1
|
Li D, Xu T, Wang X, Xiao Q, Zhang W, Li F, Zhang H, Feng B, Zhang Y. Enhanced osteo-angiogenic coupling by a bioactive cell-free fat extract (CEFFE) delivered through electrospun fibers. J Mater Chem B 2025; 13:1100-1117. [PMID: 39659270 DOI: 10.1039/d4tb01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Regeneration of functional bone tissue relies heavily on achieving adequate vascularization in engineered bone constructs following implantation. This process requires the close integration of osteogenesis and angiogenesis. Cell-free fat extract (CEFFE or FE), a recently emerging acellular fat extract containing abundant growth factors, holds significant potential for regulating osteo-angiogenic coupling and promoting regeneration of vascularized bone tissue. However, its specific role in modulating the coupling between angiogenesis and osteogenesis remains unclear. Our previous research demonstrated that FE-decorated electrospun fibers of polycaprolactone/gelatin (named FE-PDA@PCL/GT) exhibited pro-vasculogenic capabilities both in vitro and in vivo (D. Li, Q. Li, T. Xu, X. Guo, H. Tang, W. Wang, W. Zhang and Y. Zhang, Pro-vasculogenic fibers by PDA-mediated surface functionalization using cell-free fat extract (CEFFE), Biomacromolecules 2024, 25, 1550-1562). Herein, we firstly demonstrated that the FE-PDA@PCL/GT fibers also significantly stimulated osteogenesis in a mouse calvaria osteoblast-like cell line MC3T3-E1 cells, as evidenced by the increased production of alkaline phosphatase (ALP), mineral deposits, and collagen I, as well as the upregulated expression of osteogenic marker genes in the osteoblasts. Using a transwell co-culture system, we further demonstrated that the release of FE from the FE-PDA@PCL/GT fibers not only promoted osteogenesis and angiogenesis but also markedly enhanced the paracrine functions and reciprocal communications between endothelial cells and osteoblasts. This dynamic interaction played a key role in the observed enhancement of osteo-angiogenic coupling. With the confirmed pro-osteogenic and pro-angiogenic properties of FE-PDA@PCL/GT, it is envisaged that these newly engineered bioactive fibers can be used to develop highly biomimicking bone constructs. These constructs are designed to promote native-like cell-scaffold and cell-cell interactions, which are essential for the effective regeneration of defected bone tissue with adequate vasculature.
Collapse
Affiliation(s)
- Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Qiong Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fen Li
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bei Feng
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
3
|
McKinney JM, Pucha KA, Doan TN, Wang L, Weinstock LD, Tignor BT, Fowle KL, Levit RD, Wood LB, Willett NJ. Sodium alginate microencapsulation of human mesenchymal stromal cells modulates paracrine signaling response and enhances efficacy for treatment of established osteoarthritis. Acta Biomater 2022; 141:315-332. [PMID: 34979327 DOI: 10.1016/j.actbio.2021.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1β. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1β while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1β, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.
Collapse
Affiliation(s)
- Jay M McKinney
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Krishna A Pucha
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Thanh N Doan
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA
| | - Lanfang Wang
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Benjamin T Tignor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kelsey L Fowle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA.
| | - Nick J Willett
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
4
|
Butyrate Inhibits Osteoclast Activity In Vitro and Regulates Systemic Inflammation and Bone Healing in a Murine Osteotomy Model Compared to Antibiotic-Treated Mice. Mediators Inflamm 2021; 2021:8817421. [PMID: 34924815 PMCID: PMC8683197 DOI: 10.1155/2021/8817421] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Short-chain fatty acids (SCFAs) produced by the gut microbiota have previously been demonstrated to play a role in numerous chronic inflammatory diseases and to be key mediators in the gut-bone signaling axis. However, the role of SCFAs in bone fracture healing and its impact on systemic inflammation during the regeneration process has not been extensively investigated yet. The aim of this study was to first determine the effects of the SCFA butyrate on key cells involved in fracture healing in vitro, namely, osteoclasts and mesenchymal stromal cells (MSCs), and second, to assess if butyrate supplementation or antibiotic therapy impacts bone healing, systemic immune status, and inflammation levels in a murine osteotomy model. Butyrate significantly reduced osteoclast formation and resorption activity in a dose-dependent manner and displayed a trend for increased calcium deposits in MSC cultures. Numerous genes associated with osteoclast differentiation were differentially expressed in osteoclast precursor cells upon butyrate exposure. In vivo, antibiotic-treated mice showed reduced SCFA levels in the cecum, as well as a distinct gut microbiome composition. Furthermore, circulating proinflammatory TNFα, IL-17a, and IL-17f levels, and bone preserving osteoprotegerin (OPG), were increased in antibiotic-treated mice compared to controls. Antibiotic-treated mice also displayed a trend towards delayed bone healing as revealed by reduced mineral apposition at the defect site and higher circulating levels of the bone turnover marker PINP. Butyrate supplementation resulted in a lower abundance of monocyte/macrophages in the bone marrow, as well as reduced circulating proinflammatory IL-6 levels compared to antibiotic- and control-treated mice. In conclusion, this study supports our hypothesis that SCFAs, in particular butyrate, are important contributors to successful bone healing by modulating key cells involved in fracture healing as well as systemic inflammation and immune responses.
Collapse
|
5
|
Li N, Fu L, Li Z, Ke Y, Wang Y, Wu J, Yu J. The Role of Immune Microenvironment in Maxillofacial Bone Homeostasis. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.780973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maxillofacial bone defects are common medical problems caused by congenital defects, necrosis, trauma, tumor, inflammation, and fractures non-union. Maxillofacial bone defects often need bone graft, which has many difficulties, such as limited autogenous bone supply and donor site morbidity. Bone tissue engineering is a promising strategy to overcome the above-mentioned problems. Osteoimmunology is the inter-discipline that focuses on the relationship between the skeletal and immune systems. The immune microenvironment plays a crucial role in bone healing, tissue repair and regeneration in maxillofacial region. Recent studies have revealed the vital role of immune microenvironment and bone homeostasis. In this study, we analyzed the complex interaction between immune microenvironment and bone regeneration process in oral and maxillofacial region, which will be important to improve the clinical outcome of the bone injury treatment.
Collapse
|
6
|
Wallimann A, Hildebrand M, Groeger D, Stanic B, Akdis CA, Zeiter S, Richards RG, Moriarty TF, O'Mahony L, Thompson K. An Exopolysaccharide Produced by Bifidobacterium longum 35624® Inhibits Osteoclast Formation via a TLR2-Dependent Mechanism. Calcif Tissue Int 2021; 108:654-666. [PMID: 33388801 DOI: 10.1007/s00223-020-00790-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023]
Abstract
The probiotic Bifidobacterium longum subsp. longum 35624® (B. longum 35624®), with its surface exopolysaccharide (EPS624), has previously been demonstrated to induce immunoregulatory responses in the host and may, therefore, be a novel approach to prevent bone loss in inflammatory conditions such as post-menopausal osteoporosis (PMO). The aim of this study was to investigate the effect of EPS624 on osteoclast and osteoblast differentiation and to assess the potential of B. longum 35624® to prevent bone loss in vivo. In vitro cell assays were used to assess the impact of EPS624 on osteoclast and osteoblast differentiation. The potential of two probiotic B. longum 35624® strains, including an EPS-deficient strain, for preventing ovariectomy (Ovx)-induced bone loss was assessed in a murine model. EPS624 prevented osteoclast formation from murine bone marrow precursors under both normal and TNFα-induced inflammatory conditions and modestly increased mineralized matrix deposition in osteogenic cell cultures. However, in the presence of an anti-TLR2 blocking antibody, or in MyD88-/- osteoclast precursors, the inhibitory effect of EPS624 on osteoclast formation was diminished or completely prevented, respectively. Moreover, EPS624 induced IL-10 production in osteoclast precursors in a TLR2-dependent manner, although IL-10 was dispensable in the EPS624-mediated inhibition of osteoclast formation. In addition, EPS624-producing B. longum 35624® partially prevented bone loss in Ovx mice when administered by oral gavage. This study introduced EPS624 as a potential anti-resorptive therapy, although optimal in vivo delivery of the probiotic strain for treating low-grade inflammatory diseases such as PMO remains to be determined.
Collapse
Affiliation(s)
- Alexandra Wallimann
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Maria Hildebrand
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - David Groeger
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Precision Biotics Group Ltd, 4400 Cork Airport Business Park, Kinsale Road, Cork, Ireland
| | - Barbara Stanic
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - T Fintan Moriarty
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, College Road, Cork, Ireland
| | - Keith Thompson
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland.
| |
Collapse
|
7
|
Maynard SA, Pchelintseva E, Zwi-Dantsis L, Nagelkerke A, Gopal S, Korchev YE, Shevchuk A, Stevens MM. IL-1β mediated nanoscale surface clustering of integrin α5β1 regulates the adhesion of mesenchymal stem cells. Sci Rep 2021; 11:6890. [PMID: 33767269 PMCID: PMC7994456 DOI: 10.1038/s41598-021-86315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1β activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell-matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1β enhances adhesion of hMSCs via increased focal adhesion contacts in an α5β1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1β specifically increases nanoscale integrin α5β1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1β stimulation is partly regulated through integrin α5β1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Ekaterina Pchelintseva
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Limor Zwi-Dantsis
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Anika Nagelkerke
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Sahana Gopal
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Yuri E. Korchev
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Andrew Shevchuk
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Molly M. Stevens
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
8
|
Latest advances to enhance the therapeutic potential of mesenchymal stromal cells for the treatment of immune-mediated diseases. Drug Deliv Transl Res 2021; 11:498-514. [PMID: 33634433 DOI: 10.1007/s13346-021-00934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) present the capacity to secrete multiple immunomodulatory factors in response to their microenvironment. This property grants them a golden status among the novel alternatives to treat multiple diseases in which there is an unneeded or exaggerated immune response. However, important challenges still make difficult the clinical implementation of MSC-based therapies, being one of the most remarkable the lack of efficacy due to their transient immunomodulatory effects. To overcome this issue and boost the regulatory potential of MSCs, multiple strategies are currently being explored. Some of them consist of ex vivo pre-conditioning MSCs prior to their administration, including exposure to pro-inflammatory cytokines or to low oxygen concentrations. However, currently, alternative strategies that do not require such ex vivo manipulation are gaining special attention. Among them, the recreation of a three dimensional (3D) environment is remarkable. This approach has been reported to not only boost the immunomodulatory potential of MSCs but also increase their in vivo persistence and viability. The present work revises the therapeutic potential of MSCs, highlighting their immunomodulatory activity as a potential treatment for diseases caused by an exacerbated or unnecessary immune response. Moreover, it offers an updated vision of the most widely employed pre-conditioning strategies and 3D systems intended to enhance MSC-mediated immunomodulation, to conclude discussing the major challenges still to overcome in the field.
Collapse
|
9
|
Vertebral Bone Marrow-Derived Mesenchymal Stromal Cells from Osteoporotic and Healthy Patients Possess Similar Differentiation Properties In Vitro. Int J Mol Sci 2020; 21:ijms21218309. [PMID: 33167522 PMCID: PMC7663957 DOI: 10.3390/ijms21218309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a disease characterized by low bone mass and an increased risk of fractures. Although several cellular players leading to osteoporosis have been identified, the role of mesenchymal stromal cells (MSC) is still not fully elaborated. The aim of this study was, therefore, to isolate and characterize MSCs from vertebral body of healthy non-osteoporotic and osteoporotic patients, with a particular focus on their osteogenic differentiation potential. Isolated MSCs were characterized by their osteogenic, adipogenic, and chondrogenic differentiation, as well as surface marker expression, proliferation behavior, and immunomodulatory capacity. The mineralization process was confirmed using Alizarin Red S and alkaline phosphatase (ALP) stains and further evaluated by determining ALP activity, mineral deposition, and free phosphate ion release. MSCs from both healthy and osteoporotic patients showed common fibroblast-like morphology and similar proliferation behavior. They expressed the typical MSC surface markers and possessed immunomodulatory capacity. Both groups demonstrated solid trilineage differentiation potential; osteogenic differentiation was further confirmed by increased ALP activity, deposition of inorganic crystals, phosphate ion release, and expression of osteoblast marker genes. Overall, MSCs from osteoporotic and non-osteoporotic patients showed neither a difference in general MSC features nor in the detailed analysis regarding osteogenic differentiation. These data suggest that vertebral body MSCs from osteoporotic patients were not impaired; rather, they possessed full osteogenic potential compared to MSCs from non-osteoporotic patients.
Collapse
|
10
|
Inflammatory markers and bone mass in children with overweight/obesity: the role of muscular fitness. Pediatr Res 2020; 87:42-47. [PMID: 31493774 DOI: 10.1038/s41390-019-0572-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To examine which inflammatory markers are associated with bone mass and whether this association varies according to muscular fitness in children with overweight/obesity. METHODS Plasma interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), epidermal growth factor, vascular endothelial growth factor A (VEGF), and C-reactive protein were analyzed in 55 children aged 8-11 years. A muscular fitness score was computed. Bone mineral content (BMC) of the total body-less head (TBLH) and lumbar spine (LS) were assessed using dual-energy x-ray absorptiometry. RESULTS IL-6 (β = -0.136) and VEGF (β = -0.099) were associated with TBLH BMC, while TNF-α (β = -0.345) and IL-1β (β = 0.212) were associated with LS BMC (P < 0.05). The interaction effect of muscular fitness showed a trend in the association of VEGF with TBLH BMC (P = 0.122) and TNF-α with LS BMC (P = 0.057). Stratified analyses by muscular fitness levels showed an inverse association of VEGF with TBLH BMC (β = -0.152) and TNF-α with LS BMC (β = -0.491) in the low-fitness group, while no association was found in the high-fitness group. CONCLUSION IL-6, VEGF, TNF-α, and IL-1β are significantly associated with bone mass. Higher muscular fitness may attenuate the adverse effect of high VEGF and TNF-α on bone mass.
Collapse
|
11
|
O'Neill E, Rajpura K, Carbone EJ, Awale G, Kan HM, Lo KWH. Repositioning Tacrolimus: Evaluation of the Effect of Short-Term Tacrolimus Treatment on Osteoprogenitor Cells and Primary Cells for Bone Regenerative Engineering. Assay Drug Dev Technol 2019; 17:77-88. [DOI: 10.1089/adt.2018.876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Edward O'Neill
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut
| | - Erica J. Carbone
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
| | - Ho-Man Kan
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
| | - Kevin W.-H. Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut
- Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut
- UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
12
|
Tanrıverdi AK, Polat O, Elçin AE, Ahlat O, Gürman G, Günalp M, Oğuz AB, Genç S, Elçin YM. Mesenchymal stem cell transplantation in polytrauma: Evaluation of bone and liver healing response in an experimental rat model. Eur J Trauma Emerg Surg 2019; 46:53-64. [PMID: 30820597 DOI: 10.1007/s00068-019-01101-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Trauma is the most common cause of death of young people in the world. As known, mesenchymal stem cells (MSCs) accelerate tissue regeneration mechanisms. In our study, we aimed to investigate the effects of MSCs transplantation on the healing of liver and bone tissue by considering trauma secondary inflammatory responses. METHODS 56 adult Wistar-albino rats were divided into two groups: the polytrauma (liver and bone) (n = 28), and the liver trauma group (n = 28). At 36 h and 5th day after surgery, both rats with polytrauma and with isolated liver injury received either intravenous (IV) or intraperitoneal (IP) injections of MSCs (one million cells per kg body weight). Untreated groups received IV and IP saline injections. At day 21 after surgery, liver, tibia and fibula of the subjects were excised and evaluated for histopathologic and histomorphometric examination. Additionally, whole blood count (white blood cells, hemoglobin and platelets), C-reactive protein (CRP), glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, blood gas, and trauma markers interleukin-1B (IL-1B), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) levels were investigated. RESULTS In general, MSC transplantations were well tolerated by the subjects. It was found that ALT, CRP, albumin were significantly lower in rats which received MSCs (p < 0.001). Inflammation of the liver and bone tissue in the MSC-injected rats were significantly lower than that of the untreated groups. CONCLUSIONS Herewith we have shown that MSC infusion in posttraumatic rats leads to less aggressive and more effective consequences on liver and bone tissue healing. Human MSC treatment for trauma is still in early stages of development; thus standard protocols, and patient inclusion criteria should be established beforehand clinical trials.
Collapse
Affiliation(s)
- Ayça Koca Tanrıverdi
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey.
| | - Onur Polat
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Ozan Ahlat
- Division of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Günhan Gürman
- Stem Cell Institute, Ankara University, Ankara, Turkey.,Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Müge Günalp
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Ahmet Burak Oğuz
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Sinan Genç
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey. .,Biovalda Health Technologies, Inc, Ankara, Turkey. .,Faculty of Science, Biochemistry Division, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
13
|
Zeng X, Chen S, Yang Y, Ke Z. Acylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells. Oncotarget 2017; 8:72872-72885. [PMID: 29069832 PMCID: PMC5641175 DOI: 10.18632/oncotarget.20531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a result of increased protein degradation and decreased protein synthesis. The multifunctional circulating hormone ghrelin promotes synthesis and inhibits degradation of muscle protein, but its mechanism of action is not fully understood. Here, we investigated whether co-culturing C2C12 myotubes with CT26 colon carcinoma cells induces myotube atrophy, and whether acylated ghrelin (AG) and unacylated ghrelin (UnAG) had anti-atrophic effects. We found that co-culture induced myotube atrophy and increased tumor necrosis factor-alpha (TNF-α) and myostatin concentrations in the culture medium. Moreover, co-culture down-regulated myogenin and MyoD expression, inhibited the Akt signaling, up-regulated ubiquitin E3 ligase expression, and activated the calpain system and autophagy in myotubes. Both AG and UnAG inhibited these changes. Our study describes a novel in vitro model that can be employed to investigate cancer cachexia, and our findings suggest a possible use for AG and UnAG in treating cancer cachexia.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yang Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhao Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
14
|
D'Amora U, D'Este M, Eglin D, Safari F, Sprecher CM, Gloria A, De Santis R, Alini M, Ambrosio L. Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering. J Tissue Eng Regen Med 2017; 12:321-329. [PMID: 28486746 DOI: 10.1002/term.2457] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/13/2017] [Accepted: 05/04/2017] [Indexed: 11/09/2022]
Abstract
The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three-dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε-caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering.
Collapse
Affiliation(s)
- Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | | | - David Eglin
- AO Research Institute Davos, Davos, Switzerland
| | | | | | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| |
Collapse
|
15
|
Corrigendum to "Effect of Short-Term Stimulation with Interleukin-1 β and Differentiation Medium on Human Mesenchymal Stromal Cell Paracrine Activity in Coculture with Osteoblasts". BIOMED RESEARCH INTERNATIONAL 2016; 2016:9325260. [PMID: 27990440 PMCID: PMC5136621 DOI: 10.1155/2016/9325260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
|