung
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Kahlmeyer
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Florian Weber
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2018; 1871:160-169. [PMID: 30599187 DOI: 10.1016/j.bbcan.2018.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a very recently discovered class of small non-coding RNAs (ncRNAs), with approximately 20,000 piRNA genes already identified within the human genome. These short RNAs were originally described as key functional regulators for the germline maintenance and transposon silencing. However, due to our limited knowledge regarding their function, piRNAs were for a long time assumed to be the "dark matter" of ncRNAs in our genome. However, recent evidence has now changed our viewpoint of their biological and clinical significance in various diseases, as newly emerging data reveals that aberrant expression of piRNAs is a unique and distinct feature in many diseases, including multiple human cancers. Furthermore, their altered expression in cancer patients has been significantly associated with clinical outcomes, highlighting their important biological functional role in disease progression. Functionally, piRNAs maintain genomic integrity by silencing transposable elements, and are capable of regulating the expression of specific downstream target genes in a post-transcriptional manner. Moreover, accumulating evidences demonstrates that analogous to other small ncRNAs (e.g. miRNAs) piRNAs have both oncogenic and tumor suppressive roles in cancer development. In this article, we discuss emerging insights into roles of piRNAs in a variety of cancers, reveal new findings underpinning various mechanisms of piRNAs-mediated gene regulation, and highlight their potential clinical significance in the management of cancer patients.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246-2017, USA.
| |
Collapse
|
12
|
Eckstein M, Jung R, Weigelt K, Sikic D, Stöhr R, Geppert C, Agaimy A, Lieb V, Hartmann A, Wullich B, Wach S, Taubert H. Piwi-like 1 and -2 protein expression levels are prognostic factors for muscle invasive urothelial bladder cancer patients. Sci Rep 2018; 8:17693. [PMID: 30523270 PMCID: PMC6283838 DOI: 10.1038/s41598-018-35637-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
Piwi-like proteins are essential for stem-cell maintenance and self-renewal in multicellular organisms. We analyzed the expression of Piwi-like 1 and Piwi-like 2 by immunohistochemistry (IHC) in 95 muscle invasive bladder cancer (MIBC) samples using tissue microarray. Application of an immunoreactive score (IRS) revealed 37 and 45 patients who were Piwi-like 1 and -2 positive (IRS > 2). IHC results were correlated with clinico-pathological and survival data. The expression of both proteins was positively correlated with each other, lymph node metastasis and expression of CK20 and GATA 3. A negative correlation for both proteins was detected for disease-specific survival (DSS), recurrence, Ki67/MIB1 proliferation index, and CK5 expression. Detection of Piwi-like 1 protein positivity was associated with poor DSS (P = 0.019; log rank test, Kaplan-Meier analysis), and in multivariate Cox’s analysis (adjusted to tumor stage and tumor grade), it was an independent prognostic factor for DSS (RR = 2.16; P = 0.011). Piwi-like 2 positivity was associated with DSS (P = 0.008) and recurrence-free survival (RFS; P = 0.040), and in multivariate Cox’s analysis, Piwi-like 2 positivity was an independent prognostic factor for DSS (RR = 2.46; P = 0.004) and RFS (RR = 3.0; P = 0.003). Most interestingly, in the basal type patient subgroup (CK5+/GATA3−), Piwi-like 2 positivity was associated with poorer DSS, OS and RFS (P < 0.001, P = 0.004 and P = 0.05; log rank test). In multivariate analysis, Piwi-like 2 positivity was an independent prognostic factor for DSS (RR = 12.70; P = 0.001), OS (RR = 6.62; = 0.008) and RFS (RR=13.0; P = 0.040). In summary, Piwi-like 1 and -2 positivity are associated with clinico-pathological factors and survival. Both Piwi-like proteins are suggested as biomarkers for MIBC patients.
Collapse
Affiliation(s)
- Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Rudolf Jung
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Robert Stöhr
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Verena Lieb
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany.
| |
Collapse
|
13
|
Chuang TD, Xie Y, Yan W, Khorram O. Next-generation sequencing reveals differentially expressed small noncoding RNAs in uterine leiomyoma. Fertil Steril 2018; 109:919-929. [PMID: 29778390 PMCID: PMC6445395 DOI: 10.1016/j.fertnstert.2018.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the expression profile of small noncoding RNAs (sncRNAs) in leiomyoma, which has not been investigated to date. DESIGN Laboratory-based investigation. SETTING Academic center. PATIENT(S) Women undergoing hysterectomy for benign indications. INTERVENTION(S) Next-generation sequencing and screening of an sncRNA database with confirmatory analysis by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). MAIN OUTCOME MEASURE(S) Expression profile of sncRNAs in leiomyoma and matched myometrium. RESULT(S) Screening our previously determined RNA sequencing data with the sncRNA database resulted in identification of 15 small nuclear (sn) RNAs, 284 small nucleolar (sno) RNAs, 98 Piwi-interacting (pi) RNAs, 152 transfer (t) RNAs, and 45 ribosomal (r) RNAs, of which 15 snoRNAs, 24 piRNAs, 7 tRNAs, and 6 rRNAs were differentially expressed at a 1.5-fold change cutoff in leiomyoma compared with myometrium. We selected 5 snoRNAs, 4 piRNAs, 1 tRNA, and 1 rRNA that were differentially expressed and confirmed their expression in paired tissues (n = 20) from both phases of the menstrual cycle with the use of qRT-PCR. The results indicated up-regulation of the snoRNAs (SNORD30, SNORD27, SNORA16A, SNORD46, and SNORD56) and down-regulation of the piRNAs (piR-1311, piR-16677, piR-20365, piR-4153), tRNA (TRG-GCC5-1), and rRNA (RNA5SP202) expression in leiomyoma compared with myometrium (P<.05). The pattern of expression of these sncRNAs was similar to RNA sequencing analysis, with no menstrual cycle-dependent differences detected except for SNORD30. Because Argonaute 2 (AGO2) is required for sncRNA-mediated gene silencing, we determined its expression and found greater abundance in leiomyoma. CONCLUSION(S) Our results provide the first evidence for the differential expression of additional classes of sncRNAs and AGO2 in leiomyoma, implicating their roles as a gene regulatory mechanism.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, California
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, California.
| |
Collapse
|
14
|
PIWI family emerging as a decisive factor of cell fate: An overview. Eur J Cell Biol 2017; 96:746-757. [DOI: 10.1016/j.ejcb.2017.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
|
15
|
Karami Madani G, Rad A, Molavi M, Ardalan Khales S, Abbaszadegan MR, Forghanifard MM. Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2017; 49:437-441. [DOI: 10.1007/s12029-017-9985-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Litwin M, Szczepańska-Buda A, Piotrowska A, Dzięgiel P, Witkiewicz W. The meaning of PIWI proteins in cancer development. Oncol Lett 2017; 13:3354-3362. [PMID: 28529570 PMCID: PMC5431467 DOI: 10.3892/ol.2017.5932] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a histologically and genetically heterogeneous population of tumor cells that exhibits distinct molecular profiles determined by epigenetic alterations. P-element-induced wimpy testis (PIWI) proteins in complex with PIWI-interacting RNA (piRNA) have been previously demonstrated to be involved in epigenetic regulation in germline cells. Recently, reactivation of PIWI expression, primarily PIWI-like protein 1 and 2, through aberrant DNA methylation resulting in genomic silencing has been identified in various types of tumors. It has been suggested that the PIWI-piRNA complex contributes to cancer development and progression by promoting a stem-like state of cancer cells, or cancer stem cells (CSCs). It has been identified that CSCs represent the cells that have undergone epithelial-mesenchymal transition (EMT) and acquired metastatic capacities. However, the molecular association between the EMT process and the stem-cell state remains unclear. Further extensive characterization of CSCs in individual types of tumors is required to identify specific markers for the heterogeneous population of CSCs and therefore selectively target CSCs. Previous studies indicate a reciprocal regulation between PIWI proteins and a complex signaling network linking markers characterized for CSCs and transcription factors involved in EMT. In the present review, studies of PIWI function are summarized, and the potential involvement of PIWI proteins in cancer development and progression is discussed.
Collapse
Affiliation(s)
- Monika Litwin
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Poland.,Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland
| | - Anna Szczepańska-Buda
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Poland.,Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wrocław Medical University, 50-368 Wrocław, Poland.,Department of Physiotherapy and Occupational Therapy in Conservative and Interventional Medicine, 51-612 Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Poland
| |
Collapse
|
17
|
Krishnan AR, Korrapati A, Zou AE, Qu Y, Wang XQ, Califano JA, Wang-Rodriguez J, Lippman SM, Hovell MF, Ongkeko WM. Smoking status regulates a novel panel of PIWI-interacting RNAs in head and neck squamous cell carcinoma. Oral Oncol 2016; 65:68-75. [PMID: 28109471 DOI: 10.1016/j.oraloncology.2016.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/17/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Smoking remains a primary etiological factor in head and neck squamous cell carcinoma (HNSCC). Given that non-coding RNAs (ncRNAs), including PIWI-interacting RNAs (piRNAs), have emerged as mediators of initiation and progression in head and neck malignancies, we undertook a global study of piRNA expression patterns in smoking-associated HNSCC. MATERIALS AND METHODS Using RNA-sequencing data from 256 current smoker and lifelong nonsmoker samples in The Cancer Genome Atlas (TCGA), we analyzed the differential expression patterns of 27,127 piRNAs across patient cohorts stratified by tobacco use, with HPV16 status and tumor status taken into account. We correlated their expression to clinical characteristics and to smoking-induced alterations of PIWI proteins, the functional counterparts of piRNAs. Finally, we correlated our identified piRNAs and PIWI proteins to known chromosomal aberrations in HNSCC to understand their wider-ranging genomic effects. RESULTS AND CONCLUSION Our analyses implicated a 13-member piRNA panel in smoking-related HNSCC, among which NONHSAT123636 and NONHSAT113708 associated with tumor stage, NONHSAT067200 with patient survival, and NONHSAT081250 with smoking-altered PIWIL1 protein expression. 6 piRNAs as well as PIWIL1 correlated with genomic alterations common to HNSCC, including TP53 mutation, TP53-3p co-occurrence, and 3q26, 8q24, and 11q13 amplification. Collectively, our findings provide novel insights into the etiology-specific piRNA landscape of smoking-induced HNSCC.
Collapse
Affiliation(s)
- Aswini R Krishnan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Avinaash Korrapati
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Angela E Zou
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Yuanhao Qu
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Jessica Wang-Rodriguez
- Veterans Administration Medical Center and Department of Pathology, University of California, San Diego, La Jolla, CA, United States.
| | - Scott M Lippman
- Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States.
| | - Melbourne F Hovell
- Graduate School of Public Health, San Diego State University, San Diego, CA, United States.
| | - Weg M Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
18
|
Abstract
Understanding the molecular mechanisms behind the capacity of cancer cells to adapt to the tumor microenvironment and to anticancer therapies is a major challenge. In this context, cancer is believed to be an evolutionary process where random mutations and the selection process shape the mutational pattern and phenotype of cancer cells. This article challenges the notion of randomness of some cancer-associated mutations by describing molecular mechanisms involving stress-mediated biogenesis of mRNA-derived small RNAs able to target and increase the local mutation rate of the genomic loci they originate from. It is proposed that the probability of some mutations at specific loci could be increased in a stress-specific and RNA-depending manner. This would increase the probability of generating mutations that could alleviate stress situations, such as those triggered by anticancer drugs. Such a mechanism is made possible because tumor- and anticancer drug-associated stress situations trigger both cellular reprogramming and inflammation, which leads cancer cells to express molecular tools allowing them to “attack” and mutate their own genome in an RNA-directed manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, Lyon, France
| |
Collapse
|