1
|
Raeven P, Karlhofer K, Sztulman LS, Brugger J, Hoetzenecker K, Domenig C, Leitner G, Posch M, Baron DM, Spittler A. Red blood cell transfusion-related dynamics of extracellular vesicles in intensive care patients: a prospective subanalysis. Sci Rep 2024; 14:911. [PMID: 38195728 PMCID: PMC10776840 DOI: 10.1038/s41598-023-48251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024] Open
Abstract
Extracellular vesicles (EVs) accumulate during packed red blood cell (PRBC) storage. To date, the involvement of EVs in transfusion-related immunomodulation (TRIM) has not been prospectively evaluated in intensive care unit (ICU) patients. This was a prospective subanalysis of a recent observational feasibility study in postoperative ICU patients after: (1) open aortic surgery (Aorta), (2) bilateral lung transplantation (LuTx), and (3) other types of surgery (Comparison). Patient plasma was collected three times each before and after leukoreduced PRBC transfusion at 30-min intervals. The total number of EVs and EVs derived from erythrocytes (EryEVs), total platelets (total PEVs), activated platelets, granulocytes (GEVs), monocytes, and myeloid cells in PRBC samples and patient plasma were analyzed by flow cytometry. Statistical analysis was performed by Spearman's correlation test, linear mixed models and pairwise comparisons by Wilcoxon matched-pairs test. Twenty-three patients (Aorta n = 5, LuTx n = 9, Comparison n = 9) were included in the final analysis. All EV subgroups analyzed were detectable in all PRBCs samples (n = 23), but concentrations did not correlate with storage time. Moreover, all EVs analyzed were detectable in all plasma samples (n = 138), and EV counts were consistent before transfusion. Concentrations of total EVs, EryEVs, total PEVs, and GEVs increased after transfusion compared with baseline in the entire cohort but not in specific study groups. Furthermore, the change in plasma EV counts (total EVs and EryEVs) after transfusion correlated with PRBC storage time in the entire cohort. Extracellular vesicles were detectable in all PRBC and plasma samples. Individual EV subtypes increased after transfusion in the entire cohort, and in part correlated with storage duration. Future clinical studies to investigate the role of EVs in TRIM are warranted and should anticipate a larger sample size.Trial registration: Clinicaltrials.gov: NCT03782623.
Collapse
Affiliation(s)
- Pierre Raeven
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Katharina Karlhofer
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of Surgery, and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Larissa S Sztulman
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonas Brugger
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Domenig
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Posch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Division of Visceral Surgery, Department of Surgery, and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Raeven P, Hagn G, Niederstaetter L, Brugger J, Bayer-Blauensteiner S, Domenig C, Hoetzenecker K, Posch M, Leitner G, Gerner C, Baron DM. Red blood cell transfusion-related eicosanoid profiles in intensive care patients—A prospective, observational feasibility study. Front Physiol 2023; 14:1164926. [PMID: 37008004 PMCID: PMC10060532 DOI: 10.3389/fphys.2023.1164926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Eicosanoids are bioactive lipids present in packed red blood cells (PRBCs), and might play a role in transfusion-related immunomodulation (TRIM). We tested the feasibility of analyzing eicosanoid profiles in PRBC supernatant and in plasma samples of postoperative intensive care unit (ICU) patients transfused with one unit of PRBCs.Methods: We conducted a prospective, observational feasibility study enrolling postoperative ICU patients: 1) patients treated with acetylsalicylic acid following abdominal aortic surgery (Aorta); 2) patients on immunosuppressants after bilateral lung transplantation (LuTx); and 3) patients undergoing other types of major surgery (Comparison). Abundances of arachidonic acid (AA) and seven pre-defined eicosanoids were assessed by liquid chromatography and tandem mass spectrometry. PRBC supernatant was sampled directly from the unit immediately prior to transfusion. Spearman’s correlations between eicosanoid abundance in PRBCs and storage duration were assessed. Patient plasma was collected at 30-min intervals: Three times each before and after transfusion. To investigate temporal changes in eicosanoid abundances, we fitted linear mixed models.Results: Of 128 patients screened, 21 were included in the final analysis (Aorta n = 4, LuTx n = 8, Comparison n = 9). In total, 21 PRBC and 125 plasma samples were analyzed. Except for 20-hydroxyeicosatetraenoic acid (HETE), all analyzed eicosanoids were detectable in PRBCs, and their abundance positively correlated with storage duration of PRBCs. While 5-HETE, 12-HETE/8-HETE, 15-HETE, 20-HETE, and AA were detectable in virtually all plasma samples, 9-HETE and 11-HETE were detectable in only 57% and 23% of plasma samples, respectively.Conclusions: Recruitment of ICU patients into this transfusion study was challenging but feasible. Eicosanoid abundances increased in PRBC supernatants during storage. In plasma of ICU patients, eicosanoid abundances were ubiquitously detectable and showed limited fluctuations over time prior to transfusion. Taken together, larger clinical studies seem warranted and feasible to further investigate the role of PRBC-derived eicosanoids in TRIM.
Collapse
Affiliation(s)
- Pierre Raeven
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jonas Brugger
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Sophia Bayer-Blauensteiner
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Christoph Domenig
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Posch
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David M. Baron
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
- *Correspondence: David M. Baron,
| |
Collapse
|
3
|
Urbanelli L, Buratta S, Logozzi M, Mitro N, Sagini K, Raimo RD, Caruso D, Fais S, Emiliani C. Lipidomic analysis of cancer cells cultivated at acidic pH reveals phospholipid fatty acids remodelling associated with transcriptional reprogramming. J Enzyme Inhib Med Chem 2020; 35:963-973. [PMID: 32308048 PMCID: PMC7191909 DOI: 10.1080/14756366.2020.1748025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cancer cells need to modulate the biosynthesis of membrane lipids and fatty acids to adapt themselves to an accelerated rate of cell division and survive into an extracellular environment characterised by a low pH. To gain insight this crucial survival process, we investigated the lipid composition of Mel 501 melanoma cells cultured at either physiological or acidic pH and observed the remodelling of phospholipids towards longer and more unsaturated acyl chains at low pH. This modification was related to changes in gene expression profile, as we observed an up-regulation of genes involved in acyl chain desaturation, elongation and transfer to phospholipids. PC3 prostate and MCF7 breast cancer cells adapted at acidic pH also demonstrated phospholipid fatty acid remodelling related to gene expression changes. Overall findings clearly indicate that low extracellular pH impresses a specific lipid signature to cells, associated with transcriptional reprogramming.
Collapse
Affiliation(s)
- Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.,CEMIN-Center of Excellence for Innovative Nanostructured Material, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Mann SN, Hadad N, Nelson Holte M, Rothman AR, Sathiaseelan R, Ali Mondal S, Agbaga MP, Unnikrishnan A, Subramaniam M, Hawse J, Huffman DM, Freeman WM, Stout MB. Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α. eLife 2020; 9:59616. [PMID: 33289482 PMCID: PMC7744101 DOI: 10.7554/elife.59616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, United States
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Alicia R Rothman
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Samim Ali Mondal
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Martin-Paul Agbaga
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Archana Unnikrishnan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - John Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Willard M Freeman
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States.,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, United States
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
5
|
Duttaroy AK, Basak S. Maternal dietary fatty acids and their roles in human placental development. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102080. [PMID: 32120190 DOI: 10.1016/j.plefa.2020.102080] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/26/2022]
Abstract
Fatty acids are essential for feto-placental growth and development. Maternal fatty acids and their metabolites are involved in every stage of pregnancy by supporting cell growth and development, cell signaling, and modulating other critical aspects of structural and functional processes. Early placentation process is critical for placental growth and function. Several fatty acids modulate angiogenesis as observed by increased tube formation and secretion of angiogenic growth factors in first-trimester human placental trophoblasts. Long-chain fatty acids stimulate angiogenesis in these cells via vascular endothelium growth factor (VEGF), angiopoietin-like protein 4 (ANGPTL4), fatty acid-binding proteins (FABPs), or eicosanoids. Inadequate placental angiogenesis and trophoblast invasion of the maternal decidua and uterine spiral arterioles leads to structural and functional deficiency of placenta, which contributes to preeclampsia, pre-term intrauterine growth restriction, and spontaneous abortion and also affects overall fetal growth and development. During the third trimester of pregnancy, placental preferential transport of maternal plasma long-chain polyunsaturated fatty acids is of critical importance for fetal growth and development. Fatty acids cross the placental microvillous and basal membranes by mainly via plasma membrane fatty acid transport system (FAT, FATP, p-FABPpm, & FFARs) and cytoplasmic FABPs. Besides, a member of the major facilitator superfamily-MFSD2a, present in the placenta is involved in the supply of DHA to the fetus. Maternal factors such as diet, obesity, endocrine, inflammation can modulate the expression and activity of the placental fatty acid transport activity and thereby impact feto-placental growth and development. In this review, we discuss the maternal dietary fatty acids, and placental transport and metabolism, and their roles in placental growth and development.
Collapse
Affiliation(s)
- Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Sanjay Basak
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
6
|
Sas KM, Lin J, Rajendiran TM, Soni T, Nair V, Hinder LM, Jagadish HV, Gardner TW, Abcouwer SF, Brosius FC, Feldman EL, Kretzler M, Michailidis G, Pennathur S. Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model. J Lipid Res 2017; 59:173-183. [PMID: 29237716 DOI: 10.1194/jlr.m077222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 12/12/2017] [Indexed: 01/17/2023] Open
Abstract
Lipids are ubiquitous metabolites with diverse functions; abnormalities in lipid metabolism appear to be related to complications from multiple diseases, including type 2 diabetes. Through technological advances, the entire lipidome has been characterized and researchers now need computational approaches to better understand lipid network perturbations in different diseases. Using a mouse model of type 2 diabetes with microvascular complications, we examined lipid levels in plasma and in renal, neural, and retinal tissues to identify shared and distinct lipid abnormalities. We used correlation analysis to construct interaction networks in each tissue, to associate changes in lipids with changes in enzymes of lipid metabolism, and to identify overlap of coregulated lipid subclasses between plasma and each tissue to define subclasses of plasma lipids to use as surrogates of tissue lipid metabolism. Lipid metabolism alterations were mostly tissue specific in the kidney, nerve, and retina; no lipid changes correlated between the plasma and all three tissue types. However, alterations in diacylglycerol and in lipids containing arachidonic acid, an inflammatory mediator, were shared among the tissue types, and the highly saturated cholesterol esters were similarly coregulated between plasma and each tissue type in the diabetic mouse. Our results identified several patterns of altered lipid metabolism that may help to identify pathogenic alterations in different tissues and could be used as biomarkers in future research into diabetic microvascular tissue damage.
Collapse
Affiliation(s)
- Kelli M Sas
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jiahe Lin
- Departments of Statistics, University of Michigan, Ann Arbor, MI 48109
| | - Thekkelnaycke M Rajendiran
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48109.,Michigan Regional Comprehensive Metabolomics Resource Core Ann Arbor, MI 48105
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core Ann Arbor, MI 48105
| | - Viji Nair
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Lucy M Hinder
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Hosagrahar V Jagadish
- Departments of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Thomas W Gardner
- Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109.,Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Steven F Abcouwer
- Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Frank C Brosius
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Matthias Kretzler
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - George Michailidis
- Department of Statistics and Computer and Information Sciences, University of Florida, Gainesville, FL 32611
| | - Subramaniam Pennathur
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 .,Michigan Regional Comprehensive Metabolomics Resource Core Ann Arbor, MI 48105.,Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Berry E, Liu Y, Chen L, Guo AM. Eicosanoids: Emerging contributors in stem cell-mediated wound healing. Prostaglandins Other Lipid Mediat 2016; 132:17-24. [PMID: 27825971 DOI: 10.1016/j.prostaglandins.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.
Collapse
Affiliation(s)
- Elizabeth Berry
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States
| | - Yanzhou Liu
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States; Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Li Chen
- State Key Lab of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Austin M Guo
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States; Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
8
|
Iqbal ZM, Akbar H, Hosseini A, Bichi Ruspoli Forteguerri E, Osorio JS, Loor JJ. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet. PLoS One 2016; 11:e0159536. [PMID: 27441691 PMCID: PMC4956307 DOI: 10.1371/journal.pone.0159536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/05/2016] [Indexed: 01/10/2023] Open
Abstract
The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation.
Collapse
Affiliation(s)
- Zeeshan Muhammad Iqbal
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, 61801, United States of America
| | - Haji Akbar
- Department of Biosciences COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan
| | - Afshin Hosseini
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, 61801, United States of America
| | | | - Johan S. Osorio
- Department of Dairy Science, South Dakota State University, Brookings, South Dakota, 57007, United States of America
- * E-mail: (JJL); (JSO)
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, 61801, United States of America
- * E-mail: (JJL); (JSO)
| |
Collapse
|
9
|
Suciu M, Gruia AT, Nica DV, Azghadi SM, Mic AA, Mic FA. Acetaminophen-induced liver injury: Implications for temporal homeostasis of lipid metabolism and eicosanoid signaling pathway. Chem Biol Interact 2015; 242:335-44. [DOI: 10.1016/j.cbi.2015.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 12/26/2022]
|