1
|
Ptaszek B, Podsiadło S, Czerwińska-Ledwig O, Teległów A, Pilch W, Sadowska-Krępa E. The Influence of Whole-Body Cryotherapy or Winter Swimming on the Activity of Antioxidant Enzymes. BIOLOGY 2024; 13:295. [PMID: 38785777 PMCID: PMC11117667 DOI: 10.3390/biology13050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The aim of this study was to investigate the effect of a series of 20 whole-body cryotherapy sessions and 20 winter swimming sessions on the level of catalase, glutathione peroxidase and superoxide dismutase. The experimental group consisted of 60 people (30 people received cryotherapy and 30 people swam in cold water). The control group-without intervention: 30 people. Each of the three groups was tested twice. Analyzing the changes in the examined indicators, a statistical increase of CAT was observed in men after the use of WBC, as well as an increase of SOD in women and a decrease of SOD in men after the winter swimming season. Regular WS does not seem to place an excessive burden on the body in terms of intensifying oxidative processes. WS sessions once a week can be recommended as an effective method of improving health by causing positive adaptive changes and strengthening the body's antioxidant barrier. WBC may be used as an adjunct therapy in the treatment of diseases caused by oxidative stress, as it improves the body's antioxidant capacity. Further research is needed to elucidate antioxidant mechanisms in humans and to determine the short- and long-term effects of exposure to WS and WBC.
Collapse
Affiliation(s)
- Bartłomiej Ptaszek
- Institute of Applied Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Szymon Podsiadło
- Institute of Clinical Rehabilitation, University of Physical Education in Krakow, 31-571 Krakow, Poland;
| | - Olga Czerwińska-Ledwig
- Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland; (O.C.-L.); (A.T.); (W.P.)
| | - Aneta Teległów
- Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland; (O.C.-L.); (A.T.); (W.P.)
| | - Wanda Pilch
- Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland; (O.C.-L.); (A.T.); (W.P.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| |
Collapse
|
2
|
The Influence of Winter Swimming on Oxidative Stress Indicators in the Blood of Healthy Males. Metabolites 2023; 13:metabo13020143. [PMID: 36837762 PMCID: PMC9967992 DOI: 10.3390/metabo13020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Baths in cold water are a popular physical activity performed to improve health. This study aimed to determine whether repeated cold-water exposure leads to the up-regulation of antioxidant defenses and whether or not this leads to a reduction in basal and/or acute pulses of oxidative distress in humans. The study group consisted of 28 healthy male members of the WS club (average age 39.3 ± 6.1 years). The study sessions occurred at the beginning and the end of the WS season. During the WS season, the participants took 3-min cold-water baths in a cold lake once a week. Blood samples were collected three times during each session: before the bath, 30 min after the bath, and 24 h after the bath. The activity of selected antioxidant enzymes, including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), as well as the concentration of lipid peroxidation (LPO) products, including thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (CD), were determined in erythrocytes. The concentration of TBARS, CD, retinol, and α-tocopherol were determined in the blood plasma, whereas the level of other LPO products, including 4-hydroxynonenal and 8-iso-prostaglandin F2α, were determined in the blood serum. The repeated cold exposure up-regulated most antioxidant defenses, and this led to an attenuation of most indicators of oxidative stress at the baseline and acute pulses in response to cold exposure. In conclusion, due to regular cold exposure, the antioxidant barrier of winter swimmers was stimulated. Thus, short cold-bath sessions seem to be an effective intervention, inducing promoting positive adaptive changes such as the increased antioxidant capacity of the organism.
Collapse
|
3
|
Pawłowska M, Mila-Kierzenkowska C, Boraczyński T, Boraczyński M, Szewczyk-Golec K, Sutkowy P, Wesołowski R, Budek M, Woźniak A. The Influence of Ambient Temperature Changes on the Indicators of Inflammation and Oxidative Damage in Blood after Submaximal Exercise. Antioxidants (Basel) 2022; 11:2445. [PMID: 36552653 PMCID: PMC9774713 DOI: 10.3390/antiox11122445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Physical activity has a positive effect on human health and well-being, but intense exercise can cause adverse changes in the organism, leading to the development of oxidative stress and inflammation. The aim of the study was to determine the effect of short-term cold water immersion (CWI) and a sauna bath as methods of postexercise regeneration on the indicators of inflammation and oxidative damage in the blood of healthy recreational athletes. Forty-five male volunteers divided into two groups: 'winter swimmers' who regularly use winter baths (n = 22, average age 43.2 ± 5.9 years) and 'novices' who had not used winter baths regularly before (n = 23, mean age 25 ± 4.8 years) participated in the study. The research was divided into two experiments, differing in the method of postexercise regeneration used, CWI (Experiment I) and a sauna bath (Experiment II). During Experiment I, the volunteers were subjected to a 30-min aerobic exercise, combined with a 20-min rest at room temperature (RT-REST) or a 20-min rest at room temperature with an initial 3-min 8 °C water bath (CWI-REST). During the Experiment II, the volunteers were subjected to the same aerobic exercise, followed by a RT-REST or a sauna bath (SAUNA-REST). The blood samples were taken before physical exercise (control), immediately after exercise and 20 min after completion of regeneration. The concentrations of selected indicators of inflammation, including interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 8 (IL-8), interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and tumor necrosis factor α (TNF-α), as well as the activity of indicators of oxidative damage: α1-antitrypsin (AAT) and lysosomal enzymes, including arylsulfatase A (ASA), acid phosphatase (AcP) and cathepsin D (CTS D), were determined. CWI seems to be a more effective post-exercise regeneration method to reduce the inflammatory response compared to a sauna bath. A single sauna bath is associated with the risk of proteolytic tissue damage, but disturbances of cellular homeostasis are less pronounced in people who regularly use cold water baths than in those who are not adapted to thermal stress.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Tomasz Boraczyński
- Department of Health Sciences, Olsztyn University College, 10-283 Olsztyn, Poland
| | - Michał Boraczyński
- Department of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Roland Wesołowski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Marlena Budek
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Sutkowy P, Wróblewska J, Wróblewski M, Nuszkiewicz J, Modrzejewska M, Woźniak A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11164833. [PMID: 36013072 PMCID: PMC9410476 DOI: 10.3390/jcm11164833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases constitute the most important public health problem in the world. They are characterized by inflammation and oxidative stress in the heart and blood. Physical activity is recognized as one of the best ways to prevent these diseases, and it has already been applied in treatment. Physical exercise, both aerobic and anaerobic and single and multiple, is linked to the oxidant–antioxidant imbalance; however, this leads to positive adaptive changes in, among others, the increase in antioxidant capacity. The goal of the paper was to discuss the issue of redox equilibrium in the human organism in the course of cardiovascular diseases to systemize updated knowledge in the context of exercise impacts on the organism. Antioxidant supplementation is also an important issue since antioxidant supplements still have great potential regarding their use as drugs in these diseases.
Collapse
|
5
|
Sutkowy P, Woźniak A, Mila-Kierzenkowska C, Szewczyk-Golec K, Wesołowski R, Pawłowska M, Nuszkiewicz J. Physical Activity vs. Redox Balance in the Brain: Brain Health, Aging and Diseases. Antioxidants (Basel) 2021; 11:antiox11010095. [PMID: 35052600 PMCID: PMC8773223 DOI: 10.3390/antiox11010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proven that physical exercise improves cognitive function and memory, has an analgesic and antidepressant effect, and delays the aging of the brain and the development of diseases, including neurodegenerative disorders. There are even attempts to use physical activity in the treatment of mental diseases. The course of most diseases is strictly associated with oxidative stress, which can be prevented or alleviated with regular exercise. It has been proven that physical exercise helps to maintain the oxidant–antioxidant balance. In this review, we present the current knowledge on redox balance in the organism and the consequences of its disruption, while focusing mainly on the brain. Furthermore, we discuss the impact of physical activity on aging and brain diseases, and present current recommendations and directions for further research in this area.
Collapse
|
6
|
Missau E, Teixeira ADO, Franco OS, Martins CN, Paulitsch FDS, Peres W, Silva AMVD, Signori LU. COLD WATER IMMERSION AND INFLAMMATORY RESPONSE AFTER RESISTANCE EXERCISES. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182405182913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: High-intensity resistance exercises (RE) cause an inflammatory response that reduces functionality. Objective: To evaluate the effects of Cold Water Immersion (CWI) on leukocytosis, oxidative stress parameters, inflammatory markers and delayed onset muscle soreness (DOMS) resulting from a RE session in untrained volunteers. Methods: Thirteen volunteers (aged 26 ± 5 years) who do not engage in RE were randomized and underwent Control RE and RE with CWI sessions. Exercise sessions (leg extension machine, squats and leg presses) consisted of four sets of 10 maximum repetitions (one-week interval between the assessment and the sessions). CWI consisted of immersion in water (15°C) to the umbilicus for 10 minutes immediately after the exercise session. Complete blood count, CRP, creatine kinase (CK) and lipoperoxidation (LPO) were assessed previously (baseline) and immediately, 30 minutes and 2 hours after RE. DOMS was assessed 24 hours after the sessions. Results: RE induced progressive leukocytosis (P<0.001). CRP was elevated 2 hours after exercise (P=0.008) only in the Control RE session. CK increased 30 minutes and 2 hours after exercise (P<0.001) in the Control session, whereas in the CWI session the increase was observed after 2 hours (P<0.001). LPO increased only in the Control session after 2 hours (P=0.025). CWI reduced DOMS by 57% (P<0.001). Conclusion: CWI slows the inflammatory response and reduces DOMS in untrained individuals undergoing RE. Level of Evidence I; Randomized Clinical Trial.
Collapse
|
7
|
Christensen PM, Bangsbo J. Influence of Prior Intense Exercise and Cold Water Immersion in Recovery for Performance and Physiological Response during Subsequent Exercise. Front Physiol 2016; 7:269. [PMID: 27445857 PMCID: PMC4923200 DOI: 10.3389/fphys.2016.00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
Athletes in intense endurance sports (e.g., 4000-m track cycling) often perform maximally (~4 min) twice a day due to qualifying and finals being placed on the same day. The purpose of the present study was to evaluate repeated performance on the same day in a competitive setting (part A) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from the qualifying and final races in 4000-m individual pursuit. In part B, twelve trained cyclists with an average (±SD) ⩒O2-peak of 67 ± 5 mL/min/kg performed a protocol mimicking a qualifying race (QUAL) followed 3 h later by a performance test (PT) with each exercise period encompassing intense exercise for ~4 min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P < 0.001) from qualification to finals (259 ± 3 vs. 261 ± 3 s) for the track cyclists during World championships in part A. In part B, mean power in PT was not different in CWI relative to CON (406 ± 43 vs. 405 ± 38 W). Peak ⩒O2 (5.04 ± 0.50 vs. 5.00 ± 0.49 L/min) and blood lactate (13 ± 3 vs. 14 ± 3 mmol/L) did not differ between QUAL and PT and cycling economy and potassium handling was not impaired by prior intense exercise. In conclusion, performance is reduced with repeated maximal exercise in world-class track cyclists during 4000-m individual pursuit lasting ~4 min, however prior intense exercise do not appear to impair peak ⩒O2, peak lactate, cycling economy, or potassium handling in trained cyclists and CWI in recovery does not improve subsequent performance.
Collapse
Affiliation(s)
- Peter M Christensen
- Section of Integrated Physiology, Department of Nutrition, Exercise, and Sports, University of CopenhagenCopenhagen, Denmark; Team Danmark (Danish Elite Sport Organization)Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|