1
|
You Q, Lu M, Li Z, Zhou Y, Tu C. Cell Sheet Technology as an Engineering-Based Approach to Bone Regeneration. Int J Nanomedicine 2022; 17:6491-6511. [PMID: 36573205 PMCID: PMC9789707 DOI: 10.2147/ijn.s382115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bone defects that are congenital or the result of infection, malignancy, or trauma represent a challenge to the global healthcare system. To address this issue, multiple research groups have been developing novel cell sheet technology (CST)-based approaches to promote bone regeneration. These methods hold promise for use in regenerative medicine because they preserve cell-cell contacts, cell-extracellular matrix interactions, and the protein makeup of cell membranes. This review introduces the concept and preparation system of the cell sheet (CS), explores the application of CST in bone regeneration, highlights the current states of the bone regeneration via CST, and offers perspectives on the challenges and future research direction of translating current knowledge from the lab to the clinic.
Collapse
Affiliation(s)
- Qi You
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Minxun Lu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuangzhuang Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Yong Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China,Correspondence: Chongqi Tu; Yong Zhou, Department of Orthopedics, West China Hospital, Sichuan University, No. 37, Guoxuexiang, Chengdu, 610041, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
2
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
3
|
Jiang Z, Zhu D, Yu K, Xi Y, Wang X, Yang G. Recent advances in light-induced cell sheet technology. Acta Biomater 2021; 119:30-41. [PMID: 33144232 DOI: 10.1016/j.actbio.2020.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Various stimuli have been applied to harvest complete cell sheets, including temperature, magnetic, pH, and electrical stimuli. Cell sheet technology is a convenient and efficient approach with beneficial effects for tissue regeneration and cell therapy. Lights of different wavelengths, such as ultraviolet (UV), visible light, and near infrared ray (NIR) light, were confirmed to aid in fabricating a cell sheet. Changes in the wettability, potential, or water content of the culturing surfaces that occur under light illumination induce conformational changes in the adhesive proteins or collagens, which then leads to cell sheet detachment. However, the current approaches face several limitations, as few standards for safe light illumination have been proposed to date, and require a careful control of the wavelength, power, and irradiation time. Future studies should aim at generating new materials for culturing and releasing cell sheets rapidly and effectively.
Collapse
|
4
|
Shao Y, You D, Lou Y, Li J, Ying B, Cheng K, Weng W, Wang H, Yu M, Dong L. Controlled Release of Naringin in GelMA-Incorporated Rutile Nanorod Films to Regulate Osteogenic Differentiation of Mesenchymal Stem Cells. ACS OMEGA 2019; 4:19350-19357. [PMID: 31763559 PMCID: PMC6868884 DOI: 10.1021/acsomega.9b02751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Naringin, a Chinese herbal medicine, has been demonstrated to concentration-dependently promote osteogenic differentiation of mesenchymal stem cells (MSCs). However, it remains a challenge to load naringin on coatings for osteogenesis and further control the release kinetics. Here, we demonstrated that the release behavior of naringin on rutile nanorod films could be controlled by either mixing naringin with gelatin methacryloyl (GelMA) before spinning onto the films or soaking the obtained GelMA-incorporated films with the naringin solution to achieve the distinct degradation-type release and diffusion-type release, respectively. We further revealed that the naringin-loaded coatings facilitated adhesion, proliferation and late differentiation, and mineralization of MSCs. Our findings provided a novel strategy to engineer the coatings with controlled release of naringin and emphasized the bioactivity of naringin for the osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Yangjie Shao
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dongqi You
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yiting Lou
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department
of Stomatology, The Affiliated Ningbo First Hospital, Zhejiang University, Ningbo 315010, Zhejiang Province, China
| | - Jianhua Li
- Hangzhou
Dental Hospital, Hangzhou 310006, Zhejiang Province, China
| | - Binbin Ying
- Department
of Stomatology, The Affiliated Ningbo First Hospital, Zhejiang University, Ningbo 315010, Zhejiang Province, China
| | - Kui Cheng
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Wenjian Weng
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Huiming Wang
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mengfei Yu
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department
of Stomatology, The Affiliated Ningbo First Hospital, Zhejiang University, Ningbo 315010, Zhejiang Province, China
- Hangzhou
Dental Hospital, Hangzhou 310006, Zhejiang Province, China
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Lingqing Dong
- The
Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| |
Collapse
|
5
|
Lu Y, Zhang W, Wang J, Yang G, Yin S, Tang T, Yu C, Jiang X. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 2019; 11:17. [PMID: 31110170 PMCID: PMC6527566 DOI: 10.1038/s41368-019-0050-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Bone defects caused by trauma, tumour resection, infection and congenital deformities, together with articular cartilage defects and cartilage-subchondral bone complex defects caused by trauma and degenerative diseases, remain great challenges for clinicians. Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed. The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell-cell connections and extracellular matrix and its scaffold-free nature. This review will first introduce several widely used cell sheet preparation systems, including traditional approaches and recent improvements, as well as their advantages and shortcomings. Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone-cartilage complex defects will be reviewed. The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
Collapse
Affiliation(s)
- Yuezhi Lu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jie Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi Yin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
6
|
Cheng Z, Cheng K, Weng W. SiO 2/TiO 2 Nanocomposite Films on Polystyrene for Light-Induced Cell Detachment Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2130-2137. [PMID: 28026924 DOI: 10.1021/acsami.6b14182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light-induced cell detachment shows much potential in in vitro cell culture and calls for high-performance light-responsive films. In this study, a smooth and dense SiO2/TiO2 nanocomposite thin film with thickness of around 250 nm was first fabricated on H2O2 treated polystyrene (PS) substrate via a low-temperature sol-gel method. It was observed that the film could well-adhere on the PS surface and the bonding strength became increasingly high with the increase of SiO2 content. The peeling strength and shear strength reached 3.05 and 30.02 MPa, respectively. It was observed the surface of the film could transform into superhydrophilic upon 20 min illumination of ultraviolet with a wavelength of 365 nm (UV365). In cell culture, cells, i.e., NIH3T3 and MC3T3-E1 cells, cultured on SiO2/TiO2 nanocomposite film were easily detached after 10 min of UV365 illumination; the detachment rates reached 90.8% and 88.6%, respectively. Correspondingly, continuous cell sheets with good viability were also easily obtained through the same way. The present work shows that SiO2/TiO2 nanocomposite thin film could be easily prepared on polymeric surface at low temperature. The corresponding film exhibits excellent biocompatibility, high bonding strength, and good light responses. It could be a good candidate for the surface of cell culture utensils with light-induced cell detachment property.
Collapse
Affiliation(s)
- Zhiguo Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center of Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center of Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center of Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|