1
|
Eassawy MMT, Ismail AFM. Protective effect of chicory and/or artichoke leaves extracts on carbon tetrachloride and gamma-irradiation-induced chronic nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1666-1681. [PMID: 38031637 DOI: 10.1002/tox.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1β, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-β1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and β-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/β-catenin protein expressions.
Collapse
Affiliation(s)
- Mamdouh M T Eassawy
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Dai R, Lu JY, Chen WD, Hong BZ, Zhang L, Cheng M, Wang YP, Zhang Y. Simultaneous determination of multiple constituents, serum composition, and tissue distribution of Qingshen granule using ultra-high performance liquid chromatography-quadrupole-orbitrap high-resolution mass spectrometry. J Sep Sci 2023; 46:e2300159. [PMID: 37525329 DOI: 10.1002/jssc.202300159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Qingshen granule, composed of 14 herbal drugs, is primarily used as the assistant therapy for chronic kidney disease. Qingshen granule chemical composition was complex, but its chemical constituents and the pharmacodynamic material basis remain unreported. Ultra-high-performance liquid chromatography (UHPLC)-quadrupole-orbitrap high-resolution mass spectrometry was applied to recognize the chemical constituents of Qingshen granule. The analysis was performed using the ACQUITY UHPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) with acetonitrile-0.1% formic acid as the mobile phase for gradient elution. The data were collected using heated electrospray ionization in positive and negative ion modes. This study successfully applied the UPHLC-quadrupole-orbitrap high-resolution mass spectrometry technique with the Compound Discoverer 3.3 platform to analyze Qingshen granule chemical composition. A total of 127 and 42 chemical components were identified in Qingshen granule in vitro and in vivo, respectively. In the tissue distribution of Qingshen granule, 9, 10, 11, 10, and 18 prototype components were detected in the heart, liver, spleen, lungs, and kidneys, respectively. Qingshen granule chemical constituents were characterized rapidly for the first time in this study, laying a foundation for further research on the substance basis and quality control of Qingshen granule in treating chronic kidney disease.
Collapse
Affiliation(s)
- Rong Dai
- Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Jin-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Wei-Dong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Bang-Zhen Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yi-Ping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| |
Collapse
|
3
|
Wiktorska M, Sacewicz-Hofman I, Niewiarowska J. The endothelial-to-mesenchymal transition changes the focal adhesion site proteins levels and the SLRP-lumican level in HMEC-1 cell line. Exp Cell Res 2023:113692. [PMID: 37392962 DOI: 10.1016/j.yexcr.2023.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Scleroderma, the chronic autoimmune disease is a consequence of inflammation in the connective tissue. Prolonged duration affects formation of compact connective tissue strands (scarring) within the target organ. Endothelial cells undergoing endothelial-to-mesenchymal transition (EndMT) are the source of fibroblast phenotype-resembling cells. EndMT contributes to reorganization of the focal adhesion proteins (FA), including integrins, and intensive extracellular matrix (ECM) remodelling. However, in endothelial cells, the relationship between EndMT and the interaction of integrin receptors with lumican - a component of ECM, is still unclear. Our findings indicate that at the early stages of EndMT caused by Snail-1 transcription factor overexpression, the level of the β1 integrin subunit and its phosphorylation are elevated. Simultaneously, the changes in the level of proteins that build FAs and promote activation of integrin receptors as well as a decrease in lumican quantity were observed. These modulations contributed to increased migration of human microvascular endothelial cells, HMEC-1. Our findings were achieved by WB, ELISA and wound healing assay. Taken altogether, transfection of HMEC-1 cells with Snail-1 plasmids inducing the early stages of EndMT results in the increase of total FAK and integrin β1 phosphorylation as well as cell migration: phenomena which are modulated by interaction with lumican.
Collapse
Affiliation(s)
- Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, 92-215, Lodz, Poland
| | | | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
4
|
Zhai Y, Wang T, Fu Y, Yu T, Ding Y, Nie H. Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. Int J Mol Sci 2023; 24:ijms24098011. [PMID: 37175715 PMCID: PMC10178416 DOI: 10.3390/ijms24098011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Ferulic acid (FA), a prevalent dietary phytochemical, has many pharmacological effects, including anti-oxidation and anti-inflammation effects, and has been widely used in the pharmaceutical, food, and cosmetics industries. Many studies have shown that FA can significantly downregulate the expression of reactive oxygen species and activate nuclear factor erythroid-2-related factor-2/heme oxygenase-1 signaling, exerting anti-oxidative effects. The anti-inflammatory effect of FA is mainly related to the p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. FA has demonstrated potential clinical applications in the treatment of pulmonary diseases. The transforming growth factor-β1/small mothers against decapentaplegic 3 signaling pathway can be blocked by FA, thereby alleviating pulmonary fibrosis. Moreover, in the context of asthma, the T helper cell 1/2 imbalance is restored by FA. Furthermore, FA ameliorates acute lung injury by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase pathways via toll-like receptor 4, consequently decreasing the expression of downstream inflammatory mediators. Additionally, there is a moderate neuraminidase inhibitory activity showing a tendency to reduce the interleukin-8 level in response to influenza virus infections. Although the application of FA has broad prospects, more preclinical mechanism-based research should be carried out to test these applications in clinical settings. This review not only covers the literature on the pharmacological effects and mechanisms of FA, but also discusses the therapeutic role and toxicology of FA in several pulmonary diseases.
Collapse
Affiliation(s)
- Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
5
|
Kuo YJ, Pei JK, Chao WW. Pharmacological and Chemical Potential of Spiranthes sinensis (Orchidaceae): A Narrative Review. PLANTS 2022; 11:plants11131692. [PMID: 35807644 PMCID: PMC9269428 DOI: 10.3390/plants11131692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Orchidaceae is one of the largest families of flowering plants with more than 27,000 accepted species, and more than 31,000–35,000 species are estimated to exist in total. The orchid Spiranthes sinensis (Pers.) Ames, having ornamental and medicinal value, is widely distributed throughout Asia and Oceania. S. sinensis (Shou Tsao) is also known as Panlongshen among the common folk herbs. It has a fleshy root similar to ginseng, and the entire plant is widely used in traditional Chinese medicine. Owing to overexploitation and habitat destruction in recent years, the wild population has become scarce. The traits of this species show obvious differences in different countries. In the Taiwanese climate, it flowers during the Ching Ming Festival, also called the ching ming tsao. Previous investigations into S. sinensis have revealed the presence of flavonoids, homocyclotirucallane, dihydrophenanthrenes, ferulic acid, and 3,4-dihydroxybenzaldehyde. Phenolic constituents of structural and biological interest, including phenanthrenes and flavonoids, have been isolated and identified from S. sinensis. This natural product possesses extensive bioactivity, including anti-tumor, anti-inflammatory, and antioxidant effects. In this review, we outline the herbal medicine formulations and plant-derived natural products of S. sinensis.
Collapse
Affiliation(s)
- Yu-Jen Kuo
- Department of Health Wellness and Marketing, Kainan University, 1 Kainan Rd., Shinshing, Luchu, Taoyuan 33857, Taiwan; (Y.-J.K.); (J.-K.P.)
| | - Jin-Kuo Pei
- Department of Health Wellness and Marketing, Kainan University, 1 Kainan Rd., Shinshing, Luchu, Taoyuan 33857, Taiwan; (Y.-J.K.); (J.-K.P.)
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, 1 Kainan Rd., Shinshing, Luchu, Taoyuan 33857, Taiwan
- Correspondence: ; Tel.: +886-3-3412500 (ext. 6250)
| |
Collapse
|
6
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
7
|
Wang M, Wang L, Zhou Y, Feng X, Ye C, Wang C. Shen Shuai Ⅱ Recipe attenuates renal fibrosis in chronic kidney disease by improving hypoxia-induced the imbalance of mitochondrial dynamics via PGC-1α activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153947. [PMID: 35104767 DOI: 10.1016/j.phymed.2022.153947] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Shen Shuai Ⅱ Recipe (SSR) is an effective Chinese herbal formula for the treatment of patients with chronic kidney disease (CKD) in the clinic and significantly improves 5/6 ablation and infarction (A/I) surgery-induced renal interstitial fibrosis (RIF) and intrarenal hypoxia in rats. However, the underlying molecular mechanisms need further elucidation. PURPOSE This study aims to investigate the renoprotective mechanisms of SSR in vivo and in vitro. METHODS CKD model was induced in rats with 5/6 (A/I) surgery. 4 weeks later, rats were treated with vehicle or SSR or Fenofibrate by daily gavage. In vitro, HK2 cells exposed to hypoxia (1% O2) were treated with SSR in the presence or absence of 100 μM MitoTEMPO or 10 μM Mitochondrial Fusion Promoter M1. The effects of SSR on RIF, mitochondrial dynamics, oxidative metabolism, and mitochondrial ROS (mtROS) were determined by immunoblotting, colorimetric, and fluorometric assays according to the experimental protocols. Furthermore, to explore the mechanisms of SSR against RIF, HK2 cells of PGC-1α or MFN2 knockdown under hypoxic stimulation were treated with 400 μg/ml of SSR and (or) 1 μM of ZLN005. RESULTS The results showed that treatment with SSR significantly improved mitochondrial morphology and function, up-regulated the expression of PGC-1α protein, and inhibited the production of mtROS in 5/6 (A/I) kidneys and hypoxia-treated HK2 cells, which may be closely correlated with its anti-RIF effect. In addition, compared to wild-type HK2 cells, the roles of SSR in improving mitochondrial dynamics and energy metabolism were greatly diminished in HK2 cells of PGC-1α knockdown under hypoxic exposure. More importantly, compared to ZLN005 or SSR combined with ZLN005 treatment, MFN2-deficient HK2 cells exhibited the increased protein levels of FN, α-SMA, TGF-β1 and cleaved IL-1β in response to hypoxic stimulation. CONCLUSION SSR exerted the renoprotective effects by improving mitochondrial dynamics under hypoxic condition via PGC-1α activation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yuan Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
8
|
Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci 2021; 284:119921. [PMID: 34481866 DOI: 10.1016/j.lfs.2021.119921] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid, a kind of phenolic substance widely existing in plants, is an important active component of many traditional Chinese medicines. So far, it has been proved that ferulic acid has a variety of biological activities, especially in oxidative stress, inflammation, vascular endothelial injury, fibrosis, apoptosis and platelet aggregation. Many studies have shown that ferulic acid can inhibit PI3K/AKT pathway, the production of ROS and the activity of aldose reductase. The anti-inflammatory effect of ferulic acid is mainly related to the levels of PPAR γ, CAM and NF-κ B and p38 MAPK signaling pathways. Ferulic acid not only protects vascular endothelium by ERK1/2 and NO/ET-1 signal, but also plays an anti-fibrosis role by TGF-β/Smad and MMPs/TIMPs system. Moreover, ferulic acid has ant-apoptotic and anti-platelet effects. In addition to the pharmacological effects of ferulic acid, its pharmacokinetics and derivatives were also discussed in this paper. This review provides the latest summary of the latest research on ferulic acid.
Collapse
|
9
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
10
|
Han J, Jia Y, Wang S, Gan X. The Improvement Effect of Sodium Ferulate on the Formation of Pulmonary Fibrosis in Silicosis Mice Through the Neutrophil Alkaline Phosphatase 3 (NALP3)/Transforming Growth Factor-β1 (TGF-β1)/α-Smooth Muscle Actin (α-SMA) Pathway. Med Sci Monit 2021; 27:e927978. [PMID: 34127642 PMCID: PMC8214818 DOI: 10.12659/msm.927978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Pneumoconiosis is a chronic progressive fibrotic interstitial pneumonia for which the pathogenesis and treatment remain unclear. Previous studies showed that sodium ferulate (SF) may have a therapeutic effect, and this study explored the mechanism underlying SF-related improvement. Material/Methods In this study, a silicosis mouse model and primary cultured mouse lung fibroblasts were established. Hematoxylin-eosin staining, western blot analysis, quantitative real-time polymerase chain reaction, and Masson staining were used to observe the lung injury, expression of vimentin, and the degree of pulmonary fibrosis. The extracted lung fibroblasts were identified by immunofluorescence. The expression of fibrosis-related genes encoding transforming growth factor-β1 (TGF-β1), neutrophil alkaline phosphatase 3 (NALP3), collagen-1, α-smooth muscle actin (α-SMA), and phosphorylated p38 (p-p38) and p38 proteins were detected by western blot. The effects of SF and the TGF-β pathway agonist SRI-011381 on cell proliferation and the expression of fibrosis-related protein in mouse lung fibroblasts were measured by Cell Counting Kit-8, immunofluorescence, and western blot as needed. Results SF reduced the lung lesions in silicosis mice and inhibited the expression of vimentin and fibrosis-related genes, while having no effect on body weight. Vimentin expression was positive in the extracted cells. In vitro experiments showed that SF inhibited the proliferation of lung fibroblasts and the expression of fibrosis-related proteins. In addition, SF partly reversed the opposite regulatory effect of SRI-011381 on lung fibroblasts. Conclusions SF inhibited lung injury and fibrosis in silicosis mice through the NALP3/TGF-β1/α-SMA pathway.
Collapse
Affiliation(s)
- Jingyin Han
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yangmin Jia
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shujuan Wang
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoyu Gan
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
11
|
Flacourtia indica fruit extract modulated antioxidant gene expression, prevented oxidative stress and ameliorated kidney dysfunction in isoprenaline administered rats. Biochem Biophys Rep 2021; 26:101012. [PMID: 34041370 PMCID: PMC8142055 DOI: 10.1016/j.bbrep.2021.101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the effect of Flacourtia indica fruit extract against isoprenaline (ISO) induced renal damage in rats. This investigation showed that ISO administration in rats increased the level oxidative stress biomarkers such as malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP) in kidneys followed by a decrease in antioxidant enzymes functions. Flacourtia indica fruit extract, which is rich in strong antioxidants, also reduced the MDA, NO and APOP level in kidney of ISO administered rats. Inflammation and necrosis was also visible in kidney section of ISO administered rats which was significantly prevented by atenolol and Flacourtia indica fruit extract. Moreover, atenolol and Flacourtia indica fruit extract also modulated the genes expressions related to inflammation and oxidative stress in kidneys. The beneficial effects could be attributed to the presence of a number of phenolic antioxidants. This study suggests that Flacourtia indica fruit extract may prevent kidney dysfunction in ISO administered rats, probably by preventing oxidative stress and inflammation.
Collapse
|
12
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Kiełbasiński K, Peszek W, Grabarek BO, Boroń D, Wierzbik-Strońska M, Oplawski M. Effect of Salinomycin on Expression Pattern of Genes Associated with Apoptosis in Endometrial Cancer Cell Line. Curr Pharm Biotechnol 2020; 21:1269-1277. [PMID: 32400328 PMCID: PMC7604770 DOI: 10.2174/1389201021666200513074022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
Abstract
Background Salinomycin is part of a group of ionophore antibiotics characterized by an activity towards tumor cells. To this day, the mechanism through which salinomycin induces their apoptosis is not fully known yet. The goal of this study was to assess the expression pattern of genes and the proteins coded by them connected with the process of programmed cell death in an endometrial cancer cell Ishikawa culture exposed to salinomycin and compared to the control. Materials and Methods Analysis of the effect of salinomycin on Ishikawa endometrial cancer cells (ECACC 99040201) included a cytotoxicity MTT test (with a concentration range of 0.1-100 µM), assessment of the induction of apoptosis and necrosis by salinomycin at a concentration of 1 µM as well the assessment of the expression of the genes chosen in the microarray experiment (microarray HG-U 133A_2) and the proteins coded by them connected with apoptosis (RTqPCR, ELISA assay). The statistical significance level for all analyses carried out as part of this study was p<0.05. Results It was observed that salinomycin causes the death of about 50% of cells treated by it (50.74±0.80% of all cells) at a concentration of 1µM. The decrease in the number of living cells was determined directly after treatment of the cells with the drug (time 0). The average percent of late apoptotic cells was 1.65±0.24% and 0.57±0.01% for necrotic cells throughout the entire observation period. Discussion Microarray analysis indicated the following number of mRNA differentiating the culture depending on the time of incubation with the drug: H_12 vs C = 114 mRNA, H_8 vs C = 84 mRNA, H_48 vs. C = 27 mRNA, whereas 5 mRNAs were expressed differently at all times. During the whole incubation period of the cells with the drug, the following dependence of the expression profile of the analyzed transcripts was observed: Bax>p53>FASL>BIRC5>BCL2L. Conclusion The analysis carried out indicated that salinomycin, at a concentration of 1 µM, stopped the proliferation of 50% of endometrial cancer cells, mainly by inducing the apoptotic process of the cells. The molecular exponent of the induction of programmed cell death was an observed increase in the transcriptional activity of pro-apoptotic genes: Bax;p53;FASL and a decrease in the expression of anti-apoptotic genes: BCL2L2; BIRC5.
Collapse
Affiliation(s)
- Kamil Kiełbasiński
- Department of Obsterics and Gynaecology in Ruda Slaska, Medical University of Silesia, Ruda Slaska, Poland
| | - Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | | | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
14
|
Bahri S, Ali RB, Abdennabi R, Nahdi A, Mlika M, Jameleddine S. Industrial Elimination of Essential Oils from Rosmarinus Officinalis: In Support of the Synergic Antifibrotic Effect of Rosmarinic and Carnosic Acids in Bleomycin Model of Lung Fibrosis. Nutr Cancer 2020; 73:2376-2387. [PMID: 33059466 DOI: 10.1080/01635581.2020.1826991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by collagen deposition as a consequence of excessive lung fibroblasts and myofibroblasts proliferation. We aimed to investigate for the first time the effect of rosemary leaf extract rich with carnosic acid (CA) or rosmarinic acid (RA), after industrial elimination of essential oils, against bleomycin (BLM)-induced lung fibrosis in rats. Male Wistar rats were given a single dose of BLM (4 mg/kg, intratracheal), while CA rich extract, RA rich extract or the combination RA/CA rich extracts (10, 75 and 150 mg/kg, intraperitoneal) were administered 3 day later and continued for 4 weeks. We reveled by HPLC an important similar amount of phenolic compounds such as pyrogallol, vanillic, gallic and ellagic acids in both rosemary extracts. BLM induced lung fibrotic foci and disturbance in superoxide dismutase, catalase and malondialdehyde levels. At 10 mg/kg, both rosemary extracts administrated alone or in combination alleviated synergistically lung fibrosis and ameliorated oxidative changes induced by BLM. In conclusion, industrial elimination of essential oils from rosemary allowed us to obtain two extracts with potent antifibrotic activities due to the large amount of RA and CA that appear much higher and effective than wild rosemary extract.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia.,Laboratory of Quality Control, Herbes De Tunisie, Company AYACHI-Group, Siliana, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
15
|
Antiepithelial-Mesenchymal Transition of Herbal Active Substance in Tumor Cells via Different Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9253745. [PMID: 32377312 PMCID: PMC7183534 DOI: 10.1155/2020/9253745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process through which epithelial cells differentiate into mesenchymal cells. EMT plays an important role in embryonic development and wound healing; however, EMT also contributes to some pathological processes, such as tumor metastasis and fibrosis. EMT mechanisms, including gene mutation and transcription factor regulation, are complicated and not yet well understood. In this review, we introduce some herbal active substances that exert antitumor activity through inhibiting EMT that is induced by hypoxia, high blood glucose level, lipopolysaccharide, or other factors.
Collapse
|
16
|
Hsu YC, Chang PJ, Tung CW, Shih YH, Ni WC, Li YC, Uto T, Shoyama Y, Ho C, Lin CL. De-Glycyrrhizinated Licorice Extract Attenuates High Glucose-Stimulated Renal Tubular Epithelial-Mesenchymal Transition via Suppressing the Notch2 Signaling Pathway. Cells 2020; 9:cells9010125. [PMID: 31948095 PMCID: PMC7016866 DOI: 10.3390/cells9010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tubulointerstitial fibrosis is a major pathological hallmark of diabetic nephropathy. Increasing evidence has shown that epithelial-to-mesenchymal transition (EMT) of renal proximal tubular cells plays a crucial role in tubulointerstitial fibrosis. Herein, we aimed to elucidate the detailed mechanism of EMT in renal tubular cells under high glucose (HG) conditions, and to investigate the potential of licorice, a medicinal herb, to inhibit HG-induced EMT. Our results showed that renal tubular epithelial cells (normal rat kidney cell clone 52E; NRK-52E) exposed to HG resulted in EMT induction characterized by increased fibronectin and α-SMA (alpha-smooth muscle actin) but decreased E-cadherin. Elevated levels of cleaved Notch2, MAML-1 (mastermind-like transcriptional coactivator 1), nicastrin, Jagged-1 and Delta-like 1 were also concomitantly detected in HG-cultured cells. Importantly, pharmacological inhibition, small interfering RNA (siRNA)-mediated depletion or overexpression of the key components of Notch2 signaling in NRK-52E cells supported that the activated Notch2 pathway is essential for tubular EMT. Moreover, we found that licorice extract (LE) with or without glycyrrhizin, one of bioactive components in licorice, effectively blocked HG-triggered EMT in NRK-52E cells, mainly through suppressing the Notch2 pathway. Our findings therefore suggest that Notch2-mediated renal tubular EMT could be a therapeutic target in diabetic nephropathy, and both LE and de-glycyrrhizinated LE could have therapeutic potential to attenuate renal tubular EMT and fibrosis.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wu Tung
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Wen-Chiu Ni
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yi-Chen Li
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Takuhiro Uto
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| |
Collapse
|
17
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
白 志, 陆 静, 杨 亦. [Role of TGF-β1/ILK/FSP1 signaling pathway in cyclosporin A-induced epithelialmesenchymal transition in cultured renal tubular epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:804-809. [PMID: 31340913 PMCID: PMC6765554 DOI: 10.12122/j.issn.1673-4254.2019.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of transforming growth factor-β1/integrin-linked kinase/fibroblast-specific protein 1 (TGF- β1/ILK/FSP1) signaling pathway in cyclosporine A (CsA)-induced renal tubular epithelial cell transdifferentiation. METHODS Rat renal tubular epithelial NRK-52E cells were induced with 1 mg/L CsA, treated with TGF-β1 inhibitor (SB431542, 10 μmol/L), or transfected with the ILK-RNAi lentiviral expression vector (ILKshRNA) or a negative control vector before CsA induction. The expressions of TGF-β1, ILK and FSP-1 mRNAs and proteins in the cells were detected using real-time PCR and Western blotting. The positive cells for α-SMA expression were detected by immunohistochemistry. RESULTS Compared with the blank control cells, the cells treated with CsA showed significantly increased levels of TGF-β1, ILK and FSP-1 mRNAs and proteins (P < 0.05). The expressions of TGF-β1, ILK and FSP-1 were significantly lower in TGF-β1 inhibitor group than in CsA group (P < 0.05). The levels of ILK and FSP-1 were significantly decreased after shRNA-mediated ILK silencing (P < 0.05). The number of positive cells for α-SMA was significantly lower in cells treated with SB431542 and in cells with ILK silencing than in the cells treated with CsA alone (P < 0.05). CONCLUSIONS The activation of TGF-β1/ILK/FSP-1 signaling pathway is an important mechanism for CsA-induced transdifferentiation in rat renal tubular epithelial cells. ILK participates in CsA-induced epithelialmesenchymal transition of renal tubular epithelial cells.
Collapse
Affiliation(s)
- 志勋 白
- 遵义医科大学第二附属医院肾病风湿科,贵州 遵义 563000Department of Nephrology and Rheumatology, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - 静 陆
- 遵义医药高等专科学校,贵州 遵义 563006Zunyi Medical and Pharmaceutical College, Zunyi 563006, China
| | - 亦彬 杨
- 遵义医科大学附属医院肾病风湿科,贵州 遵义 563006Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
19
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2019; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Tang Y, Xuan Y, Qiao G, Ou Z, He Z, Zhu Q, Liao M, Yin G. MDM2 promotes epithelial-mesenchymal transition through activation of Smad2/3 signaling pathway in lung adenocarcinoma. Onco Targets Ther 2019; 12:2247-2258. [PMID: 30988629 PMCID: PMC6441555 DOI: 10.2147/ott.s185076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Mouse double minute 2 (MDM2) contributes to cancer metastasis and epithelial-mesenchymal transition (EMT). This study aimed to investigate small mothers against decapentaplegic (Smad) signaling in MDM2-mediated EMT in lung adenocarcinoma (LAC). Materials and methods Expression patterns of MDM2 in LAC tissues, adjacent tissues, and cell lines (BEAS-2B, PC9, H1975, and A549) were detected. We then overexpressed MDM2 in PC9 cells and knocked it down in H1975 cells. To explore whether MDM2 activates EMT through the Smad2/3 signaling pathway, Smad2 and Smad3 were also silenced by siRNA in H1975 cells. Male BALB/c nude mice were used in in vivo model to validate the effects of MDM2 on LAC cells. Results MDM2 was significantly upregulated in LAC tissues compared with adjacent tissues. The expression of MDM2 was relatively higher in PC9 cells and relatively lower in H1975 cells compared with A549 cells. Overexpression of MDM2 significantly increased cell proliferation, migration, and invasion in LAC cells, while inhibiting apoptosis in PC9 cells. On the contrary, silencing of MDM2 significantly inhibited the expression of EMT-related genes N-cadherin and vimentin, while promoting the expression of E-cadherin and β-catenin. In vivo, MDM2 knockdown inhibited tumor growth. In addition, the expression of Smad2/3 was correlated with MDM2 in H1975 cells transfected with Smad2 and Smad3 siRNAs, which inhibited EMT progress. Conclusion MDM2 can activate the Smad2/3 signaling pathway, which promotes the proliferation and EMT progress of LAC cells.
Collapse
Affiliation(s)
- Yong Tang
- Southern Medical University, Guangzhou, China, .,Department of Thoracic Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yiwen Xuan
- Department of Thoracic Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhu'an Ou
- Department of Thoracic Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhe He
- Department of Thoracic Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Qihang Zhu
- Department of Thoracic Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ming Liao
- Department of Thoracic Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Guilin Yin
- Southern Medical University, Guangzhou, China,
| |
Collapse
|
21
|
Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. Front Pharmacol 2019; 10:27. [PMID: 30804780 PMCID: PMC6371841 DOI: 10.3389/fphar.2019.00027] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Oxidative insult, inflammation, apoptosis and autophagy play a pivotal role in the etiology of diabetic nephropathy, a global health concern. Ferulic acid, a phytochemical, is reported to protect against varied diseased conditions. However, the ameliorative role and mechanisms of ferulic acid in averting STZ-mediated nephrotoxicity largely remains unknown. For in vivo study, a single intraperitoneal injection of streptozotocin (50 mg kg-1 body wt.) was administered in experimental rats to induce diabetes. The diabetic rats exhibited a rise in blood glucose level as well as kidney to body weight ratio, a decrease in serum insulin level, severe kidney tissue damage and dysfunction. Elevation of intracellular ROS level, altered mitochondrial membrane potential and cellular redox balance impairment shown the participation of oxidative stress in hyperglycemia-triggered renal injury. Treatment with ferulic acid (50 mg kg-1 body wt., orally for 8 weeks), post-diabetic induction, could markedly ameliorate kidney injury, renal cell apoptosis, inflammation and defective autophagy in the kidneys. The underlying mechanism for such protection involved the modulation of AGEs, MAPKs (p38, JNK, and ERK 1/2), NF-κB mediated inflammatory pathways, mitochondria-dependent and -independent apoptosis as well as autophagy induction. In cultured NRK-52E cells, ferulic acid (at an optimum dose of 75 μM) could counter excessive ROS generation, induce autophagy and inhibit apoptotic death of cells under high glucose environment. Blockade of autophagy could significantly eradicate the protective effect of ferulic acid in high glucose-mediated cell death. Together, the study confirmed that ferulic acid, exhibiting hypoglycemic, antioxidant, anti-inflammatory, anti-apoptotic activities and role in autophagy, could circumvent oxidative stress-mediated renal cell damage.
Collapse
Affiliation(s)
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
22
|
Chen Y, Wei J, Zhang Y, Sun W, Li Z, Wang Q, Xu X, Li C, Li P. Anti-endometriosis Mechanism of Jiawei Foshou San Based on Network Pharmacology. Front Pharmacol 2018; 9:811. [PMID: 30093862 PMCID: PMC6071511 DOI: 10.3389/fphar.2018.00811] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Jiawei Foshou San (JFS) is the new formula originated from classic Foshou San formula, composed with ligustrazine, ferulic acid, and tetrahydropalmatine. Previously JFS inhibited the growth of endometriosis (EMS) with unclear mechanism, especially in metastasis, invasion, and epithelial-mesenchymal transition. In this study, network pharmacology was performed to explore potential mechanism of JFS on EMS. Through compound-compound target and compound target-EMS target networks, key targets were analyzed for pathway enrichment. MMP-TIMP were uncovered as one cluster of the core targets. Furthermore, autologous transplantation of EMS rat's model were used to evaluate in vivo effect of JFS on invasion, metastasis and epithelial-mesenchymal transition. JFS significantly suppressed the growth, and reduced the volume of ectopic endometrium, with modification of pathologic structure. In-depth study, invasion and metastasis were restrained after treating with JFS through decreasing MMP-2 and MMP-9, increasing TIMP-1. Meanwhile, JFS promoted E-cadherin, and attenuated N-cadherin, Vimentin, Snail, Slug, ZEB1, ZEB2, Twist. In brief, anti-EMS effect of JFS might be related to the regulation of epithelial-mesenchymal transformation, thereby inhibition of invasion and metastasis. These findings reveal the potential mechanism of JFS on EMS and the benefit for further evaluation.
Collapse
Affiliation(s)
- Yi Chen
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Jiahui Wei
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Ying Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Wenwei Sun
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Zhuoheng Li
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Qin Wang
- Department of Traditional Chinese Medicine and Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaoyu Xu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Cong Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Panhong Li
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
23
|
Qi FH, Cai PP, Liu X, Si GM. Adenovirus-mediated P311 ameliorates renal fibrosis through inhibition of epithelial-mesenchymal transition via TGF-β1-Smad-ILK pathway in unilateral ureteral obstruction rats. Int J Mol Med 2018; 41:3015-3023. [PMID: 29436600 DOI: 10.3892/ijmm.2018.3485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/06/2018] [Indexed: 11/05/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical step and key factor during renal fibrosis. Preventing renal tubular EMT is important for delaying the progression of chronic kidney disease (CKD). P311, a highly conserved 8-kDa intracellular protein, has been indicated as an important factor in myofibroblast transformation and in the progression of fibrosis. However, the related studies on P311 on renal fibrosis are limited and the mechanisms of P311 in the progression of renal tubulointerstitial fibrosis remain largely unknown. In the present study, we examined the effect of P311 on transforming growth factor-β1 (TGF-β1)-mediated EMT in a rat model of unilateral ureteral occlusion (UUO) renal fibrosis. The recombinant adenovirus p311 (also called Ad-P311) was constructed and transferred it into UUO rats, the preventive effect and possible mechanism of P311 on TGF-β1-mediated EMT were explored. The UUO model was established successfully and Ad-P311 was administered into UUO rats each week for 4 weeks, then the serum levels of Cr, blood urea nitrogen (BUN) and albumin (ALB) were evaluated. H&E staining and Masson staining were performed to observe the pathological changes of kidneys. Immunohistochemical staining and western blot analysis were used to examine the EMT markers [E-cadherin and α-smooth muscle actin (α-SMA)], and signal transducers (p-Smad2/3 and Smad7). Integrin linked kinase (ILK) as a keyintracellular mediator that controls TGF-β1-mediated-EMT was also assayed by western blot analysis. The results showed that P311 could alleviate renal tubular damage and interstitial fibrosis improving Cr, BUN and ALB serum levels in UUO kidneys. Furthermore, P311 attenuated TGF-β1-mediated EMT through Smad-ILK signaling pathway with an increase in α-SMA, pSmad2/3 and ILK expression, and a decrease in E-cadherin and Smad7 expression in UUO kidneys. In conclusion, P311 may be involved in the pathogenesis of renal fibrosis by blocking TGF-β1-mediated EMT via TGF-β1-Smad-ILK pathway in UUO kidneys. P311 may be a novel target for the control of renal fibrosis and the progression of CKD.
Collapse
Affiliation(s)
- Fang-Hua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ping-Ping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiang Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guo-Min Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
24
|
RACK1 silencing attenuates renal fibrosis by inhibiting TGF-β signaling. Int J Mol Med 2017; 40:1965-1970. [PMID: 29039466 DOI: 10.3892/ijmm.2017.3154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/18/2017] [Indexed: 11/05/2022] Open
Abstract
The receptor for activated C-kinase 1 (RACK1) is a member of the WD40-repeat family of proteins and has been reported to be implicated in the development of liver fibrosis. However, the role of RACK1 in renal fibrosis remains unclear. Therefore, in this study, we investigated the effects of RACK1 on transforming growth factor-β1 (TGF-β1)-treated human proximal tubular epithelial cells and aimed to elucidate the possible mechanisms responsible for its anti-fibrotic effects. Our results revealed that RACK1 was highly expressed in the renal fibrotic tissues and TGF-β1-treated HK-2 cells. RACK1 silencing inhibited TGF-β1‑induced α-smooth muscle actin and connective tissue growth factor expression in the HK-2 cells. Furthermore, RACK1 silencing inhibited the expression of phosphorylated Smad3 in the TGF-β1-treated HK-2 cells. To the best of our knowledge, these data demonstrate for the first time the role of RACK1 in renal fibrosis. The present findings indicate that RACK1 silencing attenuates renal fibrosis by suppressing the activation of TGF-β1/Smad3 signaling pathway in HK-2 cells. Thus, RACK1 may serve as a novel regulator of renal fibrosis.
Collapse
|
25
|
Kim DY, Kang MK, Park SH, Lee EJ, Kim YH, Oh H, Choi YJ, Kang YH. Eucalyptol ameliorates Snail1/β-catenin-dependent diabetic disjunction of renal tubular epithelial cells and tubulointerstitial fibrosis. Oncotarget 2017; 8:106190-106205. [PMID: 29290941 PMCID: PMC5739726 DOI: 10.18632/oncotarget.22311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Renal tubulointerstitial fibrosis is an important event in the pathogenesis of diabetic nephropathy. Under pathologic conditions, renal tubular epithelial cells undergo transition characterized by loss of cell-cell adhesion and increased cell migration. This study investigated that eucalyptol inhibited tubular epithelial cell disjunction and tubulointerstitial fibrosis stimulated by glucose. Human renal proximal tubular epithelial cells were incubated for up to 72 h in media containing 27.5 mM mannitol as osmotic controls or 33 mM glucose in the presence of 1-20 μM eucalyptol. Nontoxic eucalyptol inhibited glucose-induced expression of the mesenchymal markers of N-cadherin and α-smooth muscle actin, whereas the induction of E-cadherin was enhanced. Eucalyptol attenuated the induction of connective tissue growth factor and collagen IV by glucose, whereas the membrane type 1-matrix metalloproteinase expression was enhanced with reducing tissue inhibitor of metalloproteinase-2 expression. Oral administration of 10 mg/kg eucalyptol to db/db mice for 8 weeks blunted hyperglycemia and proteinuria. Eucalyptol reversed tissue levels of E-cadherin, N-cadherin and P-cadherin and the collagen fiber deposition in diabetic kidneys. Eucalyptol attenuated the induction of Snail1, β-catenin and integrin-linked kinase 1 (ILK1) in glucose-exposed tubular cells and diabetic kidneys, and the glycogen synthase kinase (GSK)-3β expression was reversely enhanced. Glucose prompted TGF-β1 production in tubular cells, leading to induction of Snail1, β-catenin and ILK1, which was dampened by eucalyptol. Furthermore, the Snail1 gene deletion encumbered the β-catenin induction in glucose/eucalyptol-treated tubular cells accompanying enhanced GSK-3β expression. Therefore, eucalyptol may antagonize hyperglycemia-induced tubular epithelial derangement and tubulointerstitial fibrosis through blocking ILK1-dependent transcriptional interaction of Snail1/β-catenin.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| |
Collapse
|
26
|
Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway. Nutrients 2017; 9:nu9080911. [PMID: 28825675 PMCID: PMC5579704 DOI: 10.3390/nu9080911] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has received significant interest as a novel target in cancer prevention, metastasis, and resistance. The conversion of cells from an epithelial, adhesive state to a mesenchymal, motile state is one of the key events in the development of cancer metastasis. Polyphenols have been reported to be efficacious in the prevention of cancer and reversing cancer progression. Recently, the antimetastatic efficacy of polyphenols has been reported, thereby expanding the potential use of these compounds beyond chemoprevention. Polyphenols may affect EMT pathways, which are involved in cancer metastasis; for example, polyphenols increase the levels of epithelial markers, but downregulate the mesenchymal markers. Polyphenols also alter the level of expression and functionality of important proteins in other signaling pathways that control cellular mesenchymal characteristics. However, the specific proteins that are directly affected by polyphenols in these signaling pathways remain to be elucidated. The aim of this review is to analyze current evidence regarding the role of polyphenols in attenuating EMT-mediated cancer progression and metastasis. We also discuss the role of the most important polyphenol subclasses and members of the polyphenols in reversing metastasis and targeting EMT. Finally, limitations and future directions to improve our understanding in this field are discussed.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University Queens, New York, NY 11432, USA.
| | - Temesgen Samuel
- Department of Pathology, School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Ramalingam Peraman
- Medicinal chemistry Division, Raghavendra Institute of Pharmaceutical education and Research (RIPER)-Autonomous, Anantapur 515721, India.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
27
|
JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-β/Smad Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5031890. [PMID: 27403197 PMCID: PMC4923567 DOI: 10.1155/2016/5031890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 11/23/2022]
Abstract
JiaWeiDangGui (JWDG) decoction has anti-inflammatory and antifibrotic effects, which is used widely for the treatment of various kidney diseases. In previous studies, we have found that JWDG decoction can reduce the quantity of proteinuria, but the mechanism was unknown. Here, we studied the protective effect of JWDG decoction in adriamycin-induced nephropathy on rat. JWDG decoction, at 10 mL/kg/d, 20 mL/kg/d, and 40 mL/kg/d, was orally administered daily for 12 weeks. Therapeutic effects and mechanisms were further examined. The kidney function related biochemical indexes were measured by automatic biochemistry analyzer. The pathomorphological changes were observed using light and transmission electron microcopies. The proteins expressions of podocin, nephrin, collagen IV, and fibronectin (FN) were examined by immunohistochemical staining, and key proteins involved in TGF-β/Smad signaling were evaluated by RT-PCR and western blotting. Compared with vehicle-treated controls, JWDG decoction decreased the quantity of proteinuria; reduced glomerulosclerotic lesions induced by ADR; and preserved the expression of podocin and nephrin. JWDG decoction also inhibited the expression of the collagen IV, FN, and fibrogenic TGF-β. Further studies revealed that inhibition of renal fibrosis was associated with the blockade of TGF-β/Smad signaling and downregulation of snail expression dose dependently. JWDG decoction prevents proteinuria production, podocyte dysfunction, and kidney injury in adriamycin nephropathy by inhibiting TGF-β/Smad signaling.
Collapse
|
28
|
Lu Y, Wang J, Dapeng C, Wu D, Cai G, Chen X. Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. BMC Nephrol 2016; 17:39. [PMID: 27036204 PMCID: PMC4818421 DOI: 10.1186/s12882-016-0249-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Background Dysfunction of renal tubule epithelial cells is associated with renal tubulointerstitial fibrosis. Exploration of the proteomic profiles of senesced tubule epithelial cells is essential to elucidate the mechanism of tubulointerstitium development. Methods Primary human proximal tubule epithelial cells from passage 3 (P3) and passage 6 (P6) were selected for evaluation. EdU and SA-β-galactosidase staining were used to detect cell senescence. p53, p21, and p16 were detected by Western blot analysis. Liquid chromatography mass spectrometry (LC-MS) was used to examine differentially expressed proteins (DEPs) between P6 and P3 cells. The expression of DEPs was examined by Western blot analysis. Bioinformatics analysis was performed by protein-protein interaction and gene ontology analyses. Results The majority of tubule cells from passage 6 (P6) stained positive for SA-β-galactosidase, whereas passage 3 (P3) cells were negative. Senescence biomarkers, including p53, p21, and p16, were upregulated in P6 cells relative to P3 cells. EdU staining results showed a lower rate of EdU positive cells in P6 cells than in P3 cells. LC-MS was used to examine DEPs between P6 and P3 cells. These DEPs are involved in glycolysis, response to stress, cytoskeleton regulation, oxidative reduction, ATP binding, and oxidative stress. Using Western blot analysis, we validated the down-regulation of AKR1B1, EEF2, EEF1A1, and HSP90 and the up-regulation of VIM in P6 cells seen in the LC-MS data. More importantly, we built the molecular network based on biological functions and protein-protein interactions and found that the DEPs are involved in translation elongation, stress, and glycolysis, and that they are all associated with cytoskeleton regulation, which regulates senescent cell activities such as apoptosis and EMT in tubule epithelial cells. Conclusions We explored proteomic profile changes in cell culture-induced senescent cells and built senescence-associated molecular networks, which will help to elucidate the mechanisms of senescence in human proximal tubule epithelial cells.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Jingchao Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Chen Dapeng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China.,Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China.
| |
Collapse
|