1
|
Wang Y, Dong H, Dong T, Zhao L, Fan W, Zhang Y, Yao W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem 2024; 479:1149-1164. [PMID: 37392343 DOI: 10.1007/s11010-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Health Science Center, Yangtze University, Jingzhou, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Tengyun Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Lulu Zhao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Wen Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
| | - Yu Zhang
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| | - Weiqi Yao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
2
|
Meyhöfer S, Steffen A, Plötze-Martin K, Marquardt JU, Meyhöfer SM, Bruchhage KL, Pries R. Obesity-related Plasma CXCL10 Drives CX3CR1-dependent Monocytic Secretion of Macrophage Migration Inhibitory Factor. Immunohorizons 2024; 8:19-28. [PMID: 38175171 PMCID: PMC10835669 DOI: 10.4049/immunohorizons.2300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is characterized by excessive body fat accumulation and comorbidities such as diabetes mellitus, cardiovascular disease, and obstructive sleep apnea syndrome (OSAS). Both obesity and OSAS are associated with immune disturbance, alterations of systemic inflammatory mediators, and immune cell recruitment to metabolic tissues. Chemokine CXCL10 is an important regulator of proinflammatory immune responses and is significantly increased in patients with severe obesity. This research project aims to investigate the impact of CXCL10 on human monocytes in patients with obesity. We studied the distribution of the CD14/CD16 monocyte subsets as well as their CX3CR1 expression patterns in whole-blood measurements from 92 patients with obesity and/or OSAS with regard to plasma CXCL10 values and individual clinical parameters. Furthermore, cytokine secretion by THP-1 monocytes in response to CXCL10 was analyzed. Data revealed significantly elevated plasma CXCL10 in patients with obesity with an additive effect of OSAS. CXCL10 was found to drive monocytic secretion of macrophage migration inhibitory factor via receptor protein CX3CR1, which significantly correlated with the individual body mass index. Our data show, for the first time, to our knowledge, that CX3CR1 is involved in alternative CXCL10 signaling in human monocytes in obesity-related inflammation. Obesity is a multifactorial disease, and further investigations regarding the complex interplay between obesity-related inflammatory mediators and systemic immune balances will help to better understand and improve the individual situation of our patients.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Jens-Uwe Marquardt
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
3
|
Cheng L, Zhou Z, Li Q, Li W, Li X, Li G, Fan J, Yu L, Yin G. Dendronized chitosan hydrogel with GIT1 to accelerate bone defect repair through increasing local neovascular amount. Bone Rep 2023; 19:101712. [PMID: 37744736 PMCID: PMC10511783 DOI: 10.1016/j.bonr.2023.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Bone defects have long been a major healthcare issue because of the difficulties in regenerating bone mass volume and the high cost of treatment. G protein-coupled receptor kinase 2 interacting protein 1 (GIT1) has been proven to play an important role both in vascular development and in bone fracture healing. In this study, a type of thermoresponsive injectable hydrogel from oligoethylene glycol-based dendronized chitosan (G1-CS) was loaded with GIT1-plasmids (G1-CS/GIT1), and used to fill unicortical bone defects. RT-PCR analysis confirmed that G1-CS/GIT1 enhanced DNA transfection in MSCs both in vitro and in vivo. From the results of micro-CT, RT-PCR and histological analysis, it can be concluded that G1-CS/GIT1 accelerated the bone healing rate and increased the amount of neovascularization around the bone defects. In addition, an adeno-associated virus (AAV)-GIT1 was constructed to transfect mesenchymal stem cells. The results of capillary tube formation assay, immunofluorescence staining and western blot analysis proved that high expression of GIT1 induces mesenchymal stem cells to differentiate into endothelial cells. RT-PCR analysis and capillary tube formation assay confirmed that the Notch signaling pathway was activated in the differentiation process. Overall, we developed an efficient strategy through combination of injectable hydrogel and G1T1 for bone tissue engineering.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, Jiangsu Province 221000, China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Zhimin Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Qingqing Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Wen Li
- School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Xin Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, Jiangsu Province 221000, China
| | - Gen Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, Jiangsu Province 221000, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Lipeng Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| |
Collapse
|
4
|
Park C, Lee OH, Park JJ, Yoo J, Kwon E, Park JE, Kang BC, Lee DS, Cho J. Self-assembled adipose-derived mesenchymal stem cells as an extracellular matrix component- and growth factor-enriched filler. Front Cell Dev Biol 2023; 11:1219739. [PMID: 37799276 PMCID: PMC10549996 DOI: 10.3389/fcell.2023.1219739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
The clinical application of mesenchymal stem cells (MSCs) is attracting attention due to their excellent safety, convenient acquisition, multipotency, and trophic activity. The clinical effectiveness of transplanted MSCs is well-known in regenerative and immunomodulatory medicine, but there is a demand for their improved viability and regenerative function after transplantation. In this study, we isolated MSCs from adipose tissue from three human donors and generated uniformly sized MSC spheroids (∼100 µm in diameter) called microblocks (MiBs) for dermal reconstitution. The viability and MSC marker expression of MSCs in MiBs were similar to those of monolayer MSCs. Compared with monolayer MSCs, MiBs produced more extracellular matrix (ECM) components, including type I collagen, fibronectin, and hyaluronic acid, and growth factors such as vascular endothelial growth factor and hepatocyte growth factor. Subcutaneously injected MiBs showed skin volume retaining capacity in mice. These results indicate that MiBs could be applied as regenerative medicine for skin conditions such as atrophic scar by having high ECM and bioactive factor expression.
Collapse
Affiliation(s)
- Choa Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ok-Hee Lee
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jin Ju Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jie-Eun Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Gao Y, Yue L, Miao Z, Wang F, Wang S, Luan B, Hao W. The Effect and Possible Mechanism of Cardiac Rehabilitation in Partial Revascularization Performed on Multiple Coronary Artery Lesions. Clin Interv Aging 2023; 18:235-248. [PMID: 36843631 PMCID: PMC9948643 DOI: 10.2147/cia.s398732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose To observe the effect of cardiac rehabilitation (CR) in patients with partial revascularization performed on multiple coronary artery lesions and explore its possible mechanism. Patients and Methods A total of 400 patients with multiple coronary artery lesions were enrolled and randomly divided into a complete revascularization group and a CR group, with 200 cases in each group. Target lesion revascularization was performed radically in the complete revascularization group, while it was partially completed in the CR group, and postoperative CR was performed. All the patients were put under conventional treatment. Left ventricular end diastolic dimension (LVEDD), left ventricular ejection fraction (LVEF), 6-minute walking distance (6-MWD), quality-of-life scores, safety and levels of serum nitric oxide (NO), nitric oxide synthase (NOS), superoxide dismutase (SOD), and vascular endothelial growth factor (VEGF) were evaluated and compared between two groups before and after training. Results There was no significant difference in LVEDD, LVEF, 6-MWD, quality-of-life scores, levels of serum NO, NOS, SOD, and VEGF between two groups before training (p>0.05). 1 year later, compared with the complete revascularization group, the occurrence of major adverse events in the CR group declined (p>0.05); the measurements of LVEDD decreased and LVEF increased (p>0.05), 6-MWD increased significantly (p<0.05), quality-of-life scores were higher (p<0.05), the levels of serum NO, NOS, and SOD increased noticeably, and the levels of serum VEGF decreased significantly in the CR group (p<0.05). There were significant differences within the same group, before and after training (p<0.05). Conclusion Cardiac rehabilitation training, not increase in the incidence of adverse events, is effective and safe after partial revascularization in patients with multiple coronary artery lesions, which has notable clinical advantages in promoting patients' exercise endurance and quality-of-life by improving the nitric oxide synthase system and antioxidant system and reducing the level of VEGF.
Collapse
Affiliation(s)
- Yang Gao
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Ling Yue
- Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhilin Miao
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Fengrong Wang
- Department of Cardiology, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Shuai Wang
- Department of Cardiology, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Bo Luan
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Wenjun Hao
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China,Correspondence: Wenjun Hao, Department of Cardiology, The People’s Hospital of Liaoning Province, NO. 33, Wenyi Road, Shenhe District, Shenyang, Liaoning Province, 110016, People’s Republic of China, Email
| |
Collapse
|
6
|
Kiamehr P, Shahidi M, Samii A, Zaker F. Dual Effects of Resveratrol on the Expression and Secretion of Angiogenic Factors. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:16-30. [PMID: 36397806 PMCID: PMC9653554 DOI: 10.22088/ijmcm.bums.11.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/01/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
Angiogenesis is an essential process in the growth, development, and transition of tumors from dormancy to proliferating state. Resveratrol (RSV), as a natural polyphenolic compound, is claimed to be effective in regulating angiogenesis. This study aimed to evaluate the impact of RSV onthe angiogenesis process in HUVECs (human umbilical vein endothelial cells) alone and co-cultured with Jurkat cells. The effects of RSV on HUVECs and Jurkat cell viability and apoptosis were measured by MTT and Annexin-V/PI methods. HUVECs were co-cultured with pre-treated Jurkat cells and incubated for 24 h, 48 h and 72 h. The angiogenesis process in HUVECs and Jurkat cells alone and in co-culture models was investigated by analyzing the expression of VEGF, VEGFR-2, and Interleukin-8 (IL-8) employing qPCR and ELISA. RSV at low concentration (40 µM) had no significant effects on apoptosis rate of HUVECs, but higher concentrations (80-160 µM) increased apoptosis in co-culture method and HUVECs alone. RSV significantly reduced VEGFR2 and IL-8 gene expression also, IL-8 protein concentration in HUVECs, but the effects of this drug in the HUVECs-Jurkats co-culture were different. Expression of VEGF in Jurkat cells increased following treatment with RSV. RSV had direct anti-angiogenic effects on HUVECs. Unexpectedly its indirect effects were not significant on HUVECs-Jurkats co-culture. Results of our study showed, RSV may be effective in anti-angiogenesis therapy, but in some situations, it may induce angiogenesis. So, appropriate concentrations should achieve to minimize the unpredicted effects of RSV.
Collapse
Affiliation(s)
| | - Minoo Shahidi
- Corresponding Author: Minoo Shahidi Address: Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran. E-mail:
| | | | | |
Collapse
|
7
|
Ge L, Xun C, Li W, Jin S, Liu Z, Zhuo Y, Duan D, Hu Z, Chen P, Lu M. Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. J Nanobiotechnology 2021; 19:380. [PMID: 34802444 PMCID: PMC8607643 DOI: 10.1186/s12951-021-01126-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of EVs from human hypoxic olfactory mucosa MSCs (OM-MSCs) on angiogenesis and its underlying mechanism. EVs were isolated from normoxic (N) OM-MSCs (N-EVs) and hypoxic (H) OM-MSCs (H-EVs) using differential centrifugation and identified by transmission electron microscopy and flow cytometry. In vitro and in vivo, both types of OM-MSC-EVs promoted the proliferation, migration, and angiogenic activities of human brain microvascular endothelial cells (HBMECs). In addition, angiogenesis-stimulatory activity in the H-EV group was significantly enhanced compared to the N-EV group. MicroRNA profiling revealed a higher abundance of miR-612 in H-EVs than in N-EVs, while miR-612 inactivation abolished the N-EV treatment benefit. To explore the roles of miR-612, overexpression and knock-down experiments were performed using a mimic and inhibitor or agomir and antagomir of miR-612. The miR-612 target genes were confirmed using the luciferase reporter assay. Gain- and loss-of-function studies allowed the validation of miR-612 (enriched in hypoxic OM-MSC-EVs) as a functional messenger that stimulates angiogenesis and represses the expression of TP53 by targeting its 3′-untranslated region. Further functional assays showed that hypoxic OM-MSC-EVs promote paracrine Hypoxia-inducible factor 1-alpha (HIF-1α)-Vascular endothelial growth factor (VEGF) signaling in HBMECs via the exosomal miR-612-TP53-HIF-1α-VEGF axis. These findings suggest that hypoxic OM-MSC-EVs may represent a promising strategy for ischemic disease by promoting angiogenesis via miR-612 transfer. ![]()
Collapse
Affiliation(s)
- Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Shengyu Jin
- Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Zuo Liu
- Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Da Duan
- Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China. .,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China. .,Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, People's Republic of China.
| |
Collapse
|
8
|
Lee HN, Choi YY, Kim JW, Lee YS, Choi JW, Kang T, Kim YK, Chung BG. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip. NANO CONVERGENCE 2021; 8:35. [PMID: 34748091 PMCID: PMC8575721 DOI: 10.1186/s40580-021-00285-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 05/05/2023]
Abstract
Kidney organoids derived from the human pluripotent stem cells (hPSCs) recapitulating human kidney are the attractive tool for kidney regeneration, disease modeling, and drug screening. However, the kidney organoids cultured by static conditions have the limited vascular networks and immature nephron-like structures unlike human kidney. Here, we developed a kidney organoid-on-a-chip system providing fluidic flow mimicking shear stress with optimized extracellular matrix (ECM) conditions. We demonstrated that the kidney organoids cultured in our microfluidic system showed more matured podocytes and vascular structures as compared to the static culture condition. Additionally, the kidney organoids cultured in microfluidic systems showed higher sensitivity to nephrotoxic drugs as compared with those cultured in static conditions. We also demonstrated that the physiological flow played an important role in maintaining a number of physiological functions of kidney organoids. Therefore, our kidney organoid-on-a-chip system could provide an organoid culture platform for in vitro vascularization in formation of functional three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- Han Na Lee
- Department of Biomedical Engineering, Sogang University, Seoul, South Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, South Korea
| | - Jin Won Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, South Korea.
| | - Bong Guen Chung
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea.
| |
Collapse
|
9
|
Jiang X, Wu F, Xu Y, Yan JX, Wu YD, Li SH, Liao X, Liang JX, Li ZH, Liu HW. A novel role of angiotensin II in epidermal cell lineage determination: Angiotensin II promotes the differentiation of mesenchymal stem cells into keratinocytes through the p38 MAPK, JNK and JAK2 signalling pathways. Exp Dermatol 2020; 28:59-65. [PMID: 30412649 DOI: 10.1111/exd.13837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/14/2018] [Accepted: 10/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent evidence suggests that angiotensin II (Ang II) plays a role in cutaneous wound healing. Mesenchymal stem cells (MSCs) are known as a rich source of cells that re-establish healed skin. However, the potential impact of Ang II on MSC differentiation into keratinocytes is still unknown. OBJECTIVE The present study was conducted to explore the effect of Ang II on the differentiation of bone marrow-derived MSCs (BM-MSCs) into keratinocytes. METHODS Bone marrow-derived MSCs were isolated from rat bone marrow and cultured. The expression of Ang II type 1 (AT1 ) and type 2 (AT2 ) receptors was examined by immunofluorescence staining. The differentiation of BM-MSCs into keratinocytes was investigated by flow cytometry or/and histological observation. RESULTS The BM-MSCs constitutively expressed both AT1 and AT2 receptors. The differentiation of BM-MSCs into keratinocytes was successfully induced. Interestingly, incubation of BM-MSCs with Ang II further promoted the differentiation of BM-MSCs into keratinocyte, which was abolished by pretreament with losartan, an AT1 receptor antagonist, but not by PD123319, an AT2 receptor antagonist. Moreover, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the Janus-activated kinase (JAK)2 inhibitor AG490 suppressed Ang II-induced differentiation of BM-MSCs into keratinocytes. The phosphoinositide-3 kinase (PI3K) inhibitor wortmannin and MEK1/2 inhibitor U0126 had no effect on BM-MSC differentiation into keratinocytes. CONCLUSIONS Our data demonstrated for the first time that Ang II plays a promotive role in the differentiation of BM-MSC into keratinocytes through the AT1 receptor, and that the p38 MAPK, JNK and JAK2 signalling pathways are involved in this process.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Fan Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Yuan Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Jian-Xin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Yin-Di Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Sheng-Hong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Jun-Xian Liang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Ze-Hua Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Ye B, Weng Y, Lin S, Lin J, Huang Z, Huang W, Cai X. 1,25(OH) 2D 3 Strengthens the Vasculogenesis of Multipotent Mesenchymal Stromal Cells from Rat Bone Marrow by Regulating the PI3K/AKT Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1157-1167. [PMID: 32214801 PMCID: PMC7083642 DOI: 10.2147/dddt.s222244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Background Multipotent mesenchymal stromal cells (MSCs) have recently been reported to promote vasculogenesis by differentiating into endothelial cells and releasing numerous cytokines and paracrine factors. However, due to low cell activity, their potential for clinical application is not very satisfactory. This study aimed to explore the effects and mechanisms of 1,25-dihydroxyvitamin D (1,25(OH)2D3) on the vasculogenesis of MSCs. Methods MSCs were isolated from the femurs and tibias of rats and characterized by flow cytometry. After treatment with different concentrations of 1,25(OH)2D3 (0 µM, 0.1 µM and 1 µM), the proliferation of MSCs was analyzed by Cell Counting Kit-8 (CCK-8), and the migratory capability was measured by Transwell assays and cell scratch tests. Capillary-like structure formation was observed by using Matrigel. Western blotting was used to detect the expression of FLK-1 and vWF to investigate the differentiation of MSCs into endothelial cells. Western blotting and gelatin zymography were used to detect the expression and activities of VEGF, MMP-2 and MMP-9 secreted by MSCs under the influence of 1,25(OH)2D3. Finally, the VDR antagonist pyridoxal-5-phosphate (P5P) and the PI3K/AKT pathway inhibitor LY294002 were utilized to test the phosphorylation levels of key kinases in the PI3K/AKT pathway by Western blotting and the formation of capillary-like structures in Matrigel. Results The proliferation and migratory capability of MSCs and the ability of MSCs to form a tube-like structure in Matrigel were enhanced after treatment with 1,25(OH)2D3. Moreover, MSCs treated with 1,25(OH)2D3 showed high expression of vWF and Flk-1. There was a significant increase in the expression of VEGF, MMP-2 and MMP-9 secreted by MSCs treated with 1,25(OH)2D3, as well as in the activity of MMP-2 and MMP-9. The phosphorylation level of AKT increased with time after 1,25(OH)2D3 treatment, while LY294002 weakened AKT phosphorylation. In addition, the ability to form capillary-like structures was reduced when the VDR and PI3K/AKT pathways were blocked. Conclusion This study confirmed that 1,25(OH)2D3 treatment can strengthen the ability of MSCs to promote vasculogenesis in vitro, and the mechanism may be related to the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yawen Weng
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shuang Lin
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiahui Lin
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhouqing Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Weijian Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueli Cai
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Effect of resveratrol combined with atorvastatin on re-endothelialization after drug-eluting stents implantation and the underlying mechanism. Life Sci 2020; 245:117349. [PMID: 31981632 DOI: 10.1016/j.lfs.2020.117349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/20/2022]
Abstract
AIMS To explore whether the combination of atorvastatins and resveratrol is superior to each individual drug alone regarding re-endothelialization after drug-eluting stents (DESs) implantation. MATERIALS AND METHODS Ninety-four rabbits were randomized into control, atorvastatin, resveratrol, and combined medication groups. Abdominal aorta injury was induced via ballooning, followed by DES implantation. Neointimal formation and re-endothelialization after stent implantation were assessed via optical coherence tomography and scanning electron microscopy. The effects of resveratrol and atorvastatin on bone marrow-derived mesenchymal derived stem cells (BMSCs) were assessed. KEY FINDINGS Compared with the findings in the resveratrol and atorvastatin groups, the neointimal area and mean neointimal thickness were greater in the combined medication group, which also exhibited improved re-endothelialization. Compared with the effects of monotherapy, combined treatment further protected BMSCs against rapamycin-induced apoptosis and improved cell migration. Combined medication significantly upregulated Akt, p-Akt, eNOS, p-eNOS, and CXCR4 expression in BMSCs compared with the effects of monotherapy, and these effects were abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. SIGNIFICANCE The combination of atorvastatin and resveratrol has the potential of accelerating re-endothelialization after stent implantation, reducing the risk of thrombosis and improving the safety of DESs.
Collapse
|
12
|
Gao L, Mei S, Zhang S, Qin Q, Li H, Liao Y, Fan H, Liu Z, Zhu H. Cardio-renal Exosomes in Myocardial Infarction Serum Regulate Proangiogenic Paracrine Signaling in Adipose Mesenchymal Stem Cells. Am J Cancer Res 2020; 10:1060-1073. [PMID: 31938051 PMCID: PMC6956822 DOI: 10.7150/thno.37678] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration. However, the molecular mechanisms underlying MSCs activation remain largely unknown, thus hindering their clinical translation. Exosomes are small vesicles that act as intercellular messengers, and their potential for stem cell activation in pathological conditions has not been fully characterized yet. Here, we aim to investigate whether serum exosomes are involved in the remote activation of MSCs after myocardial infarction (MI). Methods: We established MI mouse model by ligating the left anterior descending branch of the coronary artery. Afterwards, serum exosomes were isolated from control (Con Exo) and MI mice (MI Exo) by differential centrifugation. Exosomes were characterized through transmission electron microscopy and nanoparticle tracking analysis. The cell proliferation rate was evaluated by CCK-8 and EdU incorporation assays. Exosomal miRNA and protein levels were assessed using qRT-PCR and western blotting, respectively. VEGF levels in the supernatant and serum were quantified by ELISA. Matrigel plug and tube formation assays were used to evaluate angiogenesis. To explore miR-1956 roles, overexpression and knock-down experiments were performed using mimic and inhibitor, respectively. Finally, miR-1956 target genes were confirmed using the luciferase reporter assay. Results: Both types of exosomes exhibited typical characteristics and could be internalized by adipose-derived MSCs (ADMSCs). MI Exo enhanced ADMSCs proliferation through the activation of ERK1/2. Gain- and loss-of-function studies allowed the validation of miR-1956 (enriched in MI Exo) as the functional messenger that stimulates ADMSCs-mediated angiogenesis and paracrine VEGF signaling, by downregulating Notch-1. Finally, we found that the ischemic myocardium and kidney may be the main sources that release serum exosomes after MI. Conclusions: Cardio-renal exosomes deliver miR-1956 and activate paracrine proangiogenic VEGF signaling in ADMSCs after MI; this process also involves Notch-1, which functions as the core mediator.
Collapse
|
13
|
AT1R-Mediated Apoptosis of Bone Marrow Mesenchymal Stem Cells Is Associated with mtROS Production and mtDNA Reduction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4608165. [PMID: 31772704 PMCID: PMC6854225 DOI: 10.1155/2019/4608165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Angiotensin II (Ang II) is used as an inducer for the differentiation of mesenchymal stem cells (MSCs). Whether the commonly used doses of Ang II for MSC differentiation affect cell apoptosis has not been elucidated. In this study, we investigated the effect of Ang II on the apoptosis of bone marrow MSCs (BMMSCs), and its relations to the activation of Ang II receptor-1- (AT1R-) signaling, mitochondrial ROS (mtROS) generation, and mitochondrial DNA (mtDNA) leakage. AT1R expression in BMMSCs was identified by immunostaining and Western-blotting assays. BMMSC viability was measured by MTT assay following exposure to 1 nM~1 mM Ang II for 12 hours. Cell apoptosis, mtROS, and mtDNA levels were detected by FAM-FLICA® Poly Caspase, MitoSOX™ superoxide, and PicoGreen staining, respectively. The expressions of Bcl2 and Bax were measured by Western-blotting assays. Next, we used losartan to block AT1R-signaling and subsequently measured apoptosis, mtROS, and mtDNA levels, again. The maximum viability of BMMSCs was in response to 100 nM Ang II, after that it began to decrease with the increase of Ang II doses, indicating that Ang II (≧1 μM) may cause apoptosis of BMMSCs. As expected, 1 μM and 10 μM Ang II both caused BMMSC apoptosis. Furthermore, 1 μM and 10 μM Ang II could also induce mtROS generation and cause a marked mtDNA leakage. The application of losartan markedly inhibited Ang II-induced mtROS production, mtDNA leakage, and BMMSC apoptosis. In conclusion, the activation of AT1R-signaling stimulates apoptosis of BMMSCs, which is associated mtROS production and mtDNA reduction.
Collapse
|
14
|
Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep 2019; 39:BSR20190761. [PMID: 31171713 PMCID: PMC6591573 DOI: 10.1042/bsr20190761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
In order to improve the therapeutic effects of mesenchymal stem cell (MSC)-based therapies for a number of intractable neurological disorders, a more favorable strategy to regulate the outcome of bone marrow MSCs (bMSCs) was examined in the present study. In view of the wide range of neurotrophic and neuroprotective effects, Tetramethylpyrazine (TMP), a biologically active alkaloid isolated from the herbal medicine Ligusticum wallichii, was used. It was revealed that treatment with 30–50 mg/l TMP for 4 days significantly increased cell viability, alleviated senescence by suppressing NF-κB signaling, and promoted bMSC proliferation by regulating the cell cycle. In addition, 40–50 mg/l TMP treatment may facilitate the neuronal differentiation of bMSCs, verified in the present study by presentation of neuronal morphology and expression of neuronal markers: microtubule-associated protein 2 (MAP-2) and neuron-specific enolase (NSE). The quantitative real-time polymerase chain reaction (qRT-PCR) revealed that TMP treatment may promote the expression of neurogenin 1 (Ngn1), neuronal differentiation 1 (NeuroD) and mammalian achaete–scute homolog 1 (Mash1). In conclusion, 4 days of 40–50 mg/l TMP treatment may significantly delay bMSC senescence by suppressing NF-κB signaling, and enhancing the self-renewal ability of bMSCs, and their potential for neuronal differentiation.
Collapse
|
15
|
Khaki M, Salmanian AH, Abtahi H, Ganji A, Mosayebi G. Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor -A. Rep Biochem Mol Biol 2018; 6:144-150. [PMID: 29761109 PMCID: PMC5940356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). METHODS VEGF-A was expressed in E. coli BL21 (DE3) and BL21 pLysS competent cells with the pET32a expression vector. Recombinant VEGF-A protein expression was verified by SDS-PAGE and western blotting. Mesenchymal stem cell differentiation to ECs in the presence of VEGF-A was evaluated by flow cytometry and fluorescence microscopy. RESULTS Recombinant VEGF-A was produced in E. coli BL21 (DE3) cells at 0.8 mg/mL concentration. Expression of CD31 and CD 144 was significantly greater, while expression of CD90, CD73, and CD44 was significantly less, in MSCs treated with our recombinant VEGF-A than in those treated with the commercial protein (p < 0.05). CONCLUSION Recombinant VEGF-A expressed in a prokaryotic system can induce MSCs differentiation to ECs and can be used in research and likely therapeutic applications.
Collapse
Affiliation(s)
- Mohsen Khaki
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | | | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Ghasem Mosayebi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
16
|
Lebaschi A, Nakagawa Y, Wada S, Cong GT, Rodeo SA. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics. Ann N Y Acad Sci 2018; 1410:44-56. [PMID: 29265420 DOI: 10.1111/nyas.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Biologics are playing an increasingly significant role in the practice of modern medicine and surgery in general and orthopedics in particular. Cell-based approaches are among the most important and widely used modalities in orthopedic biologics, with mesenchymal stem cells and other multi/pluripotent cells undergoing evaluation in numerous preclinical and clinical studies. On the other hand, fully differentiated endothelial cells (ECs) have been found to perform critical roles in homeostasis of visceral tissues through production of an adaptive panel of so-called "angiocrine factors." This newly discovered function of ECs renders them excellent candidates for novel approaches in cell-based biologics. Here, we present a review of the role of ECs and angiocrine factors in some visceral tissues, followed by an overview of current cell-based approaches and a discussion of the potential applications of ECs in soft tissue repair.
Collapse
Affiliation(s)
- Amir Lebaschi
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Yusuke Nakagawa
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Susumu Wada
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Guang-Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York
| |
Collapse
|
17
|
Sekiya S, Shimizu T. Introduction of vasculature in engineered three-dimensional tissue. Inflamm Regen 2017; 37:25. [PMID: 29259724 PMCID: PMC5725988 DOI: 10.1186/s41232-017-0055-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Background With recent developments in tissue engineering technology, various three-dimensional tissues can be generated now. However, as the tissue thickness increases due to three-dimensionalization, it is difficult to increase the tissue scale without introduction of blood vessels. Main text Many methods for vasculature induction have been reported recently. In this review, we introduced several methods which are adjustable vascularization in three-dimensional tissues according to three steps. First, "selection" provides potents for engineered tissues with vascularization ability. Second, "assembly technology" is used to fabricate tissues as three-dimensional structures and simultaneously inner neo-vasculature. Third, a "perfusion" technique is used for maturation of blood vessels in three-dimensional tissues. In "selection", selection of cells and materials gives the ability to promote angiogenesis in three-dimensional tissues. During the cell assembly step, cell sheet engineering, nanofilm coating technology, and three-dimensional printing technology could be used to produce vascularized three-dimensional tissues. Perfusion techniques to perfuse blood or cell culture medium throughout three-dimensional tissues with a unified inlet and outlet could induce functional blood vessels within retransplantable three-dimensional tissues. Combination of each step technology allows simulation of perivascular microenvironments in target tissues and drive vascularization in three-dimensional tissues. Conclusion The biomimetic microenvironment of target tissues will induce adequate cell-cell interaction, distance, cell morphology, and function within tissues. It could be accelerated for vascularization within three-dimensional tissues and give us the functional tissues. Since vascularized three-dimensional tissues are highly functional, they are expected to contribute to the development of regenerative medicine and drug safety tests for drug discovery in the future.
Collapse
Affiliation(s)
- Sachiko Sekiya
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| |
Collapse
|
18
|
Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 2017; 8:242. [PMID: 29096705 PMCID: PMC5667518 DOI: 10.1186/s13287-017-0697-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) results in dysfunction and irreversible loss of cardiomyocytes and is among the most serious health threats today. Bone marrow mesenchymal stem cells (BMSCs), with their capacity for multidirectional differentiation, low immunogenicity, and high portability, can serve as ideal seed cells in cardiovascular disease therapy. In this review, we examine recent literature concerning the application of BMSCs for the treatment of MI and consider the following aspects: activity of transplanted cells, migration and homing of BMSCs, immunomodulatory and anti-inflammatory effects of BMSCs, anti-fibrotic activity of BMSCs, the role of BMSCs in angiogenesis, and differentiation of BMSCs into cardiomyocyte-like cells and endothelial cells. Each aspect is complementary to the others and together they promote the repair of cardiomyocytes by BMSCs after MI. Although transplantation of BMSCs has enabled new options for MI treatment, the critical issue we must now address is the reduced viability of transplanted BMSCs due to inadequate blood supply, poor nourishment of cells, and generation of free radicals. More clinical trials are needed to prove the therapeutic potential of BMSCs in MI.
Collapse
Affiliation(s)
- Chi Miao
- Cardiovascular Department Of Internal Medicine, The Fourth Affiliated Hospital of China Medical University, Chongshandong Street No.4, Shenyang, 110032, China
| | - Mingming Lei
- Cardiovascular Department Of Internal Medicine, The Fourth Affiliated Hospital of China Medical University, Chongshandong Street No.4, Shenyang, 110032, China
| | - Weina Hu
- Cardiovascular Department Of Internal Medicine, The Fourth Affiliated Hospital of China Medical University, Chongshandong Street No.4, Shenyang, 110032, China
| | - Shuo Han
- Cardiovascular Department Of Internal Medicine, The Fourth Affiliated Hospital of China Medical University, Chongshandong Street No.4, Shenyang, 110032, China
| | - Qi Wang
- Cardiovascular Department Of Internal Medicine, The Fourth Affiliated Hospital of China Medical University, Chongshandong Street No.4, Shenyang, 110032, China.
| |
Collapse
|
19
|
Khaki M, Salmanian AH, Mosayebi G, Baazm M, Babaei S, Molaee N, Abtahi H. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:791-797. [PMID: 28852444 PMCID: PMC5569598 DOI: 10.22038/ijbms.2017.9011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective(s): Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli) system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified by affinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced. Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability.
Collapse
Affiliation(s)
- Mohsen Khaki
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Ghasem Mosayebi
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak. Iran
| | - Saeed Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak. Iran
| | - Neda Molaee
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
20
|
Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 2016; 7:163. [PMID: 27832825 PMCID: PMC5103372 DOI: 10.1186/s13287-016-0418-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been widely proven effective for therapeutic angiogenesis in ischemia animal models as well as clinical vascular diseases. Because of the invasive method, limited resources, and aging problems of adult tissue-derived MSCs, more perinatal tissue-derived MSCs have been isolated and studied as promising substitutable MSCs for cell transplantation. However, fewer studies have comparatively studied the angiogenic efficacy of MSCs derived from different tissues sources. Here, we evaluated whether the in-situ environment would affect the angiogenic potential of MSCs. Methods We harvested MSCs from adult bone marrow (BMSCs), adipose tissue (AMSCs), perinatal umbilical cord (UMSCs), and placental chorionic villi (PMSCs), and studied their “MSC identity” by flow cytometry and in-vitro trilineage differentiation assay. Then we comparatively studied their endothelial differentiation capabilities and paracrine actions side by side in vitro. Results Our data showed that UMSCs and PMSCs fitted well with the minimum standard of MSCs as well as BMSCs and AMSCs. Interestingly, we found that MSCs regardless of their tissue origins could develop similar endothelial-relevant functions in vitro, including producing eNOS and uptaking ac-LDL during endothelial differentiation in spite of their feeble expression of endothelial-related genes and proteins. Additionally, we surprisingly found that BMSCs and PMSCs could directly form tubular structures in vitro on Matrigel and their conditioned medium showed significant proangiogenic bioactivities on endothelial cells in vitro compared with those of AMSCs and UMSCs. Besides, several angiogenic genes were upregulated in BMSCs and PMSCs in comparison with AMSCs and UMSCs. Moreover, enzyme-linked immunosorbent assay further confirmed that BMSCs secreted much more VEGF, and PMSCs secreted much more HGF and PGE2. Conclusions Our study demonstrated the heterogeneous proangiogenic properties of MSCs derived from different tissue origins, and the in vivo isolated environment might contribute to these differences. Our study suggested that MSCs derived from bone marrow and placental chorionic villi might be preferred in clinical application for therapeutic angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0418-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Jing Du
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Ying Chi
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhou Xin Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zong Jin Li
- Beijing Institute of Health and Stem Cells, No. 1, Kangding Road, BDA, Beijing, 100176, China
| | - Jun Jie Cui
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Bao Quan Song
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xue Li
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Shao Guang Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhi Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Zhong Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China. .,Beijing Institute of Health and Stem Cells, No. 1, Kangding Road, BDA, Beijing, 100176, China.
| |
Collapse
|
21
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|