1
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Pensado-López A, Ummarino A, Khan S, Guildford A, Allan IU, Santin M, Chevallier N, Varaillon E, Kon E, Allavena P, Torres Andón F. Synthetic peptides of IL-1Ra and HSP70 have anti-inflammatory activity on human primary monocytes and macrophages: Potential treatments for inflammatory diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102719. [PMID: 37977510 DOI: 10.1016/j.nano.2023.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity in vitro in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy.
| | - Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy.
| | - Sophia Khan
- Tissue Click Ltd, The Knoll Business Centre, Old Shoreham Rd, Hove, BN3 7GS, UK.
| | - Anna Guildford
- Tissue Click Ltd, The Knoll Business Centre, Old Shoreham Rd, Hove, BN3 7GS, UK.
| | - Iain U Allan
- Tissue Click Ltd, The Knoll Business Centre, Old Shoreham Rd, Hove, BN3 7GS, UK.
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN 24GJ, UK.
| | - Nathalie Chevallier
- IMRB, U955, INSERM, Unite d'Ingenierie et de Therapie Cellulaire-Etablissement Français du Sang, Universite Paris-EST Créteil, 94017 Créteil, France.
| | - Elina Varaillon
- IMRB, U955, INSERM, Unite d'Ingenierie et de Therapie Cellulaire-Etablissement Français du Sang, Universite Paris-EST Créteil, 94017 Créteil, France.
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy.
| | - Paola Allavena
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy.
| | - Fernando Torres Andón
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; Instituto de Investigación Biomédica de A Coruña (INIBIC), Medical Oncology Unit, Complexo Hospitalario de A Coruña (CHUAC), 15006 A Coruña, Spain.
| |
Collapse
|
3
|
Delivery of Cells to the Cornea Using Synthetic Biomaterials. Cornea 2022; 41:1325-1336. [DOI: 10.1097/ico.0000000000003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
4
|
Tarff A, E.Drew-Bear L, Di Meglio L, Yee R, Adelita Vizcaino M, Gupta P, Annadanam A, Cano M, Behrens A. Effect of topical bovine colostrum in wound healing of corneal surface after acute ocular alkali burn in mice. Exp Eye Res 2022; 220:109093. [DOI: 10.1016/j.exer.2022.109093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
|
5
|
Yazdanpanah G, Jabbehdari S, Djalilian AR. Emerging Approaches for Ocular Surface Regeneration. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:1-10. [PMID: 31275736 DOI: 10.1007/s40135-019-00193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review In this manuscript, the recent advancements and novel approaches for regeneration of the ocular surface are summarized. Recent findings Following severe injuries, persistent inflammation can alter the rehabilitative capability of the ocular surface environment. Limbal stem cell deficiency (LSCD) is one of the most characterized ocular surface disorders mediated by deficiency and/or dysfunction of the limbal epithelial stem cells (LESCs) located in the limbal niche. Currently, the most advanced approach for revitalizing the ocular surface and limbal niche is based on transplantation of limbal tissues harboring LESCs. Emerging approaches have focused on restoring the ocular surface microenvironment using (1) cell-based therapies including cells with capabilities to support the LESCs and modulate the inflammation, e.g., mesenchymal stem cells (MSCs), (2) bio-active extracellular matrices from decellularized tissues, and/or purified/synthetic molecules to regenerate the microenvironment structure, and (3) soluble cytokine/growth factor cocktails to revive the signaling pathways. Summary Ocular surface/limbal environment revitalization provide promising approaches for regeneration of the ocular surface.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Strategies for reconstructing the limbal stem cell niche. Ocul Surf 2019; 17:230-240. [PMID: 30633966 DOI: 10.1016/j.jtos.2019.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
The epithelial cell layer that covers the surface of the cornea provides a protective barrier while maintaining corneal transparency. The rapid and effective turnover of these epithelial cells depends, in part, on the limbal epithelial stem cells (LESCs) located in a specialized microenvironment known as the limbal niche. Many disorders affecting the regeneration of the corneal epithelium are related to deficiency and/or dysfunction of LESCs and the limbal niche. Current approaches for regenerating the corneal epithelium following significant injuries such as burns and inflammatory attacks are primarily aimed at repopulating the LESCs. This review summarizes and assesses the clinical feasibility and efficacy of current and emerging approaches for reconstruction of the limbal niche. In particular, the application of mesenchymal stem cells along with appropriate biological scaffolds appear to be promising strategies for long-term revitalization of the limbal niche.
Collapse
|
7
|
DPIE [2-(1,2-diphenyl-1H-indol-3-yl)ethanamine] Augments Pro-Inflammatory Cytokine Production in IL-1β-Stimulated Primary Human Oral Cells. Int J Mol Sci 2018; 19:ijms19071835. [PMID: 29932110 PMCID: PMC6073580 DOI: 10.3390/ijms19071835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Interleukin-1β (IL-1β) is a prominent pro-inflammatory cytokine that is implicated in a variety of autoimmune diseases and plays an important role in host defense against infections. IL-1β activity increases with its increasing binding capacity to IL-1 receptors (IL-1Rs). Thus, numerous studies have targeted the discovery of molecules modulating the interactions between IL-1β and IL-1R1. We have conducted an IL-1R1 structure-based virtual screening to identify small molecules that could alter IL-1β activity, using in silico computational analysis. Sixty compounds from commercial libraries were predicted to bind to IL-1R1, and their influence on cytokine production in IL-1β-stimulated gingival fibroblasts (GFs) was determined. Of these, only (2-(1,2-diphenyl-1H-indol-3-yl)ethanamine (DPIE) showed a synergistic increase in inflammatory molecules and cytokine production (IL-6, IL-8, and COX-2) at both mRNA and protein levels in IL-1β-stimulated GFs. The enhancing activity of DPIE in IL-1β-induced cytokine production increased in a dose-dependent manner without cytotoxicity. This pattern was also observed in IL-1β-stimulated primary human periodontal ligament cells (PDLs). Furthermore, we measured the impact of DPIE on the IL-1β–IL-1R1 system using surface plasmon resonance and demonstrated that DPIE increased the binding affinity of IL-1β to IL-1R1. These data indicate that DPIE boosts IL-1β signaling by enhancing the binding of IL-1β to IL-1R1 in oral primary cells.
Collapse
|
8
|
Identification of Peptide Antagonists to Thioredoxin Glutathione Reductase of Schistosoma japonicum. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9483928. [PMID: 29967790 PMCID: PMC6008883 DOI: 10.1155/2018/9483928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Abstract
Schistosomiasis is one of the world's major public health problems. Praziquantel is currently the only effective drug against schistosomiasis. As resistance of praziquantel has emerged in some endemic areas, development of new antischistosomal agents should be a high priority. In this study, a phage display peptide library was used for screening for peptide antagonists of thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR), which has been identified as an alternative drug target. Three rounds of panning produced four different fusion phages. ELISA proved that all four phages could bind to SjTGR. One peptide, JIPDys1 (aa, WPHNWWPHFKVK), reduced enzyme activity of SjTGR by more than 50%. 2 μM of the synthesized peptide of JIPDys1 inhibited the activity of TrxR, GR, and Grx of SjTGR by 32.5%, 100%, and 100%, respectively. The IC50 values of the synthetic peptide JIPDys1 for TrxR, GR, and Grx were 3.67 μM, 0.11 μM, and 0.97 μM, respectively. Based on computer simulation, it appeared that JIPDys1 binds to the substrate binding sites of glutathione reductase (GR) and glutaredoxin (Grx). Our data show that the peptide, JIPDys1 (aa, WPHNWWPHFKVK), is a promising candidate to develop novel drugs against S. japonicum which acts by binding with SjTGR and reduces enzyme activity of SjTGR.
Collapse
|
9
|
Nguyen KN, Bobba S, Richardson A, Park M, Watson SL, Wakefield D, Di Girolamo N. Native and synthetic scaffolds for limbal epithelial stem cell transplantation. Acta Biomater 2018; 65:21-35. [PMID: 29107055 DOI: 10.1016/j.actbio.2017.10.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Limbal stem cell deficiency (LSCD) is a complex blinding disease of the cornea, which cannot be treated with conventional corneal transplants. Instead, a stem cell (SC) graft is required to replenish the limbal epithelial stem cell (LESC) reservoir, which is ultimately responsible for regenerating the corneal epithelium. Current therapies utilize limbal tissue biopsies that harbor LESCs as well as tissue culture expanded cells. Typically, this tissue is placed on a scaffold that supports the formation of corneal epithelial cell sheets, which are then transferred to diseased eyes. A wide range of biological and synthetic materials have been identified as carrier substrates for LESC, some of which have been used in the clinic, including amniotic membrane, fibrin, and silicon hydrogel contact lenses, each with their own advantages and limitations. This review will provide a brief background of LSCD, focusing on bio-scaffolds that have been utilized in limbal stem cell transplantation (LSCT) and materials that are being developed as potentially novel therapeutics for patients with this disease. STATEMENT OF SIGNIFICANCE The outcome of patients with corneal blindness that receive stem cell grafts to restore eye health and correct vision varies considerably and may be due to the different biological and synthetic scaffolds used to deliver these cells to the ocular surface. This review will highlight the positive attributes and limitations of the myriad of carriers developed for clinical use as well as those that are being trialled in pre-clinical models. The overall focus is on developing a standardized therapy for patients, however due to the multiple causes of corneal blindness, a personal regenerative medicine approach may be the best option.
Collapse
Affiliation(s)
- Kim N Nguyen
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Bobba
- Prince of Wales Hospital Clinical School, Sydney, Australia
| | | | - Mijeong Park
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Denis Wakefield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
10
|
Feinberg T, Sambamoorthi U, Lilly C, Innes KK. Potential Mediators between Fibromyalgia and C-Reactive protein: Results from a Large U.S. Community Survey. BMC Musculoskelet Disord 2017; 18:294. [PMID: 28687081 PMCID: PMC5501008 DOI: 10.1186/s12891-017-1641-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fibromyalgia, a potentially debilitating chronic pain syndrome of unknown etiology, may be characterized by inflammation. In this study, we investigated the relation of FMS to serum C-reactive protein (CRP) in a large population of adults (18+) and investigated the influence of other factors on this relationship, including BMI, comorbidities, as well as mood and sleep disturbance. METHODS Participants were 52,535 Ohio Valley residents (Fibromyalgia n = 1125). All participants completed a comprehensive health survey (2005-2006) part of the C8 Health Project; serum levels of CRP were obtained, as was history of Fibromyalgia physician diagnosis. Logistic and linear regressions were used for this cross-sectional analysis. RESULTS Mean CRP was higher among participants reporting Fibromyalgia than those without (5.54 ± 9.8 vs.3.75 ± 7.2 mg/L, p < .0001)). CRP level showed a strong, positive association with FMS (unadjusted odds ratio (OR) for highest vs. lowest quartile = 2.5 (CI 2.1,3.0;p for trend < .0001)); adjustment for demographic and lifestyle factors attenuated but did not eliminate this association (AOR for highest vs. lowest quartile = 1.4 (CI 1.1,1.6;p for trend < .0001)). Further addition of body mass index (BMI) and comorbidities to the model markedly weakened this relationship (AORs, respectively, for highest vs lowest CRP quartile = 1.2 (CI 1.0,1.4) and 1.1 (CI 0.9,1.3). In contrast, inclusion of mood and sleep impairment only modestly reduced the adjusted risk estimate (AORs for highest vs. lowest quartile = 1.3 (CI 1.1,1.5) for each)). CONCLUSIONS Findings from this large cross-sectional study indicate a significant positive cross-sectional association of Fibromyalgia to serum C-reactive protein may be explained, in part, by BMI and comorbidity. Prospective research is needed to confirm this, and clarify the potential mediating influence of obesity and comorbid conditions on this relationship.
Collapse
Affiliation(s)
- Termeh Feinberg
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, 520 W. Lombard St., East Hall, Baltimore, MD 21201-1603 USA
- Department of Epidemiology, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190 USA
| | - Usha Sambamoorthi
- Department of Pharmaceutical Systems and Policy, West Virginia University School of Pharmacy, P.O. Box 9500, Morgantown, WV 26506-9500 USA
| | - Christa Lilly
- Department of Biostatistics, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190 USA
| | - Kim Karen Innes
- Department of Epidemiology, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190 USA
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, P.O. Box 800782, McLeod Hall, Charlottesville, VA 22908-0782 USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the underlying mechanisms of corneal epithelial homeostasis in addition to illustrating the vital role of the limbal epithelial stem cells (LESCs) and the limbal niche in epithelial regeneration and wound healing. RECENT FINDINGS The shedded corneal epithelial cells are constantly replenished by the LESCs which give rise to epithelial cells that proliferate, differentiate, and migrate centripetally. While some recent studies have proposed that epithelial stem cells may also be present in the central cornea, the predominant location for the stem cells is the limbus. The limbal niche is the specialized microenvironment consisting of cells, extracellular matrix, and signaling molecules that are essential for the function of LESCs. Disturbances to limbal niche can result in LESC dysfunction; therefore, limbal stem cell deficiency should also be considered a limbal niche deficiency. Current and in-development therapeutic strategies are aimed at restoring the limbal niche, by medical and/or surgical treatments, administration of trophic factors, and cell based therapies. SUMMARY The corneal epithelium is constantly replenished by LESCs that are housed within the limbal niche. The limbal niche is the primary determinant of the LESC function and novel therapeutic approaches should be focused on regeneration of this microenvironment.
Collapse
|
12
|
Simmons KT, Xiao Y, Pflugfelder SC, de Paiva CS. Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model. Invest Ophthalmol Vis Sci 2017; 57:2443-51. [PMID: 27136463 PMCID: PMC4857831 DOI: 10.1167/iovs.15-18396] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Toll-like receptor 4 (TLR4) alerts cells to the presence of bacteria by initiating an inflammatory response. We hypothesize that disruption of the ocular surface barrier in dry eye enhances TLR4 signaling. This study determined whether dry eye enhances expression of inflammatory mediators in response to topically applied TLR4 ligand. Methods A single dose of lipopolysaccharide (LPS) or vehicle (endotoxin-free water) was applied to the cornea of nonstressed (NS) mice or mice subjected to 5 days of desiccating stress (DS). After 4 hours, corneal epithelium and conjunctiva were extracted to analyze expression of inflammatory mediators via PCR. Protein expression was confirmed by immunobead assay and immunostaining. Results Topically applied LPS increased expression of inflammatory mediators IL-1β, CXCL10, IL-12a, and IFN-γ in the conjunctiva, and IL-1β and CXCL10 in the cornea of NS mice compared to that in untreated controls. LPS in DS mice produced 3-fold increased expression of IL-1β in cornea and 2-fold increased expression in IL-12a in conjunctiva compared to that in LPS-treated control mice. Conclusions LPS increased expression of inflammatory cytokines on the ocular surface. This expression was further increased in dry eye, which suggests that epithelial barrier disruption enhances exposure of LPS to TLR4+ cells and that the inflammatory response to endotoxin-producing commensal or pathogenic bacteria may be more severe in dry eye disease.
Collapse
Affiliation(s)
- Ken T Simmons
- Ocular Surface Center Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Yangyan Xiao
- Ocular Surface Center Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States 2Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Stephen C Pflugfelder
- Ocular Surface Center Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S de Paiva
- Ocular Surface Center Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
13
|
Khan-Farooqi H, Chodosh J. Autologous Limbal Stem Cell Transplantation: The Progression of Diagnosis and Treatment. Semin Ophthalmol 2016; 31:91-8. [DOI: 10.3109/08820538.2015.1114862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Yang B, Zhao H, X B, Wang YB, Zhang J, Cao YK, Wu Q, Cao F. Influence of interleukin-1 beta gene polymorphisms on the risk of myocardial infarction and ischemic stroke at young age in vivo and in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13806-13813. [PMID: 26823694 PMCID: PMC4713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
In this study, by using vivo and vitro model, we assessed whether interleukin (IL)-1beta gene polymorphisms influence on the risk of myocardial infarction and ischemic stroke at young age. 147 patients (age < 45 years) with a first episode of MI and 56 patients (age < 45 years) with first-ever cerebral ischemia consecutively were admitted to this study from the Department of Chinese PLA General Hospital. Meanwhile, 91 normal volunteers without MI or stroke were deeded as control group and greed to give blood samples for DNA analysis and biochemical measurements by written informed consent. IL-1β-511 wild type (WT, CC) and SNP (TT) were established and transfected into Rat myocardial H9c2 cell and Mouse brain endothelial bEND.3 cells. In Young Age MI or stroke patients, the IL-1β levels of patients with 511CC are higher than that of patients with 511TT. In our study, NF-κB miRNA, iNOS activity, NF-κB, iNOS and Bax protein expressions of MI-induced H9c2 cell or stroke-induced bEND.3 cells in IL-1β-511TT group were lower than those of IL-1β-511CC. Additionally, the protein expression of MMP-2 of MI-induced H9c2 cell or stroke-induced bEND.3 cells in IL-1β-511TT group were higher than that of IL-1β 511CC group. In conclusion, our data indicate that IL-1β-511TT/CC influence on the risk of myocardial infarction and ischemic stroke at young age through NF-κB, iNOS, MMP-2 and Bax.
Collapse
|