1
|
Tran EB, Vonk JM, Casaletto K, Zhang D, Christin R, Marathe S, Gorno-Tempini ML, Chang EF, Kleen JK. Development and validation of a nonverbal consensus-based semantic memory paradigm in patients with epilepsy. J Int Neuropsychol Soc 2024; 30:671-679. [PMID: 38616725 PMCID: PMC11473708 DOI: 10.1017/s1355617724000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Brain areas implicated in semantic memory can be damaged in patients with epilepsy (PWE). However, it is challenging to delineate semantic processing deficits from acoustic, linguistic, and other verbal aspects in current neuropsychological assessments. We developed a new Visual-based Semantic Association Task (ViSAT) to evaluate nonverbal semantic processing in PWE. METHOD The ViSAT was adapted from similar predecessors (Pyramids & Palm Trees test, PPT; Camels & Cactus Test, CCT) comprised of 100 unique trials using real-life color pictures that avoid demographic, cultural, and other potential confounds. We obtained performance data from 23 PWE participants and 24 control participants (Control), along with crowdsourced normative data from 54 Amazon Mechanical Turk (Mturk) workers. RESULTS ViSAT reached a consensus >90% in 91.3% of trials compared to 83.6% in PPT and 82.9% in CCT. A deep learning model demonstrated that visual features of the stimulus images (color, shape; i.e., non-semantic) did not influence top answer choices (p = 0.577). The PWE group had lower accuracy than the Control group (p = 0.019). PWE had longer response times than the Control group in general and this was augmented for the semantic processing (trial answer) stage (both p < 0.001). CONCLUSIONS This study demonstrated performance impairments in PWE that may reflect dysfunction of nonverbal semantic memory circuits, such as seizure onset zones overlapping with key semantic regions (e.g., anterior temporal lobe). The ViSAT paradigm avoids confounds, is repeatable/longitudinal, captures behavioral data, and is open-source, thus we propose it as a strong alternative for clinical and research assessment of nonverbal semantic memory.
Collapse
Affiliation(s)
- Edwina B. Tran
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jet M.J. Vonk
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Kaitlin Casaletto
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Da Zhang
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Raphael Christin
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Siddharth Marathe
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Edward F. Chang
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jonathan K. Kleen
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Fallahi A, Hoseini-Tabatabaei N, Eivazi F, Mohammadi Mobarakeh N, Dehghani-Siahaki H, Alibiglou L, Rostami R, Mehvari Habibabadi J, Hashemi-Fesharaki SS, Joghataei MT, Nazem-Zadeh MR. Dynamic causal modeling of reorganization of memory and language networks in temporal lobe epilepsy. Ann Clin Transl Neurol 2023; 10:2238-2254. [PMID: 37776067 PMCID: PMC10723230 DOI: 10.1002/acn3.51908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE To evaluate the alterations of language and memory functions using dynamic causal modeling, in order to identify the epileptogenic hemisphere in temporal lobe epilepsy (TLE). METHODS Twenty-two patients with left TLE and 13 patients with right TLE underwent functional magnetic resonance imaging (fMRI) during four memory and four language mapping tasks. Dynamic causal modeling (DCM) was employed on fMRI data to examine effective directional connectivity in memory and language networks and the alterations in people with TLE compared to healthy individuals. RESULTS DCM analysis suggested that TLE can influence the memory network more widely compared to the language network. For memory mapping, it demonstrated overall hyperconnectivity from the left hemisphere to the other cranial regions in the picture encoding, and from the right hemisphere to the other cranial regions in the word encoding tasks. On the contrary, overall hypoconnectivity was seen from the brain hemisphere contralateral to the seizure onset in the retrieval tasks. DCM analysis further manifested hypoconnectivity between the brain's hemispheres in the language network in patients with TLE compared to controls. The CANTAB® neuropsychological test revealed a negative correlation for the left TLE and a positive correlation for the right TLE cohorts for the connections extracted by DCM that were significantly different between the left and right TLE cohorts. INTERPRETATION In this study, dynamic causal modeling evidenced the reorganization of language and memory networks in TLE that can be used for a better understanding of the effects of TLE on the brain's cognitive functions.
Collapse
Affiliation(s)
- Alireza Fallahi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | | | - Fatemeh Eivazi
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mohammadi Mobarakeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani-Siahaki
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Alibiglou
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | | | | | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Kallioinen P, Olofsson JK, von Mentzer CN. Semantic processing in children with Cochlear Implants: A review of current N400 studies and recommendations for future research. Biol Psychol 2023; 182:108655. [PMID: 37541539 DOI: 10.1016/j.biopsycho.2023.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Deaf and hard of hearing children with cochlear implants (CI) often display impaired spoken language skills. While a large number of studies investigated brain responses to sounds in this population, relatively few focused on semantic processing. Here we summarize and discuss findings in four studies of the N400, a cortical response that reflects semantic processing, in children with CI. A study with auditory target stimuli found N400 effects at delayed latencies at 12 months after implantation, but at 18 and 24 months after implantation effects had typical latencies. In studies with visual target stimuli N400 effects were larger than or similar to controls in children with CI, despite lower semantic abilities. We propose that in children with CI, the observed large N400 effect reflects a stronger reliance on top-down predictions, relative to bottom-up language processing. Recent behavioral studies of children and adults with CI suggest that top-down processing is a common compensatory strategy, but with distinct limitations such as being effortful. A majority of the studies have small sample sizes (N < 20), and only responses to image targets were studied repeatedly in similar paradigms. This precludes strong conclusions. We give suggestions for future research and ways to overcome the scarcity of participants, including extending research to children with conventional hearing aids, an understudied group.
Collapse
Affiliation(s)
- Petter Kallioinen
- Department of Linguistics, Stockholm University, Stockholm, Sweden; Lund University Cognitive Science, Lund University, Lund, Sweden.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
4
|
Kandeda AK, Nodeina S, Mabou ST. An aqueous extract of Syzygium cumini protects against kainate-induced status epilepticus and amnesia: evidence for antioxidant and anti-inflammatory intervention. Metab Brain Dis 2022; 37:2581-2602. [PMID: 35916986 DOI: 10.1007/s11011-022-01052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Temporal lobe epilepsy is the most common drug-resistant epilepsy. To cure epilepsy, drugs must target the mechanisms at the origin of seizures. Thus, the present investigation aimed to evaluate the antiepileptic- and anti-amnesic-like effects of an aqueous extract of Syzygium cumini against kainate-induced status epilepticus in mice, and possible mechanisms of action. Mice were divided into 7 groups and treated as follows: normal group or kainate group received po distilled water (10 mL/kg), four test groups received Syzygium cumini (28.8, 72, 144, and 288 mg/kg, po), and the positive control group treated intraperitoneally (ip) with sodium valproate (300 mg/kg). An extra group of normal mice was treated with piracetam (200 mg/kg, po). Treatments were administered 60 min before the induction of status epilepticus with kainate (15 mg/kg, ip), and continued daily throughout behavioral testing. Twenty-four hours after the induction, T-maze and Morris water maze tasks were successively performed. The animals were then sacrificed and some markers of oxidative stress and neuroinflammation were estimated in the hippocampus. The extract significantly prevented status epilepticus and mortality. In the T-maze, the aqueous extract markedly increased the time spent and the number of entries in the discriminated arm. In the Morris water maze, the extract significantly increased the time spent in the target quadrant during the retention phase. Furthermore, the aqueous extract induced a significant reduction of oxidative stress and neuroinflammation. These results suggest that the aqueous extract of Syzygium cumini has antiepileptic- and anti-amnesic-like effects, likely mediated in part by antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Saleh Nodeina
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Symphorien Talom Mabou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
5
|
Leveraging manifold learning techniques to explore white matter anomalies: An application of the TractLearn pipeline in epilepsy. Neuroimage Clin 2022; 36:103209. [PMID: 36162235 PMCID: PMC9668609 DOI: 10.1016/j.nicl.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
An accurate description of brain white matter anatomy in vivo remains a challenge. However, technical progress allows us to analyze structural variations in an increasingly sophisticated way. Current methods of processing diffusion MRI data now make it possible to correct some limiting biases. In addition, the development of statistical learning algorithms offers the opportunity to analyze the data from a new perspective. We applied newly developed tractography models to extract quantitative white matter parameters in a group of patients with chronic temporal lobe epilepsy. Furthermore, we implemented a statistical learning workflow optimized for the MRI diffusion data - the TractLearn pipeline - to model inter-individual variability and predict structural changes in patients. Finally, we interpreted white matter abnormalities in the context of several other parameters reflecting clinical status, as well as neuronal and cognitive functioning for these patients. Overall, we show the relevance of such a diffusion data processing pipeline for the evaluation of clinical populations. The "global to fine scale" funnel statistical approach proposed in this study also contributes to the understanding of neuroplasticity mechanisms involved in refractory epilepsy, thus enriching previous findings.
Collapse
|
6
|
Banjac S, Roger E, Cousin E, Mosca C, Minotti L, Krainik A, Kahane P, Baciu M. Mapping of Language-and-Memory Networks in Patients With Temporal Lobe Epilepsy by Using the GE2REC Protocol. Front Hum Neurosci 2022; 15:752138. [PMID: 35069148 PMCID: PMC8772037 DOI: 10.3389/fnhum.2021.752138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Preoperative mapping of language and declarative memory functions in temporal lobe epilepsy (TLE) patients is essential since they frequently encounter deterioration of these functions and show variable degrees of cerebral reorganization. Due to growing evidence on language and declarative memory interdependence at a neural and neuropsychological level, we propose the GE2REC protocol for interactive language-and-memory network (LMN) mapping. GE2REC consists of three inter-related tasks, sentence generation with implicit encoding (GE) and two recollection (2REC) memory tasks: recognition and recall. This protocol has previously been validated in healthy participants, and in this study, we showed that it also maps the LMN in the left TLE (N = 18). Compared to healthy controls (N = 19), left TLE (LTLE) showed widespread inter- and intra-hemispheric reorganization of the LMN through reduced activity of regions engaged in the integration and the coordination of this meta-network. We also illustrated how this protocol could be implemented in clinical practice individually by presenting two case studies of LTLE patients who underwent efficient surgery and became seizure-free but showed different cognitive outcomes. This protocol can be advantageous for clinical practice because it (a) is short and easy to perform; (b) allows brain mapping of essential cognitive functions, even at an individual level; (c) engages language-and-memory interaction allowing to evaluate the integrative processes within the LMN; (d) provides a more comprehensive assessment by including both verbal and visual modalities, as well as various language and memory processes. Based on the available postsurgical data, we presented preliminary results obtained with this protocol in LTLE patients that could potentially inform the clinical practice. This implies the necessity to further validate the potential of GE2REC for neurosurgical planning, along with two directions, guiding resection and describing LMN neuroplasticity at an individual level.
Collapse
Affiliation(s)
- Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| | - Elise Roger
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| | - Emilie Cousin
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
- Université Grenoble Alpes, UMS IRMaGe CHU Grenoble, Grenoble, France
| | - Chrystèle Mosca
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Lorella Minotti
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Alexandre Krainik
- Université Grenoble Alpes, UMS IRMaGe CHU Grenoble, Grenoble, France
| | - Philippe Kahane
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| |
Collapse
|
7
|
Bolocan M, Iacob CI, Avram E. Working Memory and Language Contribution to Verbal Learning and Memory in Drug-Resistant Unilateral Focal Temporal Lobe Epilepsy. Front Neurol 2021; 12:780086. [PMID: 34956061 PMCID: PMC8692669 DOI: 10.3389/fneur.2021.780086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
We aimed to investigate the working memory (WM) and language separate contributions to verbal learning and memory in patients with unilateral drug-resistant temporal lobe epilepsy (drTLE); additionally, we explored the mediating role of WM on the relationship between the number of antiepileptic drugs (AEDs) and short-term verbal memory. We retrospectively enrolled 70 patients with left (LTLE; n = 44) and right (RTLE; n = 26) drTLE. About 40 similar (age and education) healthy controls were used to determine impairments of groups at WM, language (naming and verbal fluency), and verbal learning and memory (five trials list-learning, story memory-immediate recall). To disentangle the effect of learning from the short-term memory, we separately analyzed performances at the first trial, last trial, and delayed-recall list-learning measures, in addition to the total learning capacity (the sum of the five trials). Correlation and regression analyses were used to assess the contribution of potential predictors while controlling for main clinical and demographic variables, and ascertain the mediating role of WM. All patients were impaired at WM and story memory, whereas only LTLE showed language and verbal learning deficits. In RTLE, language was the unique predictor for the most verbal learning performances, whereas WM predicted the results at story memory. In LTLE, WM was the sole predictor for short-term verbal learning (list-learning capacity; trial 1) and mediated the interaction between AED number and the performance at these measures, whereas language predicted the delayed-recall. Finally, WM confounded the performance at short-term memory in both groups, although at different measures. WM is impaired in drTLE and contributes to verbal memory and learning deficits in addition to language, mediating the relationship between AED number and short-term verbal memory in LTLE. Clinicians should consider this overlap when interpreting poor performance at verbal learning and memory in drTLE.
Collapse
Affiliation(s)
- Monica Bolocan
- Laboratory of Health Psychology and Clinical Neuropsychology, Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Claudia I Iacob
- Laboratory of Health Psychology and Clinical Neuropsychology, Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Eugen Avram
- Laboratory of Health Psychology and Clinical Neuropsychology, Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Missing links: The functional unification of language and memory (L∪M). Neurosci Biobehav Rev 2021; 133:104489. [PMID: 34929226 DOI: 10.1016/j.neubiorev.2021.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The field of neurocognition is currently undergoing a significant change of perspective. Traditional neurocognitive models evolved into an integrative and dynamic vision of cognitive functioning. Dynamic integration assumes an interaction between cognitive domains traditionally considered to be distinct. Language and declarative memory are regarded as separate functions supported by different neural systems. However, they also share anatomical structures (notably, the inferior frontal gyrus, the supplementary motor area, the superior and middle temporal gyrus, and the hippocampal complex) and cognitive processes (such as semantic and working memory) that merge to endorse our quintessential daily lives. We propose a new model, "L∪M" (i.e., Language/union/Memory), that considers these two functions interactively. We fractionated language and declarative memory into three fundamental dimensions or systems ("Receiver-Transmitter", "Controller-Manager" and "Transformer-Associative" Systems), that communicate reciprocally. We formalized their interactions at the brain level with a connectivity-based approach. This new taxonomy overcomes the modular view of cognitive functioning and reconciles functional specialization with plasticity in neurological disorders.
Collapse
|
9
|
Roger E, Torlay L, Banjac S, Mosca C, Minotti L, Kahane P, Baciu M. Prediction of the clinical and naming status after anterior temporal lobe resection in patients with epilepsy. Epilepsy Behav 2021; 124:108357. [PMID: 34717247 DOI: 10.1016/j.yebeh.2021.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 01/20/2023]
Abstract
By assessing the cognitive capital, neuropsychological evaluation (NPE) plays a vital role in the perioperative workup of patients with refractory focal epilepsy. In this retrospective study, we used cutting-edge statistical approaches to examine a group of 47 patients with refractory temporal lobe epilepsy (TLE), who underwent standard anterior temporal lobectomy (ATL). Our objective was to determine whether NPE may represent a robust predictor of the postoperative status, two years after surgery. Specifically, based on pre- and postsurgical neuropsychological data, we estimated the sensitivity of cognitive indicators to predict and to disentangle phenotypes associated with more or less favorable outcomes. Engel (ENG) scores were used to assess clinical outcome, and picture naming (NAM) performance to estimate naming status. Two methods were applied: (a) machine learning (ML) to explore cognitive sensitivity to postoperative outcomes; and (b) graph theory (GT) to assess network properties reflecting favorable vs. less favorable phenotypes after surgery. Specific neuropsychological indices assessing language, memory, and executive functions can globally predict outcomes. Interestingly, preoperative cognitive networks associated with poor postsurgical outcome already exhibit an atypical, highly modular and less densely interconnected configuration. We provide statistical and clinical tools to anticipate the condition after surgery and achieve a more personalized clinical management. Our results also shed light on possible mechanisms put in place for cognitive adaptation after acute injury of central nervous system in relation with surgery.
Collapse
Affiliation(s)
- Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.
| | - Laurent Torlay
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Chrystèle Mosca
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, Synchronisation et modulation des réseaux neuronaux dans l'épilepsie' & Neurology Department, 38000 Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, Synchronisation et modulation des réseaux neuronaux dans l'épilepsie' & Neurology Department, 38000 Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, Synchronisation et modulation des réseaux neuronaux dans l'épilepsie' & Neurology Department, 38000 Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| |
Collapse
|
10
|
Banjac S, Roger E, Cousin E, Perrone-Bertolotti M, Haldin C, Pichat C, Lamalle L, Minotti L, Kahane P, Baciu M. Interactive mapping of language and memory with the GE2REC protocol. Brain Imaging Behav 2021; 15:1562-1579. [PMID: 32761343 PMCID: PMC8286228 DOI: 10.1007/s11682-020-00355-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have highlighted the importance of considering cognitive functions from a dynamic and interactive perspective and multiple evidence was brought for a language and memory interaction. In this study performed with healthy participants, we present a new protocol entitled GE2REC that interactively accesses the neural representation of language-and-memory network. This protocol consists of three runs related to each other, providing a link between tasks, in order to assure an interactive measure of linguistic and episodic memory processes. GE2REC consists of a sentence generation (GE) in the auditory modality and two recollecting (2REC) memory tasks, one recognition performed in the visual modality, and another one recall performed in the auditory modality. Its efficiency was evaluated in 20 healthy volunteers using a 3T MR imager. Our results corroborate the ability of GE2REC to robustly activate fronto-temporo-parietal language network as well as temporal mesial, prefrontal and parietal cortices in encoding during sentence generation and recognition. GE2REC is useful because it: (a) requires simultaneous and interactive language-and-memory processes and jointly maps their neural basis; (b) explores encoding and retrieval, managing to elicit activation of mesial temporal structures; (c) is easy to perform, hence being suitable for more restrictive settings, and (d) has an ecological dimension of tasks and stimuli. GE2REC may be useful for studying neuroplasticity of cognitive functions, especially in patients with temporal lobe epilepsy who show reorganization of both language and memory networks. Overall, GE2REC can provide valuable information in terms of the practical foundation of exploration language and memory interconnection.
Collapse
Affiliation(s)
- Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.,Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | | | - Célise Haldin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Cédric Pichat
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Laurent Lamalle
- Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.
| |
Collapse
|
11
|
Ota M, Koshibe Y, Higashi S, Nemoto K, Tsukada E, Tamura M, Takahashi T, Arai T. Structural Brain Network Correlated with Reading Impairment in Alzheimer's Disease. Dement Geriatr Cogn Disord 2021; 49:264-269. [PMID: 32810848 DOI: 10.1159/000508406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
AIM Alzheimer's disease (AD) is the most common age-related neurodegenerative disease and leads to dementia. AD is characterized by progressive declines in memory and, as the disease progresses, language dysfunction. Although it has been reported that AD patients show progressive aphasia, no study has examined the relationship between language functions estimated by the Standard Language Test for Aphasia (SLTA) and brain network connectivity in Japanese AD patients. If present, such a relationship would be of particular interest because Japanese speakers are accustomed to mingling ideography and phonography. METHODS 22 Japanese patients with AD who underwent 1.5-tesla MRI scan and SLTA, the scale for speech and reading impairment, participated in this study. We computed brain network connectivity metrics such as degree, betweenness centrality, and clustering coefficient, and estimated their relationships with the subscores of SLTA. RESULTS There was a significant negative correlation between the score for "reading aloud Kanji words" and the clustering coefficient in the left inferior temporal region, bilateral hippocampal regions, and right parietotemporal region. We also found a significant negative correlation between the score for "auditory comprehension of words" and the clustering coefficient in the left prefrontal region. No significant relationship was found between the other SLTA scores and the network metrics. CONCLUSIONS Our data suggest relationships between reading impairments and regional brain network connectivity in Japanese patients with AD. The brain connectome may provide adjunct biological information that could improve our understanding of reading impairment.
Collapse
Affiliation(s)
- Miho Ota
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan,
| | - Yuko Koshibe
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinji Higashi
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ami-machi, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eriko Tsukada
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masashi Tamura
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takumi Takahashi
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
de Tommaso M, Betti V, Bocci T, Bolognini N, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Arcara G, Berchicci M, Bianco V, Delussi M, Gentile E, Giovannelli F, Mannarelli D, Marino M, Mussini E, Pauletti C, Pellicciari MC, Pisoni A, Raggi A, Valeriani M. Pearls and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part I. Neurol Sci 2020; 41:2711-2735. [PMID: 32388645 DOI: 10.1007/s10072-020-04420-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Event-related potentials (ERPs) are obtained from the electroencephalogram (EEG) or the magnetoencephalogram (MEG, event-related fields (ERF)), extracting the activity that is time-locked to an event. Despite the potential utility of ERP/ERF in cognitive domain, the clinical standardization of their use is presently undefined for most of procedures. The aim of the present review is to establish limits and reliability of ERP medical application, summarize main methodological issues, and present evidence of clinical application and future improvement. The present section of the review focuses on well-standardized ERP methods, including P300, Contingent Negative Variation (CNV), Mismatch Negativity (MMN), and N400, with a chapter dedicated to laser-evoked potentials (LEPs). One section is dedicated to proactive preparatory brain activity as the Bereitschaftspotential and the prefrontal negativity (BP and pN). The P300 and the MMN potentials have a limited but recognized role in the diagnosis of cognitive impairment and consciousness disorders. LEPs have a well-documented usefulness in the diagnosis of neuropathic pain, with low application in clinical assessment of psychophysiological basis of pain. The other ERP components mentioned here, though largely applied in normal and pathological cases and well standardized, are still confined to the research field. CNV, BP, and pN deserve to be largely tested in movement disorders, just to explain possible functional changes in motor preparation circuits subtending different clinical pictures and responses to treatments.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy
| | - Tommaso Bocci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milan, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Sara Invitto
- INSPIRE - Laboratory of Cognitive and Psychophysiological Olfactory Processes, University of Salento, Lecce, Italy
| | - Giacomo Koch
- IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy.,Department of Neuroscience, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Aldo Ragazzoni
- Unit of Neurology and Clinical Neurophysiology, Fondazione PAS, Scandicci, Florence, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience Siena Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Siena, Italy
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valentina Bianco
- IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Gentile
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Fabio Giovannelli
- Section of Psychology - Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy
| | - Daniela Mannarelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Marco Marino
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Elena Mussini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Caterina Pauletti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy
| | - Alberto Raggi
- Unit of Neurology, G.B. Morgagni - L. Pierantoni Hospital, Forlì, Italy
| | - Massimiliano Valeriani
- Neurology Ward Unit, Bambino Gesù Hospital, Rome, Italy. .,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
13
|
Roger E, Torlay L, Gardette J, Mosca C, Banjac S, Minotti L, Kahane P, Baciu M. A machine learning approach to explore cognitive signatures in patients with temporo-mesial epilepsy. Neuropsychologia 2020; 142:107455. [DOI: 10.1016/j.neuropsychologia.2020.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
|
14
|
Roger E, Pichat C, Torlay L, David O, Renard F, Banjac S, Attyé A, Minotti L, Lamalle L, Kahane P, Baciu M. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network. Hum Brain Mapp 2019; 41:779-796. [PMID: 31721361 PMCID: PMC7268007 DOI: 10.1002/hbm.24839] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) affects the brain networks at several levels and patients suffering from mTLE experience cognitive impairment for language and memory. Considering the importance of language and memory reorganization in this condition, the present study explores changes of the embedded language‐and‐memory network (LMN) in terms of functional connectivity (FC) at rest, as measured with functional MRI. We also evaluate the cognitive efficiency of the reorganization, that is, whether or not the reorganizations support or allow the maintenance of optimal cognitive functioning despite the seizure‐related damage. Data from 37 patients presenting unifocal mTLE were analyzed and compared to 48 healthy volunteers in terms of LMN‐FC using two methods: pairwise correlations (region of interest [ROI]‐to‐ROI) and graph theory. The cognitive efficiency of the LMN‐FC reorganization was measured using correlations between FC parameters and language and memory scores. Our findings revealed a large perturbation of the LMN hubs in patients. We observed a hyperconnectivity of limbic areas near the dysfunctional hippocampus and mainly a hypoconnectivity for several cortical regions remote from the dysfunctional hippocampus. The loss of FC was more important in left mTLE (L‐mTLE) than in right (R‐mTLE) patients. The LMN‐FC reorganization may not be always compensatory and not always useful for patients as it may be associated with lower cognitive performance. We discuss the different connectivity patterns obtained and conclude that interpretation of FC changes in relation to neuropsychological scores is important to determine cognitive efficiency, suggesting the concept of “connectome” would gain to be associated with a “cognitome” concept.
Collapse
Affiliation(s)
- Elise Roger
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Cedric Pichat
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Laurent Torlay
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institute of Neuroscience, INSERM, Brain Stimulation and System Neuroscience, University Grenoble Alpes, Grenoble, France
| | | | - Sonja Banjac
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | | | - Lorella Minotti
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | | | - Philippe Kahane
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Balter S, Lin G, Leyden KM, Paul BM, McDonald CR. Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy. BRAIN AND LANGUAGE 2019; 193:31-44. [PMID: 27393391 PMCID: PMC5215985 DOI: 10.1016/j.bandl.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/27/2016] [Accepted: 06/15/2016] [Indexed: 06/02/2023]
Abstract
Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions.
Collapse
Affiliation(s)
- S Balter
- Department of Neurology, University of California, San Francisco, CA, United States; UCSF Comprehensive Epilepsy Center, United States
| | - G Lin
- Palo Alto University, Palo Alto, CA, United States
| | - K M Leyden
- Multimodal Imaging Laboratory, University of California, San Diego, CA, United States
| | - B M Paul
- Department of Neurology, University of California, San Francisco, CA, United States; UCSF Comprehensive Epilepsy Center, United States
| | - C R McDonald
- Multimodal Imaging Laboratory, University of California, San Diego, CA, United States; Department of Psychiatry, University of California, San Diego, CA, United States.
| |
Collapse
|
16
|
Regional neuropathology distribution and verbal fluency impairments in Parkinson's disease. Parkinsonism Relat Disord 2019; 65:73-78. [PMID: 31109728 DOI: 10.1016/j.parkreldis.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Verbal fluency deficits are common in patients with Parkinson's disease. The association of these impairments with regional neuropathological changes is unexplored. OBJECTIVES Determine if patients with verbal fluency impairments have greater neuropathological burden in frontal, temporal, and limbic regions and if Lewy bodies or neurofibrillary tangles were associated with verbal fluency impairments. METHODS Data was derived from the Arizona Study of Aging and Neurodegenerative Disorders. 47 individuals who completed phonemic and semantic verbal fluency tasks and met clinicopathological criteria for Parkinson's disease (with and without comorbid Alzheimer's disease) were included. Impairment on fluency tasks was defined by normative data, and the density of neuropathology in temporal, limbic, and frontal regions was compared between groups. RESULTS Individuals with semantic fluency impairments had greater total pathology (Lewy bodies + neurofibrillary tangles) in limbic structures (W = 320.0, p = .033, rpb = .33), while those who had phonemic fluency impairments had increased total neuropathology in frontal (W = 364.5, p = .011, rpb = .37), temporal (W = 356.5, p = .022, rpb = .34), and limbic regions (W = 357.0, p = .024, rpb = .34). Greater Lewy body density was found in those with verbal fluency impairments, though trends for greater neurofibrillary tangle density were noted as well. CONCLUSIONS Impaired phonemic fluency was associated with higher Lewy body and tangle burden in frontal, temporal, and limbic regions, while impaired semantic fluency was associated with greater limbic pathology. Though neurofibrillary tangles trended higher in several regions in those with impaired verbal fluency, higher Lewy body density in general was associated with verbal fluency deficits. Implications for research and clinical practice are discussed.
Collapse
|
17
|
de Góes VB, Frizzo ACF, Oliveira FR, Garner DM, Raimundo RD, Valenti VE. Interaction Between Cortical Auditory Processing and Vagal Regulation of Heart Rate in Language Tasks: A Randomized, Prospective, Observational, Analytical and Cross-Sectional Study. Sci Rep 2019; 9:4277. [PMID: 30862817 PMCID: PMC6414501 DOI: 10.1038/s41598-019-41014-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Cortical auditory evoked potentials (CAEP) throughout a language task is beneficial during psychophysiological evaluation to advance identification of language disorders. So as to better comprehend human communication and to provide additional elements for neuropsychological examinations we aimed to (1) examine the influence of language tasks on cortical auditory processing and vagal control of heart rate and (2) to verify a possible association between the parasympathetic cardiac regulation and cortical auditory processing in language tasks. This study was completed with 49 women. The subjects were separated into two groups: (1) phonological language tasks (N = 21) and (2) semantic (N = 21) language tasks. Heart rate variability (HRV) and CAEP were evaluated before and after the tests. HRV reduced (small effect size) and P3 wave latency increased after the phonological task. Identical variables were significantly correlated after the phonological task and linear regression indicated significant interaction between pNN50 (percentage of adjacent RR intervals with a difference of duration greater than 50 milliseconds) and P3 latency (16.9%). In conclusion, phonological language tasks slightly reduced parasympathetic control of HR and increased cognitive effort. The association between HRV and CAEP are anticipated to be involved in this mechanism.
Collapse
Affiliation(s)
- Viviane B de Góes
- Autonomic Nervous System Center (CESNA), Department of Speech, Language and Hearing Therapy, UNESP, Marilia, Brazil
| | - Ana Claúdia F Frizzo
- Autonomic Nervous System Center (CESNA), Department of Speech, Language and Hearing Therapy, UNESP, Marilia, Brazil
| | | | - David M Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, United Kingdom
| | - Rodrigo D Raimundo
- Laboratory of Design and Scientific Writing, School of Medicine of ABC, Santo Andre, SP, Brazil
| | - Vitor E Valenti
- Autonomic Nervous System Center (CESNA), Department of Speech, Language and Hearing Therapy, UNESP, Marilia, Brazil.
| |
Collapse
|
18
|
Paz-Alonso PM, Oliver M, Lerma-Usabiaga G, Caballero-Gaudes C, Quiñones I, Suárez-Coalla P, Duñabeitia JA, Cuetos F, Carreiras M. Neural correlates of phonological, orthographic and semantic reading processing in dyslexia. Neuroimage Clin 2018; 20:433-447. [PMID: 30128282 PMCID: PMC6096051 DOI: 10.1016/j.nicl.2018.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/24/2018] [Accepted: 08/09/2018] [Indexed: 11/25/2022]
Abstract
Developmental dyslexia is one of the most prevalent learning disabilities, thought to be associated with dysfunction in the neural systems underlying typical reading acquisition. Neuroimaging research has shown that readers with dyslexia exhibit regional hypoactivation in left hemisphere reading nodes, relative to control counterparts. This evidence, however, comes from studies that have focused only on isolated aspects of reading. The present study aims to characterize left hemisphere regional hypoactivation in readers with dyslexia for the main processes involved in successful reading: phonological, orthographic and semantic. Forty-one participants performed a demanding reading task during MRI scanning. Results showed that readers with dyslexia exhibited hypoactivation associated with phonological processing in parietal regions; with orthographic processing in parietal regions, Broca's area, ventral occipitotemporal cortex and thalamus; and with semantic processing in angular gyrus and hippocampus. Stronger functional connectivity was observed for readers with dyslexia than for control readers 1) between the thalamus and the inferior parietal cortex/ventral occipitotemporal cortex during pseudoword reading; and, 2) between the hippocampus and the pars opercularis during word reading. These findings constitute the strongest evidence to date for the interplay between regional hypoactivation and functional connectivity in the main processes supporting reading in dyslexia.
Collapse
Affiliation(s)
- Pedro M Paz-Alonso
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain.
| | - Myriam Oliver
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain
| | | | | | - Ileana Quiñones
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain
| | | | | | | | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Departamento de Lengua Vasca y Comunicación, EHU/UPV, Spain
| |
Collapse
|