1
|
Hosseini SA, Katoozian HR. Comparison of stress distribution in fully porous and dense-core porous scaffolds in dental implantation. J Mech Behav Biomed Mater 2024; 156:106602. [PMID: 38805873 DOI: 10.1016/j.jmbbm.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The aim of this study is to compare the stress distribution in porous scaffolds with different structures with similar geometric parameters to study a new approach in dental implantation. Three-dimensional finite element models of the fully porous and dense-core porous scaffolds with defined porosity parameters including space diameter and thickness with two porosity patterns were embedded in the jaw bone model with cortical and cancellous bone. The cylindrical shape was considered as the main shape of the scaffolds. To evaluate the mechanical performance, the Von Mises stress was compared in the models under static and dynamic masticatory loading. Incidentally, to validate the modeling results, experimental strain gauge tests were performed on four specimens fabricated from Ti6Al4V. Finally, the stress distribution in the models was compared with the results of previous studies on commercial implants. The results of the finite element analysis show that there are considerable differences in the magnitude of the equivalent stress in the models in static and dynamic phases. Also, changes in the defined geometric parameters have significant effects on the stress distribution in terms of Von Mises stress in the overall models. The experimental results indicated good agreement with those of the modeling. It can be concluded that some porous structures with optimal geometries can be proposed as a new structure for dental implants. However, considering the physiology of bone when confronted with porous structures, further studies such as in vivo experiments are needed in this field.
Collapse
Affiliation(s)
- Seyed Aref Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Reza Katoozian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
2
|
Bruschi M, Vanzolini T, Sahu N, Balduini A, Magnani M, Fraternale A. Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 2022; 10:968086. [PMID: 36061428 PMCID: PMC9428512 DOI: 10.3389/fbioe.2022.968086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- *Correspondence: Michela Bruschi,
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | |
Collapse
|
3
|
A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf 2021; 5:371-395. [PMID: 34721937 PMCID: PMC8546395 DOI: 10.1007/s42242-021-00170-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Abstract Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials. Graphic abstract ![]()
Collapse
|
4
|
Costa AI, Gemini-Piperni S, Alves AC, Costa NA, Checca NR, Leite PE, Rocha LA, Pinto AMP, Toptan F, Rossi AL, Ribeiro AR. TiO 2 bioactive implant surfaces doped with specific amount of Sr modulate mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111735. [PMID: 33545878 DOI: 10.1016/j.msec.2020.111735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/27/2022]
Abstract
One of the main problems that remain in the implant industry is poor osseointegration due to bioinertness of implants. In order to promote bioactivity, calcium (Ca), phosphorus (P) and strontium (Sr) were incorporated into a TiO2 porous layer produced by micro-arc oxidation. Ca and P as bioactive elements are already well reported in the literature, however, the knowledge of the effect of Sr is still limited. In the present work, the effect of various amounts of Sr was evaluated and the morphology, chemical composition and crystal structure of the oxide layer were investigated. Furthermore, in vitro studies were carried out using human osteoblast-like cells. The oxide layer formed showed a triplex structure, where higher incorporation of Sr increased Ca/P ratio, amount of rutile and promoted the formation of SrTiO3 compound. Biological tests revealed that lower concentrations of Sr did not compromise initial cell adhesion neither viability and interestingly improved mineralization. However, higher concentration of Sr (and consequent higher amount of rutile) showed to induce collagen secretion but with compromised mineralization, possibly due to a delayed mineralization process or induced precipitation of deficient hydroxyapatite. Ca-P-TiO2 porous layer with less concentration of Sr seems to be an ideal candidate for bone implants.
Collapse
Affiliation(s)
- A I Costa
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEMM - Department of Metallurgical and Materials Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal.
| | - S Gemini-Piperni
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A C Alves
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - N A Costa
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Materials Science and Technology, São Paulo State University, Bauru, São Paulo, Brazil
| | - N R Checca
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| | - L A Rocha
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Faculty of Science, Department of Physics, São Paulo State University, Bauru, São Paulo, Brazil
| | - A M P Pinto
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEM - Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - F Toptan
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A L Rossi
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Afradh KM, Gopi G, Shanmugasundaram S, Krishnakumar Raja VB. Evaluation of serum metal ion levels in dental implant patients: A prospective study. Ann Maxillofac Surg 2021; 11:261-265. [PMID: 35265495 PMCID: PMC8848711 DOI: 10.4103/ams.ams_70_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/03/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction: Titanium is the most commonly used bio-inert implant material. Nevertheless, there is a possibility of systemic release of metal ions, which could have clinical implications like implant failure and toxicity. This prospective study focuses on the evaluation of serum metal ion levels in patients receiving dental implants. The aim of the study is to evaluate the release of titanium, aluminium, and vanadium from dental implants by comparing the preoperative and postoperative serum levels of these ions. Methodology: Serum samples were collected from 30 patients undergoing dental implant placement preoperatively and postoperatively at intervals of 6 weeks, 3, 6, and 12 months. These samples were analyzed for titanium, aluminium, and vanadium levels using Inductively Coupled Plasma Optical Emission Spectrometry. The difference in preoperative and postoperative serum levels was measured and statistically analyzed using the paired t-test. Results: There was a slight difference in the postoperative levels of titanium and aluminium (2.30 and 4.07 mg/dl) as compared to the preoperative levels (2.28 and 2.30 mg/dl), which was statistically insignificant (P > 0.5). The serum levels of vanadium were too insignificant to be detected by the instrument (<0.0088 mg/dl). Discussion: Mild increase in the titanium and aluminium levels in blood serum was noted. These metallic ion levels might increase significantly due to which further clinical research with larger sample sizes and a long-term follow-up period is required to evaluate the clinical effects of metallic ion release from dental implants. There is no significant difference in the serum metal ion levels before and after the implant placement, although a little increase is observed in the aluminium ion levels after the implant placement.
Collapse
|
6
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
7
|
Demirturk Kocasarac H, Kursun-Cakmak ES, Ustaoglu G, Bayrak S, Orhan K, Noujeim M. Assessment of signal-to-noise ratio and contrast-to-noise ratio in 3 T magnetic resonance imaging in the presence of zirconium, titanium, and titanium-zirconium alloy implants. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 129:80-86. [PMID: 31628073 DOI: 10.1016/j.oooo.2019.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We quantitatively compared the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in T1 weighted imaging (WI) and T2 WI sequences in 3 Tesla (T) magnetic resonance imaging (MRI) using zirconium, titanium (grades 4 and 5), and titanium-zirconium alloy implants to evaluate the effect of implant type and imaging sequence. STUDY DESIGN MRI was acquired using a 3 T magnet with a 16-channel head coil. Implants of each type were mounted in gel and scanned in axial, coronal, and sagittal planes using fast spin echo sequences in T1 WI (TR = 600, TE = 12 milliseconds) and T2 WI (TR = 3000, TE = 80 milliseconds) sequences. Data were transferred to Synapse 3-D software, and images were measured twice by an oral and maxillofacial radiologist blinded to the type of implants. RESULTS Zirconium implants resulted in the lowest SNR and CNR values (P < .05). No significant differences were identified between titanium (grades 4 and 5) and titanium-zirconium implants. The T2 WI sequence had a significantly higher SNR and CNR than T1 WI. There was no difference in intraobserver agreement between T1 WI and T2 WI. CONCLUSIONS CNR and SNR at 3 T MRI are dependent on implant type and imaging sequence. Titanium (grades 4 and 5) and titanium-zirconium implants and the T2 WI sequence produced higher SNR and CNR values.
Collapse
Affiliation(s)
| | | | - Gulbahar Ustaoglu
- Department of Periodontology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Seval Bayrak
- Department of Oral and Maxillofacial Radiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Kaan Orhan
- Professor, Department of Oral and Maxillofacial Radiology, Ankara University, Ankara, Turkey; OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Marcel Noujeim
- Professor, Oral and Maxillofacial Radiology, Private practice, San Antonio, Texas, USA
| |
Collapse
|
8
|
Chaubey AK, Mishra SK, Chowdhary R. Positive Material Identification testing of dental implant to correlate their compositions with allergic conditions. J Oral Biol Craniofac Res 2019; 9:294-298. [PMID: 31289719 PMCID: PMC6593213 DOI: 10.1016/j.jobcr.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Rapid increase of products containing titanium leads to the increases in percutaneous and permucosal exposure of populations to the titanium. PURPOSE Evaluate the various material compositions in five commercially available dental implant systems and correlate the obtained material contents with allergic conditions seen with implants. MATERIAL AND METHODS A total of 25 implant, with 5 samples each in 5 groups of commercially available dental implants (MKIII, Myriad, Nobel Replace, MIS and Alpha Dent) were used in the study. Positive Material Identification (PMI) testing was done to analyse the amount of different metals (percentage by mass) present in the dental implants. RESULTS Highest titanium content, 99.47% by mass was found in sample 2 (Myriad) and least, 89.04% by mass in sample 5(Alpha dent). Nickel was found only in sample 5 (Alpha dent) in 0.079% by mass and zinc in sample 4 (MIS) in0.084% by mass, chromium was found in sample 1 (MK III) in 0.263% by mass and in sample 2 in0.273% by mass. CONCLUSIONS Implant composition should be made mandatory to be disclosed on the implant packet and before implant placement patch test for the allergen present in the particular implant can be done for the patient's health benefit and long term clinical success of dental implants.
Collapse
Affiliation(s)
- Avadhesh Kumar Chaubey
- Department of Prosthodontics, Rajarajeswari Dental College and Hospital, Bengaluru, 560074, India
| | - Sunil Kumar Mishra
- Department of Prosthodontics, Peoples College of Dental Sciences & Research Centre, Bhopal, 462037, India
| | - Ramesh Chowdhary
- Department of Prosthodontics, Rajarajeswari Dental College and Hospital, Bengaluru, 560074, India
| |
Collapse
|
9
|
Abstract
Implant surface micro and macro topography plays a key role in early osseointegration. The physicochemical features of the implant surface (ie, chemical composition, hydrophobicity/hydrophilicity and roughness) influence the deposition of extracellular matrix proteins, the precipitation of bone mineral, and the stimulation of cells. Modification of the implant topography provides better primary stability and faster osseointegration, allowing for immediate placement or immediate loading. Randomized clinical trials are warranted to compare the response of osseointegration with various implant micro and macro surface topographies in people with various local or systemic risk factors.
Collapse
Affiliation(s)
- Khalid Almas
- Division of Periodontology, Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P O Box. 1982, Dammam 31441, Saudi Arabia.
| | - Steph Smith
- Division of Periodontology, Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P O Box. 1982, Dammam 31441, Saudi Arabia
| | - Ahmad Kutkut
- Division of Prosthodontics, University of Kentucky, College of Dentistry, D646, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Demirturk Kocasarac H, Ustaoglu G, Bayrak S, Katkar R, Geha H, Deahl ST, Mealey BL, Danaci M, Noujeim M. Evaluation of artifacts generated by titanium, zirconium, and titanium-zirconium alloy dental implants on MRI, CT, and CBCT images: A phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:535-544. [PMID: 30879914 DOI: 10.1016/j.oooo.2019.01.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to assess artifacts generated by zirconium, titanium, and titanium-zirconium alloy implants on magnetic resonance imaging(MRI), computed tomography(CT), and cone beam computed tomography(CBCT) and to correlate the findings to the dose-area product and exposure factors on CT and CBCT. STUDY DESIGN Three phantoms were built by embedding zirconium, titanium, and titanium-zirconium implants in ultrasound gel. MRI, CT, and CBCT images were acquired by using multiple sequences and settings. For MRI, "artifact" was described as the length of signal void beyond the limits of the implant. For CT and CBCT, "artifact" was calculated by subtracting the gray level of the darkest pixel from the level of the lightest pixel. RESULTS On MRI, zirconium implants had minor distortion artifacts, whereas titanium and titanium-zirconium implants created extensive artifacts (P < .05). On CT and CBCT, artifacts were less prominent with titanium and titanium-zirconium implants compared with zirconium (P < .05). Titanium grade 5 implants with 0.3 and 0.4 mm3 voxels produced the least severe artifacts. CONCLUSIONS MRI images were less affected by artifacts from zirconium implants, whereas CT and CBCT images showed less severe artifacts from titanium and titanium-zirconium alloy implants. CT generated greater artifacts compared with CBCT. Larger CBCT voxel sizes reduced the dose-area product and the severity of artifacts.
Collapse
Affiliation(s)
- Husniye Demirturk Kocasarac
- Department of Comprehensive Dentistry, University of Texas Health San Antonio, TX, USA and Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA.
| | - Gulbahar Ustaoglu
- Chair, Department of Periodontology, Abant Izzet Baysal University, Bolu, Turkey
| | - Seval Bayrak
- Chair, Department of Oral and Maxillofacial Radiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Rujuta Katkar
- Department of Comprehensive Dentistry, University of Texas Health San Antonio, TX, USA and Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA
| | - Hassem Geha
- Department of Comprehensive Dentistry, University of Texas Health San Antonio, TX, USA and Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA
| | - S Thomas Deahl
- Department of Comprehensive Dentistry, University of Texas Health San Antonio, TX, USA and Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA
| | - Brian L Mealey
- Graduate Program Director, Department of Periodontology, University of Texas Health San Antonio, TX, USA
| | - Murat Danaci
- Chair, Department of Radiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Marcel Noujeim
- Department of Comprehensive Dentistry, University of Texas Health San Antonio, TX, USA and Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
11
|
Rizo-Gorrita M, Luna-Oliva I, Serrera-Figallo MA, Torres-Lagares D. Superficial Characteristics of Titanium after Treatment of Chorreated Surface, Passive Acid, and Decontamination with Argon Plasma. J Funct Biomater 2018; 9:jfb9040071. [PMID: 30544972 PMCID: PMC6306932 DOI: 10.3390/jfb9040071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 02/04/2023] Open
Abstract
(1) Background. Titanium is characterized by its biocompatibility, resistance to maximum stress, and fatigue and non-toxicity. The composition, surface structure, and roughness of titanium have a key and direct influence on the osseointegration processes when it is used in the form of dental implants. The objective of the present study is to characterize, at chemical, superficial, and biological levels, the result of the application of the sandblasted with large-grit and acid-etched (SLA) treatment consisting of coarse-grained and double-passivated acid blasting with subsequent decontamination with argon plasma on the surface of titanium implants type IV. (2) Methods. Four Oxtein® dental implants (Zaragoza, Spain) were investigated with the following coding: Code L63713T (titanium grade IV, 3.75 mm in diameter, and 13 mm in length). The surface of the implants was SLA type obtained from coarse-grained, double passivated acid, and decontaminated with argon plasma. The samples were in their sealed packages and were opened in our laboratory. The X-ray photoelectron spectroscopy (XPS) technique was used to characterize the chemical composition of the surface, and the scanning electronic microscope (SEM) technique was used to perform topographic surface evaluation. Cell cultures were also performed on both surfaces. (3) Results. The superficial chemical analysis of the studied samples presented the following components, approximately, expressed in atomic percentage: O: 39%; Ti: 18%; C: 39%; N: 2%; and Si: 1%. In the same way, the topographic analysis values were obtained in the evaluated roughness parameters: Ra: 1.5 μm ± 0.02%; Rq: 1.31 μm ± 0.33; Rz: 8.98 μm ± 0.73; Rp: 5.12 μm ± 0.48; Rv: 3.76 μm ± 0.51; and Rc: 4.92 μm ± 0.24. At a biological level, the expression of osteocalcin was higher (p < 0.05) on the micro-rough surface compared to that machined at 48 and 96 h of culture. (4) Conclusions. The data obtained in our study indicate that the total carbon content, the relative concentration of titanium, and the roughness of the treatment performed on the implants are in agreement with those found in the literature. Further, the roughness of the treatment performed on the implants throws a spongy, three-dimensional surface suitable for bone growth on it. The biological results found are compatible with the clinical use of the surface tested.
Collapse
|
12
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
13
|
Hindy A, Farahmand F, Tabatabaei FS. In vitro biological outcome of laser application for modification or processing of titanium dental implants. Lasers Med Sci 2017; 32:1197-1206. [PMID: 28451816 DOI: 10.1007/s10103-017-2217-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/19/2017] [Indexed: 02/03/2023]
Abstract
There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.
Collapse
Affiliation(s)
- Ahmed Hindy
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, 1983963113, Iran
| | - Farzam Farahmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, 1983963113, Iran. .,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Mechanical, In Vitro Corrosion Resistance and Biological Compatibility of Cast and Annealed Ti25Nb10Zr Alloy. METALS 2017. [DOI: 10.3390/met7030086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Markhoff J, Weinmann M, Schulze C, Bader R. Influence of different grained powders and pellets made of Niobium and Ti-42Nb on human cell viability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:756-766. [PMID: 28183670 DOI: 10.1016/j.msec.2016.12.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
Abstract
Nowadays, biomaterials can be used to maintain or replace several functions of the human body if necessary. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e.g. niobium, can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. In this in vitro study, human osteoblasts and fibroblasts were cultured on different niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three concentrations over four and seven days to imitate influence of wear debris. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results for both cell types concerning cell viability and collagen synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen synthesis. Furthermore, interleukin synthesis was only slightly increased for all powders. In summary, Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be promising alternatives for medical applications compared to common materials like forged or melted Ti6Al4V.
Collapse
Affiliation(s)
- Jana Markhoff
- University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Markus Weinmann
- H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar, Germany
| | - Christian Schulze
- University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Rainer Bader
- University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany
| |
Collapse
|
16
|
Cruz HV, Henriques M, Teughels W, Celis JP, Rocha LA. Combined Influence of Fluoride and Biofilms on the Biotribocorrosion Behavior of Titanium Used for Dental Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0021-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|