1
|
Chimenti I, Picchio V, Pagano F, Schirone L, Schiavon S, D'Ambrosio L, Valenti V, Forte M, di Nonno F, Rubattu S, Peruzzi M, Versaci F, Greco E, Calogero A, De Falco E, Frati G, Sciarretta S. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov 2022; 8:149. [PMID: 35365624 PMCID: PMC8975847 DOI: 10.1038/s41420-022-00924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- Mediterranea Cardiocentro, Napoli, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Istitute, CNR, Monterotondo, Italy
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Sonia Schiavon
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Versaci
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
- Department of System Medicine, "Tor Vergata" University, Rome, Italy
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Calogero
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
2
|
Chimenti I, Sattler S, del Monte-Nieto G, Forte E. Editorial: Fibrosis and Inflammation in Tissue Pathophysiology. Front Physiol 2022; 12:830683. [PMID: 35126187 PMCID: PMC8814660 DOI: 10.3389/fphys.2021.830683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
- *Correspondence: Isotta Chimenti
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
3
|
Iannolo G, Sciuto MR, Cuscino N, Carcione C, Coronnello C, Chinnici CM, Raffa GM, Pilato M, Conaldi PG. miRNA expression analysis in the human heart: Undifferentiated progenitors vs. bioptic tissues-Implications for proliferation and ageing. J Cell Mol Med 2021; 25:8687-8700. [PMID: 34390171 PMCID: PMC8435455 DOI: 10.1111/jcmm.16824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
In developed countries, cardiovascular diseases are currently the first cause of death. Cardiospheres (CSs) and cardiosphere-derived cells (CDCs) have been found to have the ability to regenerate the myocardium after myocardial infarction (MI). In recent years, much effort has been made to gain insight into the human heart repair mechanisms, in which miRNAs have been shown to play an important role. In this regard, to elucidate the involvement of miRNAs, we evaluated the miRNA expression profile across human heart biopsy, CSs and CDCs using microarray and next-generation sequencing (NGS) technologies. We identified several miRNAs more represented in the progenitors, where some of them can be responsible for the proliferation or the maintenance of an undifferentiated state, while others have been found to be downregulated in the undifferentiated progenitors compared with the biopsies. Moreover, we also found a correlation between downregulated miRNAs in CSs/CDCs and patient age (eg miR-490) and an inverse correlation among miRNAs upregulated in CSs/CDCs (eg miR-31).
Collapse
Affiliation(s)
- Gioacchin Iannolo
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Maria Rita Sciuto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Cuscino
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | | | | | - Cinzia Maria Chinnici
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy.,Fondazione Ri.MED, Palermo, Italy
| | - Giuseppe Maria Raffa
- Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Michele Pilato
- Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| |
Collapse
|
4
|
Belviso I, Angelini F, Di Meglio F, Picchio V, Sacco AM, Nocella C, Romano V, Nurzynska D, Frati G, Maiello C, Messina E, Montagnani S, Pagano F, Castaldo C, Chimenti I. The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci 2020; 21:ijms21217903. [PMID: 33114386 PMCID: PMC7662394 DOI: 10.3390/ijms21217903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023] Open
Abstract
Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-β) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesco Angelini
- Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute, 33081 Aviano (PN), Italy;
| | - Franca Di Meglio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
| | - Anna Maria Sacco
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, 00161 Rome, Italy;
| | - Veronica Romano
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Daria Nurzynska
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, 80131 Naples, Italy;
| | - Elisa Messina
- Department of Maternal Infantile and Urological Sciences, “Umberto I” Hospital, 00161 Rome, Italy;
| | - Stefania Montagnani
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo (RM), Italy;
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
- Correspondence: ; Tel.: +39-0773-1757-234
| |
Collapse
|
5
|
Plasmatic Membrane Expression of Adhesion Molecules in Human Cardiac Progenitor/Stem Cells Might Explain Their Superior Cell Engraftment after Cell Transplantation. Stem Cells Int 2020; 2020:8872009. [PMID: 33101423 PMCID: PMC7569451 DOI: 10.1155/2020/8872009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely linked to a more pronounced cell adhesion expression program.
Collapse
|
6
|
Dal Sasso E, Menabò R, Agrillo D, Arrigoni G, Franchin C, Giraudo C, Filippi A, Borile G, Ascione G, Zanella F, Fabozzo A, Motta R, Romanato F, Di Lisa F, Iop L, Gerosa G. RegenHeart: A Time-Effective, Low-Concentration, Detergent-Based Method Aiming for Conservative Decellularization of the Whole Heart Organ. ACS Biomater Sci Eng 2020; 6:5493-5506. [PMID: 33320567 PMCID: PMC8011801 DOI: 10.1021/acsbiomaterials.0c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Heart
failure is the worst outcome of all cardiovascular diseases
and still represents nowadays the leading cause of mortality with
no effective clinical treatments, apart from organ transplantation
with allogeneic or artificial substitutes. Although applied as the
gold standard, allogeneic heart transplantation cannot be considered
a permanent clinical answer because of several drawbacks, as the side
effects of administered immunosuppressive therapies. For the increasing
number of heart failure patients, a biological cardiac substitute
based on a decellularized organ and autologous cells might be the
lifelong, biocompatible solution free from the need for immunosuppression
regimen. A novel decellularization method is here proposed and tested
on rat hearts in order to reduce the concentration and incubation
time with cytotoxic detergents needed to render acellular these organs.
By protease inhibition, antioxidation, and excitation–contraction
uncoupling in simultaneous perfusion/submersion modality, a strongly
limited exposure to detergents was sufficient to generate very well-preserved
acellular hearts with unaltered extracellular matrix macro- and microarchitecture,
as well as bioactivity.
Collapse
Affiliation(s)
- Eleonora Dal Sasso
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy
| | - Roberta Menabò
- Institute of Neuroscience, National Research Council (CNR), Padua 35127, Italy.,Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Davide Agrillo
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Chiara Giraudo
- Department of Medicine, University of Padua, Padua 35122, Italy.,L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35122, Italy.,Fondazione Bruno Kessler, Trento 38123, Italy.,Institute of Pediatric Research 'Città della Speranza', Padua 35127, Italy
| | - Giulia Borile
- Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35122, Italy.,Institute of Pediatric Research 'Città della Speranza', Padua 35127, Italy
| | - Guido Ascione
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy
| | - Fabio Zanella
- Cardiac Surgery Unit, University Hospital of Padua, Padua 35128, Italy
| | - Assunta Fabozzo
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy.,Cardiac Surgery Unit, University Hospital of Padua, Padua 35128, Italy
| | - Raffaella Motta
- Department of Medicine, University of Padua, Padua 35122, Italy
| | - Filippo Romanato
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy.,Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35122, Italy.,Institute of Pediatric Research 'Città della Speranza', Padua 35127, Italy
| | - Fabio Di Lisa
- Institute of Neuroscience, National Research Council (CNR), Padua 35127, Italy.,Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Laura Iop
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy.,L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy.,L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy.,Cardiac Surgery Unit, University Hospital of Padua, Padua 35128, Italy
| |
Collapse
|
7
|
Pagano F, Picchio V, Chimenti I, Sordano A, De Falco E, Peruzzi M, Miraldi F, Cavarretta E, Zoccai GB, Sciarretta S, Frati G, Marullo AGM. On the Road to Regeneration: "Tools" and "Routes" Towards Efficient Cardiac Cell Therapy for Ischemic Cardiomyopathy. Curr Cardiol Rep 2019; 21:133. [PMID: 31673821 DOI: 10.1007/s11886-019-1226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Cardiac regenerative medicine is a field bridging together biotechnology and surgical science. In this review, we present the explored surgical roads to cell delivery and the known effects of each delivery method on cell therapy efficiency. We also list the more recent clinical trials, exploring the safety and efficacy of delivery routes used for cardiac cell therapy approaches. RECENT FINDINGS There is no consensus in defining which way is the most suitable for the delivery of the different therapeutic cell types to the damaged heart tissue. In addition, it emerged that the "delivery issue" has not been systematically addressed in each clinical trial and for each and every cell type capable of cardiac repair. Cardiac damage occurring after an ischemic insult triggers a cascade of cellular events, eventually leading to heart failure through fibrosis and maladaptive remodelling. None of the pharmacological or medical interventions approved so far can rescue or reverse this phenomenon, and cardiovascular diseases are still the leading cause of death in the western world. Therefore, for nearly 20 years, regenerative medicine approaches have focused on cell therapy as a promising road to pursue, with numerous preclinical and clinical testing of cell-based therapies being studied and developed. Nonetheless, consistent clinical results are still missing to reach consensus on the most effective strategy for ischemic cardiomyopathy, based on patient selection, diagnosis and stage of the disease, therapeutic cell type, and delivery route.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Alessia Sordano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | | | - Fabio Miraldi
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Antonino G M Marullo
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| |
Collapse
|
8
|
Pagano F, Picchio V, Angelini F, Iaccarino A, Peruzzi M, Cavarretta E, Biondi-Zoccai G, Sciarretta S, De Falco E, Chimenti I, Frati G. The Biological Mechanisms of Action of Cardiac Progenitor Cell Therapy. Curr Cardiol Rep 2018; 20:84. [PMID: 30105430 DOI: 10.1007/s11886-018-1031-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Cell therapy for cardiovascular diseases is regarded as a rapidly growing field within regenerative medicine. Different cellular populations enriched for cardiac progenitor cells (CPCs), or derivate a-cellular products, are currently under preclinical and clinical evaluation. Here, we have reviewed the described mechanisms whereby resident post-natal CPCs, isolated in different ways, act as a therapeutic product on the damaged myocardium. RECENT FINDINGS Several biological mechanisms of action have been described which can explain the multiple therapeutic effects of CPC treatment observed on cardiac function and remodelling. These mechanisms span from direct cardiovascular differentiation, through induction of resident progenitor proliferation, to paracrine effects on cardiac and non-cardiac cells mediated by exosomes and non-coding RNAs. All the reported mechanisms of action support an integrated view including cardiomyogenesis, cardioprotection, and anti-fibrotic effects. Moreover, future developments of CPC therapy approaches may support cell-free strategies, exploiting effective pleiotropic cell-derived products, such as exosomes.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesco Angelini
- Medical Oncology Unit, San Filippo Neri Hospital, Via Giovanni Martinotti, 20, 00135, Rome, Italy.,Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute, Via Franco Gallini 2, 33081, Aviano (PN), Italy
| | - Alessandra Iaccarino
- Department of Thoracic Surgery, "La Sapienza" University of Rome, viale Regina Margherita 324, 00161, Rome, Italy
| | - Mariangela Peruzzi
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed Institute, Via Atinense 18, 86077, Pozzilli (IS), Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed Institute, Via Atinense 18, 86077, Pozzilli (IS), Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed Institute, Via Atinense 18, 86077, Pozzilli (IS), Italy
| |
Collapse
|
9
|
Ferrari R. Major unmet needs in the cardiovascular area. Eur Heart J Suppl 2018. [DOI: 10.1093/eurheartj/suy002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Roberto Ferrari
- Department of Cardiology and LTTA Centre, University Hospital of Ferrara, Via Aldo Moro 9, Ferrara 44123, Italy
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Italy
| |
Collapse
|
10
|
Testa L, Bollati M. Abstracting Evidence. DIAGNOSTIC META-ANALYSIS 2018:93-98. [DOI: 10.1007/978-3-319-78966-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Paiva S, Agbulut O. MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction. Front Cardiovasc Med 2017; 4:73. [PMID: 29209617 PMCID: PMC5701911 DOI: 10.3389/fcvm.2017.00073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
At present, cardiovascular diseases are depicted to be the leading cause of death worldwide according to the World Health Organization. In the future, projections predict that ischemic heart disease will persist in the top main causes of illness. Within this alarming context, some tiny master regulators of gene expression programs, namely, microRNAs (miRNAs) carry three promising potentials. In fact, miRNAs can prove to be useful not only in terms of biomarkers allowing heart injury detection but also in terms of therapeutics to overcome limitations of past strategies and treat the lesions. In a more creative approach, they can even be used in the area of human engineered cardiac tissues as maturation tools for cardiomyocytes (CMs) derived from pluripotent stem cell. Very promising not only for patient-specific cell-based therapies but also to develop biomimetic microsystems for disease modeling and drug screening, these cells greatly contribute to personalized medicine. To get into the heart of the matter, the focus of this review lies primarily on miRNAs as acute myocardial infarction (AMI) biomarkers. Only large cohort studies comprising over 100 individuals to reach a potent statistical value were considered. Certain miRNAs appeared to possibly complement protein-based biomarkers and classical risk factors. Some were even described to bear potential in the discrimination of similar symptomatic pathologies. However, differences between pre-analytical and analytical approaches substantially influenced miRNA data. Further supported by meta-analysis studies, this problem had to be addressed. A detailed critical analysis of each step to define miRNAs biomarker potential is provided to inspire a future improved universal strategy. Interestingly, a recurrent set of cardiomyocyte-enriched miRNAs was found, namely, miR-1; miR-133; miR-208a/b; and miR-499a. Each member of this myomiRs group displayed promising roles either individually or in combination as AMI diagnostic or prognostic biomarkers. Furthermore, a precise combo was shown to be powerful enough to transdifferentiate human fibroblasts into CMs opening doors in the therapeutics. Following these discoveries, they also emerged as optional tools to transfect in order to mature CMs derived from pluripotent stem cells. Ultimately, the multiple potentials carried by the myomiRs miR-1; miR-133; miR-208a/b; and miR-499a still remain to be fully unveiled.
Collapse
Affiliation(s)
- Solenne Paiva
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| |
Collapse
|
12
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
13
|
Sex Differences of Human Cardiac Progenitor Cells in the Biological Response to TNF- α Treatment. Stem Cells Int 2017; 2017:4790563. [PMID: 29104594 PMCID: PMC5623773 DOI: 10.1155/2017/4790563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
Adult cardiac progenitor cells (CPCs), isolated as cardiosphere-derived cells (CDCs), represent promising candidates for cardiac regenerative therapy. CDCs can be expanded in vitro manyfolds without losing their differentiation potential, reaching numbers that are appropriate for clinical applications. Since mechanisms of successful CDC survival and engraftment in the damaged myocardium are still critical and unresolved issues, we aimed at deciphering possible key factors capable of bolstering CDC function. In particular, the response and the phenotype of CDCs exposed to low concentrations of the multifunctional cytokine tumor necrosis factor α (TNF-α), known to be capable of activating cell survival pathways, have been investigated. Furthermore, differential biological responses of CDCs from male and female donors, in terms of cell cycle progression and cell spreading, have also been assessed. The results obtained indicate that (i) the intracellular signaling activated in our experimental conditions is most likely due to the prosurvival and proliferative signaling of TNF-α receptor 2 and that (ii) cells from female patients appear more responsive to TNF-α treatment in terms of cell cycle progression and migration ability. In conclusion, the present report highlights the hypothesis that TNF-stimulated CDCs isolated from females may represent a promising candidate for cardiac regenerative therapy applications.
Collapse
|
14
|
Fernández-Avilés F, Sanz-Ruiz R, Climent AM, Badimon L, Bolli R, Charron D, Fuster V, Janssens S, Kastrup J, Kim HS, Lüscher TF, Martin JF, Menasché P, Simari RD, Stone GW, Terzic A, Willerson JT, Wu JC. Global position paper on cardiovascular regenerative medicine. Eur Heart J 2017; 38:2532-2546. [PMID: 28575280 PMCID: PMC5837698 DOI: 10.1093/eurheartj/ehx248] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Andreu M Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Lina Badimon
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain
| | - Roberto Bolli
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Dominique Charron
- LabEx TRANSPLANTEX; HLA & Médecine "Jean Dausset" Laboratory Network, Hôpital Saint-Louis AP-HP, Université Paris Diderot, 75013, France
| | - Valentin Fuster
- CIBERCV, ISCIII, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of medicine at Mount Sinai, New York, NY, USA
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jens Kastrup
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Philippe Menasché
- Department of Cardiovascular Surgery Hôpital Européen Georges Pompidou; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Robert D Simari
- School of Medicine, University of Kansas, 3901 Rainbow Boulevard, Kansas City, KS, USA
| | - Gregg W Stone
- Center for Clinical Trials, Cardiovascular Research Foundation, New York, New York; Center for Clinical Trials, NewYork-Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Department of Cardiovascular Diseases, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - James T Willerson
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine and Department of Radiology, Stanford University School of Medicine, CA, USA
| |
Collapse
|
15
|
A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3920195. [PMID: 28751931 PMCID: PMC5511646 DOI: 10.1155/2017/3920195] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.
Collapse
|
16
|
Normal versus Pathological Cardiac Fibroblast-Derived Extracellular Matrix Differentially Modulates Cardiosphere-Derived Cell Paracrine Properties and Commitment. Stem Cells Int 2017; 2017:7396462. [PMID: 28740514 PMCID: PMC5504962 DOI: 10.1155/2017/7396462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Human resident cardiac progenitor cells (CPCs) isolated as cardiosphere-derived cells (CDCs) are under clinical evaluation as a therapeutic product for cardiac regenerative medicine. Unfortunately, limited engraftment and differentiation potential of transplanted cells significantly hamper therapeutic success. Moreover, maladaptive remodelling of the extracellular matrix (ECM) during heart failure progression provides impaired biological and mechanical signals to cardiac cells, including CPCs. In this study, we aimed at investigating the differential effect on the phenotype of human CDCs of cardiac fibroblast-derived ECM substrates from healthy or diseased hearts, named, respectively, normal or pathological cardiogel (CG-N/P). After 7 days of culture, results show increased levels of cardiogenic gene expression (NKX2.5, CX43) on both decellularized cardiogels compared to control, while the proportion and staining patterns of GATA4, OCT4, NKX2.5, ACTA1, VIM, and CD90-positive CPCs were not affected, as assessed by immunofluorescence microscopy and flow cytometry analyses. Nonetheless, CDCs cultured on CG-N secreted significantly higher levels of osteopontin, FGF6, FGF7, NT-3, IGFBP4, and TIMP-2 compared to those cultured on CG-P, suggesting overall a reduced trophic and antiremodelling paracrine profile of CDCs when in contact with ECM from pathological cardiac fibroblasts. These results provide novel insights into the bidirectional interplay between cardiac ECM and CPCs, potentially affecting CPC biology and regenerative potential.
Collapse
|
17
|
Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res 2017; 10:150-166. [PMID: 28289983 DOI: 10.1007/s12265-017-9741-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Rome, Italy
| | - Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino", IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry, "Umberto I" Hospital, "La Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
18
|
Pas HIMFL, Winters M, Haisma HJ, Koenis MJJ, Tol JL, Moen MH. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med 2017; 51:1125-1133. [DOI: 10.1136/bjsports-2016-096793] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
19
|
Pagano F, Angelini F, Siciliano C, Tasciotti J, Mangino G, De Falco E, Carnevale R, Sciarretta S, Frati G, Chimenti I. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation. Pharmacol Res 2017; 127:41-48. [PMID: 28099883 DOI: 10.1016/j.phrs.2017.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023]
Abstract
Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Camilla Siciliano
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Julia Tasciotti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Giorgio Mangino
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy.
| |
Collapse
|
20
|
Pas HIMFL, Moen MH, Haisma HJ, Winters M. No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br J Sports Med 2017; 51:996-1002. [PMID: 28077355 DOI: 10.1136/bjsports-2016-096794] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Stem cells have emerged as a new treatment option for tendon disorders. We systematically reviewed the current evidence for stem cell therapy in tendon disorders. METHODS Randomised and non-randomised controlled trials, cohort studies and case series with a minimum of 5 cases were searched in MEDLINE, CENTRAL, EMBASE, CINAHL, PEDro and SPORTDiscus. In addition, we searched grey literature databases and trial registers. Only human studies were included and no time or language restrictions were applied to our search. All references of included trials were checked for possibly eligible trials. Risk of bias assessment was performed using the Cochrane risk of bias tool for controlled trials and the Newcastle-Ottawa scale for case series. Levels of evidence were assigned according to the Oxford levels of evidence. RESULTS 4 published and three unpublished/pending trials were found with a total of 79 patients. No unpublished data were available. Two trials evaluated bone marrow-derived stem cells in rotator cuff repair surgery and found lower retear rates compared with historical controls or the literature. One trial used allogenic adipose-derived stem cells to treat lateral epicondylar tendinopathy. Improved Mayo Elbow Performance Index, Visual Analogue Pain scale and ultrasound findings after 1-year follow-up compared with baseline were found. Bone marrow-derived stem cell-treated patellar tendinopathy showed improved International Knee Documentation Committee, Knee injury and Osteoarthritis Outcome Score subscales and Tegner scores after 5-year follow-up. One trial reported adverse events and found them to be mild (eg, swelling, effusion). All trials were at high risk of bias and only level 4 evidence was available. CONCLUSIONS No evidence (level 4) was found for the therapeutic use of stem cells for tendon disorders. The use of stem cell therapy for tendon disorders in clinical practice is currently not advised.
Collapse
Affiliation(s)
- Haiko I M F L Pas
- The Sports Physician Group, Department of Sports Medicine, OLVG West, Amsterdam, The Netherlands.,Department of Orthopaedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Maarten H Moen
- The Sports Physician Group, Department of Sports Medicine, OLVG West, Amsterdam, The Netherlands.,Bergman Clinics, Naarden, The Netherlands.,Department of Elite Sports, NOC*NSF, Medical Staff, Arnhem, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen University, Groningen, The Netherlands
| | - Marinus Winters
- Rehabilitation, Nursing Science and Sports Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Β-blockers treatment of cardiac surgery patients enhances isolation and improves phenotype of cardiosphere-derived cells. Sci Rep 2016; 6:36774. [PMID: 27841293 PMCID: PMC5107949 DOI: 10.1038/srep36774] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/20/2016] [Indexed: 02/08/2023] Open
Abstract
Β-blockers (BB) are a primary treatment for chronic heart disease (CHD), resulting in prognostic and symptomatic benefits. Cardiac cell therapy represents a promising regenerative treatment and, for autologous cell therapy, the patients clinical history may correlate with the biology of resident progenitors and the quality of the final cell product. This study aimed at uncovering correlations between clinical records of biopsy-donor CHD patients undergoing cardiac surgery and the corresponding yield and phenotype of cardiospheres (CSs) and CS-derived cells (CDCs), which are a clinically relevant population for cell therapy, containing progenitors. We describe a statistically significant association between BB therapy and improved CSs yield and CDCs phenotype. We show that BB-CDCs have a reduced fibrotic-like CD90 + subpopulation, with reduced expression of collagen-I and increased expression of cardiac genes, compared to CDCs from non-BB donors. Moreover BB-CDCs had a distinctive microRNA expression profile, consistent with reduced fibrotic features (miR-21, miR-29a/b/c downregulation), and enhanced regenerative potential (miR-1, miR-133, miR-101 upregulation) compared to non-BB. In vitro adrenergic pharmacological treatments confirmed cytoprotective and anti-fibrotic effects of β1-blocker on CDCs. This study shows anti-fibrotic and pro-commitment effects of BB treatment on endogenous cardiac reparative cells, and suggests adjuvant roles of β-blockers in cell therapy applications.
Collapse
|
22
|
Martin-Rendon E. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies: What Can Systematic Reviews Tell Us About Cell Therapies for Ischemic Heart Disease? Circ Res 2016; 118:1264-72. [PMID: 27081109 DOI: 10.1161/circresaha.115.307540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/17/2016] [Indexed: 12/17/2022]
Abstract
Controversies from basic science, discrepancies from clinical trials, and divergent results from meta-analyses have recently arisen in the field of cell therapies for cardiovascular repair and regeneration. Noticeably, there are almost as many systematic reviews and meta-analyses published as there are well-conducted clinical studies. But how do we disentangle the confusion they have raised? This article addresses why results obtained from systematic reviews and meta-analyses of human cell-based cardiac regeneration therapies are still valid to inform the design of future clinical trials. It also addresses how meta-analyses are not free from limitations and how important it is to assess the quality of the evidence and the quality of the systematic reviews and finally how stronger conclusions can be drawn when several pieces of evidence converge.
Collapse
Affiliation(s)
- Enca Martin-Rendon
- From the Systematic Review Initiative, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
24
|
Bridging the Gap between Translational and Outcome Research in Cardiovascular Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454680. [PMID: 26601106 PMCID: PMC4639638 DOI: 10.1155/2015/454680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 02/05/2023]
|