1
|
Ramanujam H, Palaniyandi K. Tuberculosis in wild animals in India. Vet Res Commun 2024; 48:2007-2027. [PMID: 38771446 DOI: 10.1007/s11259-024-10401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
India is renowned for its complex megadiverse ecosystems and abundant biodiversity. Bovine tuberculosis (bTB) often remains synonymous with Mycobacterium bovis infection in cattle. The domain of tuberculosis (TB) among wild animals, induced by members of the Mycobacterium tuberculosis complex organisms (MTBC), is often underexplored and underreported in India. Within this context, instances of wild animal tuberculosis (wTB) have manifested across both captive and free-roaming animals. The sources contributing to wTB in animals can be human, animal, or environmental factors, thus illuminating the complex transmission pathways. The diagnosis of wTB continues to pose a formidable challenge, a consequence of the expansive taxonomic diversity in both the host and the pathogen. Complications inherent in acquiring samples from wildlife, the absence of standardized diagnostic protocols, limited insights into infection prevalence, and resource constraints compound diagnosis. Amidst these, adopting the comprehensive One Health paradigm surfaces as an imperative, accentuating the interconnectedness bridging human, animal, and environmental health. Recognizing key stakeholders and fostering intersectoral collaboration to provide enhanced diagnostic techniques driven by skilled personnel and advanced infrastructure play pivotal roles in a comprehensive strategy. Additionally, leveraging vaccination efforts contributes to effective control. A national wTB surveillance program is a cornerstone, ensuring an integrated and holistic approach to disease management. Through this review, we delve into the current landscape of wTB in India, unveiling its multifaceted challenges, and further explore the multifarious strategies that the One Health approach proffers in this dynamic endeavor.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy Road, Chennai, 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy Road, Chennai, 600031, India.
| |
Collapse
|
2
|
Yadav J, Phogat S, Chaudhary D, Jaiwal R, Jaiwal PK. Synthesis of plant-based, self-adjuvanted, dual antigen specific to Mycobacterium tuberculosis as a novel tuberculosis subunit vaccine that elicits immunogenicity in rabbit. Biotechnol Lett 2023; 45:703-717. [PMID: 37074553 PMCID: PMC10113735 DOI: 10.1007/s10529-023-03371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES The only approved vaccine, Bacillus Calmette Guérin (BCG) used in global tuberculosis (TB) immunization programmes has been very effective in childhood TB but not in adult pulmonary and latent TB. Moreover, the emergence of multi-drug resistance-TB cases demands either to increase efficiency of BCG or replace it with the one with improved efficacy. RESULTS A novel combination of two most effective secreted protein antigens specific for Mycobacterium tuberculosis (Mtb), ESAT-6 and MPT-64 (but not present in BCG strains) fused with a cholera toxin B subunit (CTB) and tagged with 6xHis was expressed for the first time in Escherichia coli as well as in transgenic cucumber plants developed using Agrobacterium tumefaciens-mediated transformation. The recombinant fusion protein (His6x.CTB-ESAT6-MPT64) expressed in E. coli was purified by a single-step affinity chromatography and used to produce polyclonal antibodies in rabbit. The transgenic cucumber lines were confirmed by polymerase chain reaction (PCR), Southern blot hybridization, reverse transcriptase PCR (RT-PCR), real-time PCR (qRT-PCR) and expression of recombinant fusion protein by western blot analysis and its quantification by enzyme-linked immunosorbent assay (ELISA). A maximum value of the fusion protein, 478 ng.g-1 (0.030% of the total soluble protein) was obtained in a transgenic cucumber line. Rabbit immunized orally showed a significant increase in serum IgG levels against the fusion protein as compared to the non-immunized rabbit. CONCLUSIONS Stable expression of Mtb antigens with CTB in edible cucumber plants (whose fruits are eaten raw) in sufficient amount possibly would facilitate development of a safe, affordable and orally delivered self-adjuvanted, novel dual antigen based subunit vaccine against TB.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Supriya Phogat
- Department of Zoology, M. D. University, Rohtak, 124001, India
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India
| | | | - Ranjana Jaiwal
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India.
| |
Collapse
|
3
|
Permyakova NV, Marenkova TV, Belavin PA, Zagorskaya AA, Sidorchuk YV, Deineko EV. CRISPR/Cas9-Mediated Targeted DNA Integration: Rearrangements at the Junction of Plant and Plasmid DNA. Int J Mol Sci 2022; 23:8636. [PMID: 35955778 PMCID: PMC9369344 DOI: 10.3390/ijms23158636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We studied the presence and extent of DNA rearrangements at the junction of plant and transgenic DNA in five lines of Arabidopsis thaliana suspension cells carrying a site-specific integration of target genes. Two types of templates were used to obtain knock-ins, differing in the presence or absence of flanking DNA homologous to the target site in the genome. For the targeted insertion, we selected the region of the histone H3.3 gene with a very high constitutive level of expression. Our studies showed that all five obtained knock-in cell lines have rearrangements at the borders of the integrated sequence. Significant rearrangements, about 100 or more bp from the side of the right flank, were found in all five plant lines. Reorganizations from the left flank at more than 17 bp were found in three out of five lines. The fact that rearrangements were detected for both variants of the knock-in template (with and without flanks) indicates that the presence of flanks does not affect the occurrence of mutations.
Collapse
Affiliation(s)
- Natalya V. Permyakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia; (T.V.M.); (P.A.B.); (A.A.Z.); (Y.V.S.); (E.V.D.)
| | | | | | | | | | | |
Collapse
|
4
|
Wang XJ, Luo Q, Li T, Meng PH, Pu YT, Liu JX, Zhang J, Liu H, Tan GF, Xiong AS. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac076. [PMID: 38239769 PMCID: PMC10795576 DOI: 10.1093/hr/uhac076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2024]
Abstract
Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hong Meng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Yu-Ting Pu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Gerszberg A, Hnatuszko-Konka K. Compendium on Food Crop Plants as a Platform for Pharmaceutical Protein Production. Int J Mol Sci 2022; 23:3236. [PMID: 35328657 PMCID: PMC8951019 DOI: 10.3390/ijms23063236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in crop biotechnology related to the availability of molecular tools and methods developed for transformation and regeneration of specific plant species have been observed. As a consequence, the interest in plant molecular farming aimed at producing the desired therapeutic proteins has significantly increased. Since the middle of the 1980s, recombinant pharmaceuticals have transformed the treatment of many serious diseases and nowadays are used in all branches of medicine. The available systems of the synthesis include wild-type or modified mammalian cells, plants or plant cell cultures, insects, yeast, fungi, or bacteria. Undeniable benefits such as well-characterised breeding conditions, safety, and relatively low costs of production make plants an attractive yet competitive platform for biopharmaceutical production. Some of the vegetable plants that have edible tubers, fruits, leaves, or seeds may be desirable as inexpensive bioreactors because these organs can provide edible vaccines and thus omit the purification step of the final product. Some crucial facts in the development of plant-made pharmaceuticals are presented here in brief. Although crop systems do not require more strictly dedicated optimization of methodologies at any stages of the of biopharmaceutical production process, here we recall the complete framework of such a project, along with theoretical background. Thus, a brief review of the advantages and disadvantages of different systems, the principles for the selection of cis elements for the expression cassettes, and available methods of plant transformation, through to the protein recovery and purification stage, are all presented here. We also outline the achievements in the production of biopharmaceuticals in economically important crop plants and provide examples of their clinical trials and commercialization.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
7
|
Permyakova NV, Marenkova TV, Belavin PA, Zagorskaya AA, Sidorchuk YV, Uvarova EA, Kuznetsov VV, Rozov SM, Deineko EV. Assessment of the Level of Accumulation of the dIFN Protein Integrated by the Knock-In Method into the Region of the Histone H3.3 Gene of Arabidopsis thaliana. Cells 2021; 10:2137. [PMID: 34440906 PMCID: PMC8394151 DOI: 10.3390/cells10082137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We investigated the possibility of obtaining a suspension cell culture of Arabidopsis thaliana carrying a site-specific integration of a target gene encoding modified human interferon (dIFN) using endonuclease Cas9. For the targeted insertion, we selected the region of the histone H3.3 gene (HTR5) with a high constitutive level of expression. Our results indicated that Cas9-induced DNA integration occurred with the highest frequency with the construction with donor DNA surrounded by homology arms and Cas9 endonuclease recognition sites. Among the monoclones of the four cell lines with knock-in studied, there is high heterogeneity in the level of expression and accumulation of the target protein. The accumulation of dIFN protein in cell lines with targeted insertions into the target region of the HTR5 gene does not statistically differ from the level of accumulation of dIFN protein in the group of lines with random integration of the transgene. However, one among the monoclonal lines with knock-in has a dIFN accumulation level above 2% of TSP, which is very high.
Collapse
Affiliation(s)
- Natalya V. Permyakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, 630090 Novosibirsk, Russia; (T.V.M.); (P.A.B.); (A.A.Z.); (Y.V.S.); (E.A.U.); (V.V.K.); (S.M.R.); (E.V.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
9
|
Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? Int J Mol Sci 2020; 21:ijms21144854. [PMID: 32659946 PMCID: PMC7402345 DOI: 10.3390/ijms21144854] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.
Collapse
|
10
|
Saba K, Sameeullah M, Asghar A, Gottschamel J, Latif S, Lössl AG, Mirza B, Mirza O, Waheed MT. Expression of ESAT-6 antigen from Mycobacterium tuberculosis in broccoli: An edible plant. Biotechnol Appl Biochem 2020; 67:148-157. [PMID: 31898361 DOI: 10.1002/bab.1867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) is one of the major infectious diseases caused by Mycobacterium tuberculosis. The development of an effective and economical vaccine for controlling TB is essential especially for developing countries. Edible plants can serve as biofactories to produce vaccine antigens. In this study, 6 kDa early secretory antigenic target (ESAT-6) of M. tuberculosis was expressed in Brassica oleracea var. italica via Agrobacterium-mediated transformation to facilitate oral delivery of antigen. ESAT-6 gene was cloned using Gateway® cloning strategy. Transformation and presence of transgene was confirmed through PCR. Expression level of transgene was calculated via quantitative real-time PCR (qRT-PCR) and the maximum integrated transgene number was two. Maximum amount of total soluble fraction of ESAT-6 was evaluated by immunoblotting, estimated to accumulate up to 0.5% of total soluble protein. The recombinant ESAT-6 protein was further purified and detected using silver staining and Western blotting. ESAT-6 protein induced humoral immune response in mice immunized orally and subcutaneously. The expression of M. tuberculosis antigen in edible plants could aid in the development of cost-effective and oral delivery of an antigen-based subunit vaccine against TB. To the best our knowledge, it is the first report of expression of a vaccine antigen in broccoli.
Collapse
Affiliation(s)
- Kiran Saba
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Golkoy Campus, Bolu, Turkey
| | - Asba Asghar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Johanna Gottschamel
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Sara Latif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Andreas Günter Lössl
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
11
|
Saba K, Gottschamel J, Younus I, Syed T, Gull K, Lössl AG, Mirza B, Waheed MT. Chloroplast-based inducible expression of ESAT-6 antigen for development of a plant-based vaccine against tuberculosis. J Biotechnol 2019; 305:1-10. [PMID: 31454508 DOI: 10.1016/j.jbiotec.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis causes tuberculosis in humans. The major disease burden of tuberculosis lies in developing countries. Lack of an effective vaccine for adults is one of the major hurdles for controlling this deadly disease. In the present study, 6 kDa early secretory antigenic target (ESAT-6) of M. tuberculosis was inducibly expressed in chloroplasts of Nicotiana tabacum. The expression of ESAT-6 in chloroplasts was controlled by T7 promoter that was activated by nuclear-generated signal peptide. Tobacco plants, containing nuclear component, were transformed via biolistic bombardment with pEXP-T7-ESAT-6 obtained by Gateway® cloning. Transformation and homoplasmic status of transplastomic plants was confirmed by polymerase chain reaction and Southern blotting. Plants were induced for protein expression by spraying with 5% ethanol for 1 day, 3 days, 7 days and 10 days. ESAT-6 protein was detected by immunoblot analysis and maximum protein was obtained for 10 days induced plants that was estimated to accumulate up to 1.2% of total soluble fraction of protein. Transplastomic plants showed completely normal morphology. Transplastomic and untransformed plants became slightly chlorotic upon prolonged exposure to ethanol until 10 days. Taken together, this data could help in the development of an antigen-based subunit vaccine against tuberculosis.
Collapse
Affiliation(s)
- Kiran Saba
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Johanna Gottschamel
- University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Iqra Younus
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Tahira Syed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Kehkshan Gull
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Andreas Günter Lössl
- University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
12
|
Palmer MV, Thacker TC. Use of the Human Vaccine, Mycobacterium bovis Bacillus Calmette Guérin in Deer. Front Vet Sci 2018; 5:244. [PMID: 30349823 PMCID: PMC6186790 DOI: 10.3389/fvets.2018.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The only vaccine ever approved for human tuberculosis was developed a century ago from an isolate of Mycobacterium bovis derived from a tuberculous cow. Initial safety and efficacy studies of an attenuated version of this isolate were conducted in cattle and other animals. In 1921 the first human, an infant, was orally dosed with this attenuated strain that came to be known as M. bovis bacillus Calmette-Guérin (BCG); named for Albert Calmette and Camille Guérin, the two French scientists that developed the strain. Since 1921, billions of people have been vaccinated with BCG making it the oldest, most widely used, and safest vaccine in use today. It is also the tuberculosis vaccine most studied for use in wildlife, including deer. While BCG vaccination of deer may not reliably prevent infection, it consistently decreases lesion severity, minimizing large, necrotic lesions, which often contain large numbers of bacilli. It is believed that decreased lesion severity correlates with decreased disease transmission; however, this hypothesis remains to be proven. Safety studies in white-tailed deer show BCG may persist in lymphoid tissues for up to 12 months; a factor to be considered in deer used for food. Beyond efficacy and safety, methods of vaccine delivery to free-ranging deer are also under investigation, both in the laboratory and in the field. The ideal delivery method is effective, efficient and safe for non-target species, including livestock. Ingestion of BCG by cattle is of special concern as such cattle may present as "false positives" using currently approved diagnostic methods, thus interfering with efforts by animal health agencies to monitor cattle for tuberculosis. An effective BCG vaccine for deer would be of value in regions where free-ranging deer represent a potential source of M. bovis for livestock. Such a vaccine would also be beneficial to farmed deer where M. bovis represents a serious threat to trade and productivity.
Collapse
Affiliation(s)
- Mitchell V. Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | |
Collapse
|
13
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Bao L, Wei G, Gan H, Ren X, Ma R, Wang YI, Lv H. Immunogenicity of varicella zoster virus glycoprotein E DNA vaccine. Exp Ther Med 2016; 11:1788-1794. [PMID: 27168804 DOI: 10.3892/etm.2016.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study a eukaryotic expression vector of varicella zoster virus (VZV) glycoprotein E (gE) was constructed and enabled to express in COS7 cells. Furthermore, a specific immune response against the VZV gE eukaryotic expression plasmid was induced in BALB/c mice. The VZV gE gene was amplified using polymerase chain reaction (PCR) and cloned into a eukaryotic expression vector, pcDNA3.1. The recombinant vector was subsequently transfected into COS7 cells using a liposome transfection reagent. The recombinant protein was instantaneously expressed by the transfected cells, as detected by immunohistochemistry, and the recombinant pcDNA-VZV gE plasmid was subsequently used to immunize mice. Tissue expression levels were analyzed by reverse transcription-PCR. In addition, the levels of serum antibodies and spleen lymphocyte proliferation activity were investigated. The amplified target gene included the full-length gE gene (~2.7 kb), and the recombinant expression vector induced gE expression in COS7 cells. In addition, the expression plasmid induced sustained expression in vivo following immunization of mice. Furthermore, the plasmid was capable of inducing specific antibody production and effectively stimulating T cell proliferation. Effective humoral and cellular immunity was triggered in the mice immunized with the VZV gE eukaryotic expression vector. The results of the present study laid the foundation for future research into a VZV DNA vaccine.
Collapse
Affiliation(s)
- Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Guomin Wei
- Department of Respiratory, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Hongmei Gan
- Department of Intensive Care Unit, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Xianhua Ren
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Ruilian Ma
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Y I Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Haijun Lv
- Department of Scientific Research, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| |
Collapse
|
15
|
Peterson AA. Accumulation of recombinant fusion protein — secretory analog of Ag85B and ESAT6 Mycobacterium tuberculosis proteins – in transgenic Lemna minor L. Plants. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|