1
|
Lai ZZ, Shen HH, Lee YM. Inhibitory effect of β-escin on Zika virus infection through the interruption of viral binding, replication, and stability. Sci Rep 2023; 13:10014. [PMID: 37340032 DOI: 10.1038/s41598-023-36871-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
β-Escin is a mixture of triterpenoid saponins extracted from horse chestnut seeds that have diverse pharmacological activities, including anti-inflammation, anti-edematous, venotonic, and antiviral effects. In the clinical setting, β-escin is primarily used to treat venous insufficiency and blunt trauma injuries. The anti-Zika virus (ZIKV) activity of β-escin has not been explored. This study investigated the antiviral efficacy of β-escin on ZIKV and dengue virus (DENV) in vitro and then elucidated the underlying mechanism. The inhibitory effects of β-escin on viral RNA synthesis, protein levels, and infection ability were determined using qRT-PCR, Western blotting, and immunofluorescence assays, respectively. To further characterize how β-escin interferes with the viral life cycle, the time-of-addition experiment was performed. An inactivation assay was performed to determine whether β-escin affects ZIKV virion stability. To broaden these findings, the antiviral effects of β-escin on different DENV serotypes were assessed using dose-inhibition and time-of-addition assays. The results showed that β-escin exhibits anti-ZIKV activity by decreasing viral RNA levels, protein expression, progeny yield, and virion stability. β-Escin inhibited ZIKV infection by disrupting viral binding and replication. Furthermore, β-escin demonstrated antiviral activities against four DENV serotypes in a Vero cell model and prophylactic protection against ZIKV and DENV infections.
Collapse
Affiliation(s)
- Zheng-Zong Lai
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, 114, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Hsin-Hsuen Shen
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yen-Mei Lee
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
2
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
3
|
Hazman Ö, Bozkurt MF, Kumral ZB, Savrik M, Sindarov B, Bhaya MN, Büyükben A. The effects of β-escin on inflammation, oxidative stress and Langerhans islet cells in high-fat diet and streptozotocin injection induced experimental type-2 diabetes model. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Wang Z, Yin L, Qi Y, Zhang J, Zhu H, Tang J. Intestinal Flora-Derived Kynurenic Acid Protects Against Intestinal Damage Caused by Candida albicans Infection via Activation of Aryl Hydrocarbon Receptor. Front Microbiol 2022; 13:934786. [PMID: 35923391 PMCID: PMC9339982 DOI: 10.3389/fmicb.2022.934786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Colonization of the intestinal tract by Candida albicans (C. albicans) can lead to invasive candidiasis. Therefore, a functional intestinal epithelial barrier is critical for protecting against invasive C. albicans infections. We collected fecal samples from patients with Candida albicans bloodstream infection and healthy people. Through intestinal flora 16sRNA sequencing and intestinal metabolomic analysis, we found that C. albicans infection resulted in a significant decrease in the expression of the metabolite kynurenic acid (KynA). We used a repeated C. albicans intestinal infection mouse model, established following intake of 3% dextran sulfate sodium salt (DSS) for 9 days, and found that KynA, a tryptophan metabolite, inhibited inflammation, promoted expression of intestinal tight junction proteins, and protected from intestinal barrier damage caused by invasive Candida infections. We also demonstrated that KynA activated aryl hydrocarbon receptor (AHR) repressor in vivo and in vitro. Using Caco-2 cells co-cultured with C. albicans, we showed that KynA activated AHR, inhibited the myosin light chain kinase-phospho-myosin light chain (MLCK-pMLC) signaling pathway, and promoted tristetraprolin (TTP) expression to alleviate intestinal inflammation. Our findings suggest that the metabolite KynA which is differently expressed in patients with C. albicans infection and has a protective effect on the intestinal epithelium, via activating AHR, could be explored to provide new potential therapeutic strategies for invasive C. albicans infections.
Collapse
Affiliation(s)
- Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yue Qi
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jiali Zhang
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Haiyan Zhu,
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Jianguo Tang,
| |
Collapse
|
5
|
Aescin Protects against Experimental Benign Prostatic Hyperplasia and Preserves Prostate Histomorphology in Rats via Suppression of Inflammatory Cytokines and COX-2. Pharmaceuticals (Basel) 2022; 15:ph15020130. [PMID: 35215244 PMCID: PMC8880638 DOI: 10.3390/ph15020130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Benign prostatic hyperplasia (BPH) is the most common urogenital condition in aging males, while inflammation and tissue proliferation constitute the main pathophysiological factors. The adverse effects of currently available BPH medications limit patient compliance. We tested the protective effect of aescin against the development of BPH in rats. Methods: A total of 18 male Wistar rats were divided into 3 groups: control (sesame oil 1 mL/kg, s.c.); BPH (testosterone oenanthate 3 mg/kg, s.c., in sesame oil), and BPH-aescin rats (testosterone oenanthate 3 mg/kg, s.c. + aescin 10 mg/kg/day, p.o.). All treatments continued for 4 weeks. Serum and prostatic samples were harvested for biochemical and histopathological examination. Results: Induction of BPH by testosterone increased the prostate weight and prostate weight index, serum testosterone, prostate expression of inflammatory (IL-1β, TNF-α, and COX-2), and proliferative markers (PCNA and TGF-β1). Concurrent treatment with aescin decreased the testosterone-induced increase in prostatic IL-1β, TNF-α, and COX-2 expression by 47.9%, 71.2%, and 64.4%, respectively. Moreover, aescin reduced the prostatic proliferation markers TGF-β1 and PCNA by 58.3% and 71.9%, respectively, and normalized the prostate weight. Conclusion: The results of this study showed, for the first time, that aescin protected against the development of experimental BPH in rats via its anti-inflammatory and antiproliferative effects. These findings warrant further studies to clinically repurpose aescin in the management of BPH.
Collapse
|
6
|
Ali FEM, Ahmed SF, Eltrawy AH, Yousef RS, Ali HS, Mahmoud AR, Abd-Elhamid TH. Pretreatment with Coenzyme Q10 Combined with Aescin Protects against Sepsis-Induced Acute Lung Injury. Cells Tissues Organs 2021; 210:195-217. [PMID: 34280918 DOI: 10.1159/000516192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1β and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Salwa F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reda S Yousef
- Department of Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Tarek H Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Omi K, Matsuo Y, Ueda G, Aoyama Y, Kato T, Hayashi Y, Imafuji H, Saito K, Tsuboi K, Morimoto M, Ogawa R, Takahashi H, Takiguchi S. Escin inhibits angiogenesis by suppressing interleukin‑8 and vascular endothelial growth factor production by blocking nuclear factor‑κB activation in pancreatic cancer cell lines. Oncol Rep 2021; 45:55. [PMID: 33760162 PMCID: PMC7962110 DOI: 10.3892/or.2021.8006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PaCa) is one of the most aggressive types of cancer. Thus, the development of new and more effective therapies is urgently required. Escin, a pentacyclic triterpenoid from the horse chestnut, has been reported to exhibit antitumor potential by reducing cell proliferation and blocking the nuclear factor‑κB (NF‑κB) signaling pathway in several types of cancer. Our previous study reported that NF‑κB enhanced the secretion of interleukin (IL)‑8 and vascular endothelial growth factor (VEGF), thereby inducing angiogenesis in PaCa cell lines. In the present study, it was examined whether escin inhibited angiogenesis by blocking NF‑κB activation in PaCa. It was initially confirmed that escin, at concentrations >10 µM, significantly inhibited the proliferation of several PaCa cell lines. Next, using immunocytochemical staining, it was found that escin inhibited the nuclear translocation of NF‑κB. Furthermore, ELISA confirmed that NF‑κB activity in the escin‑treated PaCa cells was significantly inhibited and reverse transcription‑quantitative PCR showed that the mRNA expression levels of tumor necrosis factor‑α‑induced IL‑8 and VEGF were significantly suppressed following escin treatment in the PaCa cell lines. ELISA also showed that escin decreased the secretion of IL‑8 and VEGF from the PaCa cells. Furthermore, tube formation in immortalized human endothelial cells was inhibited following incubation with the supernatants from escin‑treated PaCa cells. These results indicated that escin inhibited angiogenesis by reducing the secretion of IL‑8 and VEGF by blocking NF‑κB activity in PaCa. In conclusion, escin could be used as a novel molecular therapy for PaCa.
Collapse
Affiliation(s)
- Kan Omi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Goro Ueda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshinaga Aoyama
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Tomokatsu Kato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yuichi Hayashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroyuki Imafuji
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kenta Saito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ken Tsuboi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Mamoru Morimoto
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
8
|
Gallelli L, Cione E, Wang T, Zhang L. Glucocorticoid-Like Activity of Escin: A New Mechanism for an Old Drug. Drug Des Devel Ther 2021; 15:699-704. [PMID: 33658760 PMCID: PMC7917317 DOI: 10.2147/dddt.s297501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Saponins are a group of compounds used in clinical practice in the management of several diseases. Escin is a natural mixture of triterpene saponins which mainly consist of several isoforms, in which the α- and β-escin are predominant. β-escin is the major active compound that exerts a therapeutic effect by relieving tissue edema, promoting venous drainage, and reducing inflammation. In this review, we describe the features of its glucocorticoid-like activity that could explain its clinical effects. Using PubMed, Embase Cochrane library and reference lists for articles published until October 01, 2020, we documented that escin is likely able to exert its anti-inflammatory and anti-edematous effects through a glucocorticoid-like activity, but without the development of glucocorticoid-like adverse drug reactions.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Health Science, School of Medicine, Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, Catanzaro, Italy
- Research Center FAS@UMG, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Rende, 87036, CS, Italy
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, People’s Republic of China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, People’s Republic of China
| |
Collapse
|
9
|
Zhang L, Li X, Ying T, Wang T, Fu F. The Use of Herbal Medicines for the Prevention of Glucocorticoid-Induced Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:744647. [PMID: 34867788 PMCID: PMC8633877 DOI: 10.3389/fendo.2021.744647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids are drugs that are widely used to suppress inflammation and the activation of the immune system. However, the prolonged use or at high doses of glucocorticoid can result in adverse side effects including osteoporosis, bone loss, and an increased risk of fracture. A number of compounds derived from natural plant sources have been reported to exert anti-inflammatory activity by interacting with the glucocorticoid receptor (GR), likely owing to their chemical similarity to glucocorticoids, or by regulating GR, without a concomitant risk of treatment-related side effects such as osteoporosis. Other herbal compounds can counteract the pathogenic processes underlying glucocorticoid-induced osteoporosis (GIOP) by regulating homeostatic bone metabolic processes. Herein, we systematically searched the PubMed, Embase, and Cochrane library databases to identify articles discussing such compounds published as of May 01, 2021. Compounds reported to exert anti-inflammatory glucocorticoid-like activity without inducing GIOP include escin, ginsenosides, and glycyrrhizic acid, while compounds reported to alleviate GIOP by improving osteoblast function or modulating steroid hormone synthesis include tanshinol and icariin.
Collapse
|
10
|
Idris S, Mishra A, Khushtar M. Phytochemical, ethanomedicinal and pharmacological applications of escin from Aesculus hippocastanum L. towards future medicine. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0115/jbcpp-2019-0115.xml. [PMID: 32649293 DOI: 10.1515/jbcpp-2019-0115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Abstract
Medicinal plants are used from ancient times for treatment of various ailments. Aesculus hippocastanum (Horse chestnut), is the popular and most valuable tree native to the South East Europe. It's seed extracts and their concentrates contain phytocompounds like flavonoids, polyphenols, triterpenoid saponin glycosides (escin), epicatechin, tannins, kaempferol, esculin, fraxin, carbohydrate, essential fatty acids (linoleic acid), oleic acid and purine bases (adenine and guanine). Due to these vital phyto-constituents, horse chestnut is used in phytomedicine for the prevention and treatment of diverse disorders as in venous congestion in leg ulcers, bruises, arthritis, rheumatism, diarrhoea, phlebitis etc. We collected the pharmacological applications of Aesculus hippocastanum L. extracts and escin as the cheif bioactive compound and their uses in traditionally and clinically for the management of various disorders. This review describes the efficacy of A. hippocastanum L. extracts and their bioactive compounds. So in the furtue this plant may be useful for the alternative treatment measure for various ailments via incorporating either extract or escin into novel delivery systems for improving the social health in future and would provide improved quality of life.
Collapse
Affiliation(s)
- Sahar Idris
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Khushtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability. Oncotarget 2018; 7:66865-66879. [PMID: 27589691 PMCID: PMC5341843 DOI: 10.18632/oncotarget.11784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM.
Collapse
|
12
|
Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-γ/NF-κB signal pathway. Oncotarget 2017; 8:55384-55393. [PMID: 28903427 PMCID: PMC5589666 DOI: 10.18632/oncotarget.19526] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Ginsenoside Rg1, the main active compound in Panax ginseng, has already been shown to have anti-inflammatory effects. However, the protective effects of Rg1 on rheumatoid arthritis (RA) remain unclear. The aim of the present study was to investigate the effects and mechanisms of Rg1 on adjuvant-induced arthritis (AIA) in rats. AIA rats were given Rg1 at doses of 5, 10, and 20 mg/kg intraperitoneally for 14 days to observe the anti-arthritic effects. The results showed that Rg1 significantly alleviated joint swelling and injuries. Rg1 can also significantly reduce the level of TNF-α and IL-6, increase PPAR-γ protein expression, inhibit IκBα phosphorylation and NF-κB nuclear translocation in the inflammatory joints of AIA rats and RAW264.7 cells stimulated by lipopolysaccharide (LPS). The results indicate that Rg1 has therapeutic effects on AIA rats, and the mechanism might be associated with its anti-inflammatory effects by up-regulating PPAR-γ and subsequent inhibition of NF-κB signal pathway.
Collapse
|
13
|
Involvement of galanin and galanin receptor 2 in nociceptive modulation in anterior cingulate cortex of normal rats and rats with mononeuropathy. Sci Rep 2017; 7:45930. [PMID: 28378856 PMCID: PMC5381108 DOI: 10.1038/srep45930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
The present study was performed to explore the role of galanin and galanin receptor 2 in nociceptive modulation in anterior cingulate cortex (ACC) of normal rats and rats with mononeuropathy. Intra-ACC injection of galanin induced significant increases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulations in both normal rats and rats with mononeuropathy, the increased HWLs were attenuated significantly by intra-ACC injection of galanin receptor 2 antagonist M871, indicating an involvement of galanin receptor 2 in nociceptive modulation in ACC. Interestingly, the galanin-induced HWL was significant higher in rats with mononeuropathy than that in normal rats tested by Randall Selitto test. Furthermore, both the galanin mRNA expression and galanin content increased significantly in ACC in rats with mononeuropathy than that in normal rats. Moreover, both the mRNA levels of galanin receptor 2 and the content of galanin receptor 2 in ACC increased significantly in rats with mononeuropathy than that in normal rats. These results found that galanin induced antinociception in ACC in both normal rats and rats with mononeuropathy. And there may be plastic changes in the expression of galanin and galanin receptor 2 in rats with mononeuropathy, as well as in the galanin-induced antinociception.
Collapse
|
14
|
Zhang K, Jiang Z, Ning X, Yu X, Xu J, Buzzacott P, Xu W. Endothelia-Targeting Protection by Escin in Decompression Sickness Rats. Sci Rep 2017; 7:41288. [PMID: 28112272 PMCID: PMC5256092 DOI: 10.1038/srep41288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is involved in the pathogenesis of decompression sickness (DCS) and contributes substantively to subsequent inflammatory responses. Escin, the main active compound in horse chestnut seed extract, is well known for its endothelial protection and anti-inflammatory properties. This study aimed to investigate the potential protection of escin against DCS in rats. Escin was administered orally to adult male rats for 7 d (1.8 mg/kg/day) before a simulated air dive. After decompression, signs of DCS were monitored, and blood and pulmonary tissue were sampled for the detection of endothelia related indices. The incidence and mortality of DCS were postponed and decreased significantly in rats treated with escin compared with those treated with saline (P < 0.05). Escin significantly ameliorated endothelial dysfunction (increased serum E-selectin and ICAM-1 and lung Wet/Dry ratio, decreased serum NO), and oxidative and inflammatory responses (increased serum MDA, MPO, IL-6 and TNF-α) (P < 0.05 or P < 0.01). The results suggest escin has beneficial effects on DCS related to its endothelia-protective properties and might be a drug candidate for DCS prevention and treatment.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Zhongxin Jiang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Xiaowei Ning
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Peter Buzzacott
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China.,School of Sports Science, Exercise and Health, the University of Western Australia, Perth, Australia
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Ramos AI, Vaz PD, Braga SS, Silva AMS. Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:348-357. [PMID: 28890859 PMCID: PMC5566205 DOI: 10.3762/bjnano.8.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/06/2017] [Indexed: 05/14/2023]
Abstract
Background: Aescin, a natural mixture of saponins occurring in Aesculus hippocastanum, exhibits important flebotonic properties, being used in the treatment of chronic venous insufficiency in legs. The inclusion of aescin into cyclodextrins (CDs) is a technical solution for its incorporation into the textile of stockings, but details of the physicochemistry of these host-guest systems are lacking. This work investigates the inclusion of aescin into the cavities of two native cyclodextrins, β-CD and γ-CD. Results: The continuous variation method applied to aqueous-phase 1H nuclear magnetic resonance (1H NMR) has demonstrated that the preferred CD/aescin inclusion stoichiometries are 2:1 with β-CD and 1:1 with γ-CD. The affinity constant calculated for γ-CD·aescin was 894 M-1, while for 2β-CD·aescin it was estimated to be 715 M-1. Density functional theory (DFT) calculations on the interaction of aescin Ib with CDs show that an inclusion can indeed occur and it is further demonstrated that the wider cavity of γ-CD is more adequate to accommodate this large guest. ROESY spectroscopy is consistent with the formation of a complex in which the triterpenic moiety of aescin is included into the cavity of γ-CD. The higher stability of this geometry was confirmed by DFT. Furthermore, DFT calculations were applied to determine the chemical shifts of the protons H3 and H5 of the CDs in the optimised structures of the inclusion complexes. The calculated values are very similar to the experimental data, validating the approach made in this study by NMR. Conclusion: The combination of experimental data from aqueous-state NMR measurements and theoretical calculations has demonstrated that γ-CD is the most suitable host for aescin, although the inclusion also occurs with β-CD. The geometry of the γ-CD·aescin complex is characterised by the inclusion of the triterpene segment of aescin into the host cavity.
Collapse
Affiliation(s)
- Ana I Ramos
- CICECO, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Current affiliation: INEGI-FEUP Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro D Vaz
- CQB, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- ISIS Neutron & Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Susana S Braga
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
El-Tanbouly GS, El-Awady MS, Megahed NA, El-Kashef HA, Salem HA. The lipoxin A 4 agonist BML-111 attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:361-368. [PMID: 28035464 DOI: 10.1007/s00210-016-1335-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Sepsis is a systemic inflammatory response associating severe infection leading to multi-organ failure, such as hepatic dysfunction. This study investigates the possible hepatoprotective effect of the lipoxin A4 agonist (BML-111) in cecal ligation and puncture (CLP) model in rats. Pretreatment with BML-111 (1 mg/kg, i.p., 1 h before CLP) protected against CLP-induced mortality after 24 h. BML-111 prevented marked inflammatory cells in liver tissues and decreased elevation in serum hepatic biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), gamma-glutamyl transferase (γ-GT)] induced by CLP. Additionally, BML-111 attenuated elevated serum level of interleukin-6 (IL-6) and downregulated hepatic IL-6 mRNA expression. Meanwhile, BML-111 further increased serum IL-10 and upregulated hepatic IL-10 mRNA expression, while it downregulated hepatic mRNA expression of nuclear factor inhibitory protein kappa-B alpha (NFκBia), toll-like receptor-4 (TLR-4), and 5-lipooxygenase (5-LOX). Moreover, BML-111 prevented NF-κB/p65 nuclear translocation and activation. In conclusion, BML-111 attenuated CLP-induced acute hepatic dysfunction through its anti-inflammatory effect by decreasing NF-κB activity, TLR-4, and 5-LOX expression with subsequent decrease in pro-inflammatory IL-6 and elevation in anti-inflammatory IL-10.
Collapse
Affiliation(s)
- Ghada S El-Tanbouly
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nermeen A Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|