1
|
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ, van Zundert B. Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death. Mol Med 2024; 30:185. [PMID: 39455931 PMCID: PMC11505737 DOI: 10.1186/s10020-024-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2 + transients and reactive oxygen species (i.e., H2O2). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
Collapse
Affiliation(s)
- Pablo Martínez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mónica Silva
- Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Abarzúa
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| |
Collapse
|
2
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Ezedimma M, Le H, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. J Cell Physiol 2024; 239:e31293. [PMID: 38770789 PMCID: PMC11324413 DOI: 10.1002/jcp.31293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The sorting and assembly machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- US Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ, van Zundert B. Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595817. [PMID: 38826246 PMCID: PMC11142234 DOI: 10.1101/2024.05.24.595817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1 G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2+ transients and reactive oxygen species (i.e., H 2 O 2 ). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
Collapse
|
4
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541602. [PMID: 37292887 PMCID: PMC10245823 DOI: 10.1101/2023.05.20.541602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Tamta AK, Shivanaiah B, Ningaraju S, Prabhashankar AB, Sundaresan NR. Cultured Neonatal Murine Primary Myotubes as a Model to Study Muscle Atrophy. Curr Protoc 2022; 2:e616. [PMID: 36440976 DOI: 10.1002/cpz1.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Besides genetic disorders, skeletal muscle atrophy mainly occurs as a consequence of underlying conditions such as prolonged inactivity, aging, and metabolic diseases, ultimately contributing to the risk of disability. Disturbances in cellular and molecular mechanisms involved in proteolysis and protein synthesis underpin muscle fiber shrinkage and decreased muscle fiber diameter. Stress-induced primary myotube culture is an established model for studying muscle atrophy. An in vitro model is an essential criterion in establishing preliminary data in a cell-autonomous manner that can later be validated using in vivo models. Here, we describe protocols for the isolation, culture, and differentiation of primary murine myotubes and the induction of myotube atrophy using dexamethasone, a synthetic corticosteroid. We further elaborate the procedure to validate degenerative parameters, such as assessing muscle fiber diameter, expression of muscle atrophy genes, and protein synthesis status under dexamethasone treatment. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of primary myoblasts from rat or mouse pups Support Protocol 1: Preparation of coated tissue culture ware Support Protocol 2: Subculture of myoblasts Basic Protocol 2: Induction and assessment of myotube atrophy.
Collapse
Affiliation(s)
- Ankit Kumar Tamta
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Bhoomika Shivanaiah
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sunayana Ningaraju
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Arathi Bangalore Prabhashankar
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Nagalingam Ravi Sundaresan
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
6
|
Cultured Myoblasts Derived from Rat Soleus Muscle Show Altered Regulation of Proliferation and Myogenesis during the Course of Mechanical Unloading. Int J Mol Sci 2022; 23:ijms23169150. [PMID: 36012431 PMCID: PMC9409304 DOI: 10.3390/ijms23169150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The structure and function of soleus muscle fibers undergo substantial remodeling under real or simulated microgravity conditions. However, unloading-induced changes in the functional activity of skeletal muscle primary myoblasts remain poorly studied. The purpose of our study was to investigate how short-term and long-term mechanical unloading would affect cultured myoblasts derived from rat soleus muscle. Mechanical unloading was simulated by rat hindlimb suspension model (HS). Myoblasts were purified from rat soleus at basal conditions and after 1, 3, 7, and 14 days of HS. Myoblasts were expanded in vitro, and the myogenic nature was confirmed by their ability to differentiate as well as by immunostaining/mRNA expression of myogenic markers. The proliferation activity at different time points after HS was analyzed, and transcriptome analysis was performed. We have shown that soleus-derived myoblasts differently respond to an early and later stage of HS. At the early stage of HS, the proliferative activity of myoblasts was slightly decreased, and processes related to myogenesis activation were downregulated. At the later stage of HS, we observed a decrease in myoblast proliferative potential and spontaneous upregulation of the pro-myogenic program.
Collapse
|
7
|
Casas-Fraile L, Cornelis FM, Costamagna D, Rico A, Duelen R, Sampaolesi MM, López de Munain A, Lories RJ, Sáenz A. Frizzled related protein deficiency impairs muscle strength, gait and calpain 3 levels. Orphanet J Rare Dis 2020; 15:119. [PMID: 32448375 PMCID: PMC7245871 DOI: 10.1186/s13023-020-01372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
Background Limb-girdle muscular dystrophy recessive 1 calpain3-related (LGMDR1), previously known as LGMD2A, is a disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness and muscle degeneration. Frizzled related protein (FRZB), upregulated in LGMDR1, was identified as a key regulator of the crosstalk between Wnt and integrin signalling pathways. FRZB gene silencing showed a recovery in the expression of some of the costamere protein levels in myotubes. Results Here, we performed a comprehensive characterization of Frzb−/− mice muscles to study the absence of Frzb in skeletal muscle and eventual links with the molecular characteristics of LGMDR1 patient muscles. Frzb−/− mice showed reduced muscle size and strength. Gait analysis showed that Frzb−/− mice moved more slowly but no impaired regeneration capacity was observed after muscle injury. Additionally, Frzb−/− mice muscle showed an increased number of mesoangioblasts. Lack of Frzb gene in Frzb−/− mice and its increased expression in LGMDR1 patients, showed contrary regulation of Rora, Slc16a1, Tfrc and Capn3 genes. The reciprocal regulation of Frzb and Capn3 genes further supports this axis as a potential target for LGMDR1 patients. Conclusions Our data confirm a role for Frzb in the regulation of Rora, Slc16a1, Tfrc, and Capn3 genes in muscle cells. In vivo, reduced muscle strength and gait in the Frzb−/− mice are intriguing features. The reciprocal relationship between FRZB and CAPN3 further supports a key role for this axis in patients with LGMDR1.
Collapse
Affiliation(s)
- Leire Casas-Fraile
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Frederique M Cornelis
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Anabel Rico
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain
| | - Robin Duelen
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Maurilio M Sampaolesi
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium.,Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Neurology, Donostia University Hospital, Donostia, Spain.,Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Amets Sáenz
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain. .,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.
| |
Collapse
|
8
|
Vaughan M, Lamia KA. Isolation and Differentiation of Primary Myoblasts from Mouse Skeletal Muscle Explants. J Vis Exp 2019. [PMID: 31680669 DOI: 10.3791/60310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary myoblasts are undifferentiated proliferating precursors of skeletal muscle. They can be cultured and studied as muscle precursors or induced to differentiate into later stages of muscle development. The protocol provided here describes a robust method for the isolation and culture of a highly proliferative population of myoblast cells from young adult mouse skeletal muscle explants. These cells are useful for the study of the metabolic properties of skeletal muscle of different mouse models, as well as in other downstream applications such as transfection with exogenous DNA or transduction with viral expression vectors. The level of differentiation and metabolic profile of these cells depends on the length of exposure, and composition of the media used to induce myoblast differentiation. These methods provide a robust system for the study of mouse muscle cell metabolism ex vivo. Importantly, unlike in vivo models, the methods described here provide a cell population that can be expanded and studied with high levels of reproducibility.
Collapse
|
9
|
Kiselev A, Vaz R, Knyazeva A, Sergushichev A, Dmitrieva R, Khudiakov A, Jorholt J, Smolina N, Sukhareva K, Fomicheva Y, Mikhaylov E, Mitrofanova L, Predeus A, Sjoberg G, Rudenko D, Sejersen T, Lindstrand A, Kostareva A. Truncating Variant in Myof Gene Is Associated With Limb-Girdle Type Muscular Dystrophy and Cardiomyopathy. Front Genet 2019; 10:608. [PMID: 31297131 PMCID: PMC6607695 DOI: 10.3389/fgene.2019.00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Even though genetic studies of individuals with neuromuscular diseases have uncovered the molecular background of many cardiac disorders such as cardiomyopathies and inherited arrhythmic syndromes, the genetic cause of a proportion of cardiomyopathies associated with neuromuscular phenotype still remains unknown. Here, we present an individual with a combination of cardiomyopathy and limb-girdle type muscular dystrophy where whole exome sequencing identified myoferlin (MYOF)-a member of the Ferlin protein family and close homolog of DYSF-as the most likely candidate gene. The disease-causative role of the identified variant c.[2576delG; 2575G>C], p.G859QfsTer8 is supported by functional studies in vitro using the primary patient's skeletal muscle mesenchymal progenitor cells, including both RNA sequencing and morphological studies, as well as recapitulating the muscle phenotype in vivo in zebrafish. We provide the first evidence supporting a role of MYOF in human muscle disease.
Collapse
Affiliation(s)
- Artem Kiselev
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Knyazeva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Renata Dmitrieva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Aleksandr Khudiakov
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - John Jorholt
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Smolina
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ksenia Sukhareva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yulia Fomicheva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Evgeny Mikhaylov
- Arrhythmia Department, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Lubov Mitrofanova
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexander Predeus
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia.,Bioinformatics Institute, Saint Petersburg, Russia
| | - Gunnar Sjoberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dmitriy Rudenko
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Kostareva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Skeletal Muscle Resident Progenitor Cells Coexpress Mesenchymal and Myogenic Markers and Are Not Affected by Chronic Heart Failure-Induced Dysregulations. Stem Cells Int 2019; 2019:5690345. [PMID: 30719048 PMCID: PMC6335669 DOI: 10.1155/2019/5690345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose In heart failure (HF), metabolic alterations induce skeletal muscle wasting and decrease of exercise capacity and quality of life. The activation of skeletal muscle regeneration potential is a prospective strategy to reduce muscle wasting; therefore, the aim of this project was to determine if functional properties of skeletal muscle mesenchymal progenitor cells (SM-MPC) were affected by HF-induced functional and metabolic dysregulations. Methods Gastrocnemius muscle biopsy samples were obtained from 3 healthy donors (HD) and 12 HF patients to purify mRNA for further analysis and to isolate SM-MPC. Cells were expanded in vitro and characterized by immunocytochemistry and flow cytometry for expression of mesenchymal (CD105/CD73/CD166/CD146/CD140b/CD140a/VIM) and myogenic (Myf5/CD56/MyoG) markers. Cells were induced to differentiate and were then analyzed by immunostaining and Q-PCR to verify the efficiency of differentiation. The expression of genes that control muscle metabolism and development was compared for HD/HF patients in both muscle biopsy and in vitro-differentiated myotubes. Results The upregulation of MYH3/MYH8/Myf6 detected in HF skeletal muscle along with metabolic alterations indicates chronic pathological activation of the muscle developmental program. SM-MPC isolated from HD and HF patients represented a mixed population that coexpresses both mesenchymal and myogenic markers and differs from AD-MMSC, BM-MMSC, and IMF-MSC. The functional properties of SM-MPC did not differ between HD and HF patients. Conclusion In the present work, we demonstrate that the metabolic and functional alterations we detected in skeletal muscle from HF patients do not dramatically affect the functional properties of purified and expanded in vitro SM-MPC. We speculate that skeletal muscle progenitor cells are protected by their niche and under beneficial circumstances could contribute to muscle restoration and prevention and treatment of muscle wasting. The potential new therapeutic strategies of HF-induced skeletal muscle wasting should be targeted on both activation of SM-MPC regeneration potential and improvement of skeletal muscle metabolic status to provide a favorable environment for SM-MPC-driven muscle restoration.
Collapse
|
11
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells. Cell Tissue Bank 2017; 18:513-525. [DOI: 10.1007/s10561-017-9614-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|