1
|
Guzzoni V, Emerich de Abreu ICM, Bertagnolli M, Mendes RH, Belló-Klein A, Casarini DE, Flues K, Cândido GO, Paulini J, De Angelis K, Marcondes FK, Irigoyen MC, Sousa Cunha T. Aerobic training increases renal antioxidant defence and reduces angiotensin II levels, mitigating the high mortality in SHR-STZ model. Arch Physiol Biochem 2024:1-13. [PMID: 39016681 DOI: 10.1080/13813455.2024.2377381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
OBJECTVE The purpose of the research was to investigate the effects of aerobic training on renal function, oxidative stress, intrarenal renin-angiotensin system, and mortality of hypertensive and diabetic (SHR-STZ) rats. MATERIALS AND METHODS Blood pressure, creatinine, urea levels, urinary glucose, urine volume, and protein excretion were reduced in trained SHR-STZ rats. RESULTS Aerobic training not only attenuated oxidative stress but also elevated the activity of antioxidant enzymes in the kid'ney of SHR-STZ rats. Training increased intrarenal levels of angiotensin-converting enzymes (ACE and ACE2) as well as the neprilysin (NEP) activity, along with decreased intrarenal angiotensin II (Ang II) levels. Aerobic training significantly improved the survival of STZ-SHR rats. CONCLUSION The protective role of aerobic training was associated with improvements in the renal antioxidative capacity, reduced urinary protein excretion along with reduced intrarenal Ang II and increased NEP activity. These findings might reflect a better survival under the combined pathological conditions, hypertension, and diabetes.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Roberta Hack Mendes
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karin Flues
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Geórgia Orsi Cândido
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Janaína Paulini
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Kátia De Angelis
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP - UNICAMP), Piracicaba, Brazil
| | - Maria Cláudia Irigoyen
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
2
|
Król-Kulikowska M, Abramenko N, Jakubek M, Banasik M, Kepinska M. The Role of Angiotensin-Converting Enzyme (ACE) Polymorphisms in the Risk of Development and Treatment of Diabetic Nephropathy. J Clin Med 2024; 13:995. [PMID: 38398308 PMCID: PMC10889548 DOI: 10.3390/jcm13040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) is responsible for the production of angiotensin II, and increased production of angiotensin II is observed in diabetes. What is more, ACE polymorphisms may play a role in the development of diabetic nephropathy. The aim of this study was to assess the role of selected ACE polymorphisms (rs4343 and rs4646994) in the risk of development of diabetic nephropathy and in the likelihood of renal replacement therapy. METHODS ACE polymorphisms were analyzed in a group of 225 patients who were divided into three subgroups. The rs4343 polymorphism was determined using the PCR-RFLP, and the rs4646994 polymorphism was determined using the PCR. Molecular docking between domains of ACE and its ligands was performed by using AutoDock Vina. RESULTS The G/G genotype of rs4343 polymorphism is associated with increased odds of developing diabetic nephropathy. The G allele is also associated with a higher risk of this disease. Similar results were obtained in patients who had already had a kidney transplant as a result of diabetic nephropathy. CONCLUSIONS The presence of G/G and G/A genotypes, and the G allele increases the likelihood of developing diabetic nephropathy. This may also be a risk factor for renal replacement therapy.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Mirosław Banasik
- Department and Clinic of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| |
Collapse
|
3
|
Chen CY, Lin MW, Xie XY, Lin CH, Yang CW, Wu PC, Liu DH, Wu CJ, Lin CS. Studying the Roles of the Renin-Angiotensin System in Accelerating the Disease of High-Fat-Diet-Induced Diabetic Nephropathy in a db/db and ACE2 Double-Gene-Knockout Mouse Model. Int J Mol Sci 2023; 25:329. [PMID: 38203500 PMCID: PMC10779113 DOI: 10.3390/ijms25010329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic nephropathy (DN) is a crucial metabolic health problem. The renin-angiotensin system (RAS) is well known to play an important role in DN. Abnormal RAS activity can cause the over-accumulation of angiotensin II (Ang II). Angiotensin-converting enzyme inhibitor (ACEI) administration has been proposed as a therapy, but previous studies have also indicated that chymase, the enzyme that hydrolyzes angiotensin I to Ang II in an ACE-independent pathway, may play an important role in the progression of DN. Therefore, this study established a model of severe DN progression in a db/db and ACE2 KO mouse model (db and ACE2 double-gene-knockout mice) to explore the roles of RAS factors in DNA and changes in their activity after short-term (only 4 weeks) feeding of a high-fat diet (HFD) to 8-week-old mice. The results indicate that FD-fed db/db and ACE2 KO mice fed an HFD represent a good model for investigating the role of RAS in DN. An HFD promotes the activation of MAPK, including p-JNK and p-p38, as well as the RAS signaling pathway, leading to renal damage in mice. Blocking Ang II/AT1R could alleviate the progression of DN after administration of ACEI or chymase inhibitor (CI). Both ACE and chymase are highly involved in Ang II generation in HFD-induced DN; therefore, ACEI and CI are potential treatments for DN.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Hsinchu 300, Taiwan;
- MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Xing-Yang Xie
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Chung-Wei Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan;
| | - Pei-Ching Wu
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Dung-Huan Liu
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 100, Taiwan
- Division of Medicine, College of Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Sex Difference in MasR Expression and Functions in the Renal System. J Renin Angiotensin Aldosterone Syst 2022; 2022:1327839. [PMID: 36148474 PMCID: PMC9482541 DOI: 10.1155/2022/1327839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Renin-angiotensin system (RAS), as a critical system for controlling body fluid and hemostasis, contains peptides and receptors, including angiotensin 1-7 (Ang 1-7) and Mas receptor (MasR). Ang 1-7 implements its function via MasR. Ang II is another peptide in RAS that performs its actions via two Ang II type 1 and 2 receptors (AT1R and AT2R). The functions of AT2R and MasR are very similar, and both have a vasodilation effect, while AT1R has a vasoconstriction role. MasR affects many mechanisms in the brain, heart, blood vessels, kidney, lung, endocrine, reproductive, skeletal muscle, and liver and probably acts like a paracrine hormone in these organs. The effect of Ang 1-7 in the kidney is complex according to the hydroelectrolyte status, the renal sympathetic nervous system, and the activity level of the RAS. The MasR expression and function seem more complex than Ang II receptors and have interacted with Ang II receptors and many other factors, including sex hormones. Also, pathological conditions including hypertension, diabetes, and ischemia-reperfusion could change MasR expression and function. In this review, we consider the role of sex differences in MasR expression and functions in the renal system under physiological and pathological conditions.
Collapse
|
5
|
Alexandre-Santos B, Magliano DC, Giori IG, Medeiros GRDO, Vieira CP, Conte-Junior CA, Nobrega ACLD, Frantz EDC. Renin-angiotensin system modulation through enalapril and/or exercise training improves visceral adiposity in obese mice. Life Sci 2022; 291:120269. [PMID: 34974075 DOI: 10.1016/j.lfs.2021.120269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Obesity-related metabolic diseases occur as a result of disruptions in white adipose tissue (WAT) plasticity, especially through visceral fat accumulation and adipocyte hypertrophy. This study aimed to evaluate the impact of renin-angiotensin system (RAS) and bradykinin receptors modulation by enalapril treatment and/or exercise training on WAT morphology and related deleterious outcomes. METHODS Male C57BL/6 mice were fed either a standard chow or a high-fat (HF) diet for 16 weeks. At the 8th week, HF-fed animals were divided into sedentary (HF), enalapril treatment (HF-E), exercise training (HF-T), and enalapril treatment plus exercise training (HF-ET) groups. Following the experimental protocol, body mass gain, adiposity index, insulin resistance, visceral WAT morphometry, renin-angiotensin system, and bradykinin receptors were evaluated. RESULTS The HF group displayed increased adiposity, larger visceral fat mass, and adipocyte hypertrophy, which was accompanied by insulin resistance, overactivation of Ang II/AT1R arm, and favoring of B1R in bradykinin receptors profile. All interventions ameliorated visceral adiposity and related outcomes by favoring the Ang 1-7/MasR arm and the B2R expression in B1R/B2R ratio. However, combined therapy additively reduced Ang II/Ang 1-7 ratio. CONCLUSION Our results suggest that Ang 1-7/MasR arm and B2R activation might be relevant targets in the treatment of visceral obesity.
Collapse
Affiliation(s)
- Beatriz Alexandre-Santos
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Isabele Gomes Giori
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Carla P Vieira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, RJ, Brazil; Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, RJ, Brazil; Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT Physical (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT Physical (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil.
| |
Collapse
|
6
|
Giani JF, Veiras LC, Shen JZY, Bernstein EA, Cao D, Okwan-Duodu D, Khan Z, Gonzalez-Villalobos RA, Bernstein KE. Novel roles of the renal angiotensin-converting enzyme. Mol Cell Endocrinol 2021; 529:111257. [PMID: 33781839 PMCID: PMC8127398 DOI: 10.1016/j.mce.2021.111257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/03/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
The observation that all components of the renin angiotensin system (RAS) are expressed in the kidney and the fact that intratubular angiotensin (Ang) II levels greatly exceed the plasma concentration suggest that the synthesis of renal Ang II occurs independently of the circulating RAS. One of the main components of this so-called intrarenal RAS is angiotensin-converting enzyme (ACE). Although the role of ACE in renal disease is demonstrated by the therapeutic effectiveness of ACE inhibitors in treating several conditions, the exact contribution of intrarenal versus systemic ACE in renal disease remains unknown. Using genetically modified mouse models, our group demonstrated that renal ACE plays a key role in the development of several forms of hypertension. Specifically, although ACE is expressed in different cell types within the kidney, its expression in renal proximal tubular cells is essential for the development of high blood pressure. Besides hypertension, ACE is involved in several other renal diseases such as diabetic kidney disease, or acute kidney injury even when blood pressure is normal. In addition, studies suggest that ACE might mediate at least part of its effect through mechanisms that are independent of the Ang I conversion into Ang II and involve other substrates such as N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), Ang-(1-7), and bradykinin, among others. In this review, we summarize the recent advances in understanding the contribution of intrarenal ACE to different pathological conditions and provide insight into the many roles of ACE besides the well-known synthesis of Ang II.
Collapse
Affiliation(s)
- Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justin Z Y Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Derick Okwan-Duodu
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
7
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
8
|
Giori IG, Magliano DC, Alexandre-Santos B, Fernandes T, Oliveira EM, Vieira CP, Conte-Junior CA, Ceddia RB, Nobrega ACL, Frantz EDC. Enalapril and treadmill running reduce adiposity, but only the latter causes adipose tissue browning in mice. J Cell Physiol 2020; 236:900-910. [PMID: 32617979 DOI: 10.1002/jcp.29900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
This study investigated whether regulation of the renin-angiotensin system (RAS) by enalapril and/or aerobic exercise training (AET) causes browning of the subcutaneous white adipose tissue (sWAT). C57BL/6 mice were fed either a standard chow or a high-fat (HF) diet for 16 weeks. At Week 8, HF-fed animals were divided into sedentary (HF), enalapril (HF-E), AET (HF-T), and enalapril plus AET (HF-ET) groups. Subsequently, sWAT was extracted for morphometry, determination of RAS expression, and biomarkers of WAT browning. The HF group displayed adipocyte hypertrophy and induction of the classical RAS axis. Conversely, all interventions reduced adiposity and induced the counterregulatory RAS axis. However, only AET raised plasma irisin, increased peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 levels, and the expression of PR-domain containing 16 in sWAT. Therefore, we concluded that AET-induced sWAT browning was independent of the counterregulatory axis shifting of RAS in HF diet-induced obesity.
Collapse
Affiliation(s)
- Isabele G Giori
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - D'Angelo C Magliano
- Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Beatriz Alexandre-Santos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Tiago Fernandes
- National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Edilamar M Oliveira
- National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Carla P Vieira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Antonio C L Nobrega
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil
| | - Eliete D C Frantz
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Costa R, Tamascia ML, Sanches A, Moreira RP, Cunha TS, Nogueira MD, Casarini DE, Marcondes FK. Tactile stimulation of adult rats modulates hormonal responses, depression-like behaviors, and memory impairment induced by chronic mild stress: Role of angiotensin II. Behav Brain Res 2020; 379:112250. [DOI: 10.1016/j.bbr.2019.112250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
|
10
|
Abdulla MH, Brennan N, Ryan E, Sweeney L, Manning J, Johns EJ. Tacrolimus restores the high‐ and low‐pressure baroreflex control of renal sympathetic nerve activity in cisplatin‐induced renal injury rats. Exp Physiol 2019; 104:1726-1736. [DOI: 10.1113/ep087829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammed H. Abdulla
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Nicola Brennan
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Eimear Ryan
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Linda Sweeney
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Jennifer Manning
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Edward J. Johns
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| |
Collapse
|
11
|
Firoozmand LT, Sanches A, Damaceno-Rodrigues NR, Perez JD, Aragão DS, Rosa RM, Marcondes FK, Casarini DE, Caldini EG, Cunha TS. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats. Stress 2018; 21:484-493. [PMID: 29676198 DOI: 10.1080/10253890.2018.1462328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.
Collapse
Affiliation(s)
| | - Andrea Sanches
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Juliana Dinéia Perez
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Rodolfo Mattar Rosa
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Elia Garcia Caldini
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
12
|
de Moraes OA, Flues K, Scapini KB, Mostarda C, Evangelista FDS, Rodrigues B, Dartora DR, Fiorino P, Angelis KD, Irigoyen MC. ACE gene dosage determines additional autonomic dysfunction and increases renal angiotensin II levels in diabetic mice. Clinics (Sao Paulo) 2018; 73:e246. [PMID: 30088535 PMCID: PMC6038058 DOI: 10.6061/clinics/2018/e246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/05/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The present study aimed to investigate cardiovascular autonomic modulation and angiotensin II (Ang II) activity in diabetic mice that were genetically engineered to harbor two or three copies of the angiotensin-converting enzyme gene. METHODS Diabetic and non-diabetic mice harboring 2 or 3 copies of the angiotensin-converting enzyme gene were used in the present study. Animals were divided into 4 groups: diabetic groups with two and three copies of the angiotensin-converting enzyme gene (2CD and 3CD) and the respective age-matched non-diabetic groups (2C and 3C). Hemodynamic, cardiovascular, and autonomic parameters as well as renal Ang II expression were evaluated. RESULTS Heart rate was lower in diabetic animals than in non-diabetic animals. Autonomic modulation analysis indicated that the 3CD group showed increased sympathetic modulation and decreased vagal modulation of heart rate variability, eliciting increased cardiac sympathovagal balance, compared with all the other groups. Concurrent diabetes and either angiotensin-converting enzyme polymorphism resulted in a significant increase in Ang II expression in the renal cortex. CONCLUSION Data indicates that a small increase in angiotensin-converting enzyme activity in diabetic animals leads to greater impairment of autonomic function, as demonstrated by increased sympathetic modulation and reduced cardiac vagal modulation along with increased renal expression of Ang II.
Collapse
Affiliation(s)
- Oscar Albuquerque de Moraes
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Karin Flues
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Kátia Bilhar Scapini
- Laboratorio do Movimento Humano, Universidade Sao Judas Tadeu, Sao Paulo, SP, BR
| | | | | | - Bruno Rodrigues
- Departamento de Atividade Adaptada, Universidade de Campinas (UNICAMP), Campinas, SP, BR
| | - Daniela Ravizzoni Dartora
- Instituto de Cardiologia do Rio Grande do Sul, Fundacao Universitaria de Cardiologia (IC/FUC), Porto Alegre, RS, BR
| | - Patricia Fiorino
- Laboratorio de Fisiofarmacologia Metabolica Renal e Cardiovascular, Centro de Ciencias Biologicas e da Saude, Universidade Mackenzie, Sao Paulo, SP, BR
| | - Kátia De Angelis
- Departamento de Fisiologia, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Maria Cláudia Irigoyen
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
13
|
Frantz EDC, Medeiros RF, Giori IG, Lima JBS, Bento-Bernardes T, Gaique TG, Fernandes-Santos C, Fernandes T, Oliveira EM, Vieira CP, Conte-Junior CA, Oliveira KJ, Nobrega ACL. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats. Exp Physiol 2017. [PMID: 28626963 DOI: 10.1113/ep085924] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l-1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day-1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and glycogen accumulation. Furthermore, exercise improved the response to the deleterious effects of HFr overload by normalizing the gluconeogenesis pathway and the protein levels of interleukin-6 and tumour necrosis factor-α. The HFr rats displayed increased hepatic ACE activity and protein expression and angiotensin II concentration, which were attenuated by exercise training. Exercise training restored the ACE2/angiotensin-(1-7)/Mas receptor axis. Exercise training may favour the counter-regulatory ACE2/angiotensin-(1-7)/Mas receptor axis over the classical RAS (ACE/angiotensin II/angiotensin II type 1 receptor axis), which could be responsible for the reduction of metabolic dysfunction and the prevention of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Renata Frauches Medeiros
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Isabele Gomes Giori
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Thais Bento-Bernardes
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Thaiane Gadioli Gaique
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Paulo Vieira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Karen Jesus Oliveira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Antonio Claudio Lucas Nobrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| |
Collapse
|
14
|
Galandrin S, Denis C, Boularan C, Marie J, M'Kadmi C, Pilette C, Dubroca C, Nicaise Y, Seguelas MH, N'Guyen D, Banères JL, Pathak A, Sénard JM, Galés C. Cardioprotective Angiotensin-(1-7) Peptide Acts as a Natural-Biased Ligand at the Angiotensin II Type 1 Receptor. Hypertension 2016; 68:1365-1374. [PMID: 27698068 DOI: 10.1161/hypertensionaha.116.08118] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/14/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Hyperactivity of the renin-angiotensin-aldosterone system through the angiotensin II (Ang II)/Ang II type 1 receptor (AT1-R) axis constitutes a hallmark of hypertension. Recent findings indicate that only a subset of AT1-R signaling pathways is cardiodeleterious, and their selective inhibition by biased ligands promotes therapeutic benefit. To date, only synthetic biased ligands have been described, and whether natural renin-angiotensin-aldosterone system peptides exhibit functional selectivity at AT1-R remains unknown. In this study, we systematically determined efficacy and potency of Ang II, Ang III, Ang IV, and Ang-(1-7) in AT1-R-expressing HEK293T cells on the activation of cardiodeleterious G-proteins and cardioprotective β-arrestin2. Ang III and Ang IV fully activate similar G-proteins than Ang II, the prototypical AT1-R agonist, despite weaker potency of Ang IV. Interestingly, Ang-(1-7) that binds AT1-R fails to promote G-protein activation but behaves as a competitive antagonist for Ang II/Gi and Ang II/Gq pathways. Conversely, all renin-angiotensin-aldosterone system peptides act as agonists on the AT1-R/β-arrestin2 axis but display biased activities relative to Ang II as indicated by their differences in potency and AT1-R/β-arrestin2 intracellular routing. Importantly, we reveal Ang-(1-7) a known Mas receptor-specific ligand, as an AT1-R-biased agonist, selectively promoting β-arrestin activation while blocking the detrimental Ang II/AT1-R/Gq axis. This original pharmacological profile of Ang-(1-7) at AT1-R, similar to that of synthetic AT1-R-biased agonists, could, in part, contribute to its cardiovascular benefits. Accordingly, in vivo, Ang-(1-7) counteracts the phenylephrine-induced aorta contraction, which was blunted in AT1-R knockout mice. Collectively, these data suggest that Ang-(1-7) natural-biased agonism at AT1-R could fine-tune the physiology of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Ségolène Galandrin
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Colette Denis
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Cédric Boularan
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Jacky Marie
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Céline M'Kadmi
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Claire Pilette
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Caroline Dubroca
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Yvan Nicaise
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Marie-Hélène Seguelas
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Du N'Guyen
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Jean-Louis Banères
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Atul Pathak
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Jean-Michel Sénard
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France
| | - Céline Galés
- From the Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université de Toulouse, France (S.G., C.D., C.B., M.-H.S., D.N., A.P., J.-M.S., C.G.); Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier Cedex 05, France (J.M., C.M., J.-L.B.); Cardiomedex SAS, Toulouse, France (C.P., C.D.); and Département d'histopathologie (Y.N.) and Service de Pharmacologie Clinique, Faculté de médecine (D.N., A.P., J.-M.S.), Centre Hospitalier Universitaire de Toulouse, France.
| |
Collapse
|
15
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|