1
|
Yang E, Fan X, Ye H, Sun X, Ji Q, Ding Q, Zhong S, Zhao S, Xuan C, Fang M, Ding X, Cao J. Exploring the role of ubiquitin regulatory X domain family proteins in cancers: bioinformatics insights, mechanisms, and implications for therapy. J Transl Med 2024; 22:157. [PMID: 38365777 PMCID: PMC10870615 DOI: 10.1186/s12967-024-04890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 02/18/2024] Open
Abstract
UBXD family (UBXDF), a group of proteins containing ubiquitin regulatory X (UBX) domains, play a crucial role in the imbalance of proliferation and apoptotic in cancer. In this study, we summarised bioinformatics proof on multi-omics databases and literature on UBXDF's effects on cancer. Bioinformatics analysis revealed that Fas-associated factor 1 (FAF1) has the largest number of gene alterations in the UBXD family and has been linked to survival and cancer progression in many cancers. UBXDF may affect tumour microenvironment (TME) and drugtherapy and should be investigated in the future. We also summarised the experimental evidence of the mechanism of UBXDF in cancer, both in vitro and in vivo, as well as its application in clinical and targeted drugs. We compared bioinformatics and literature to provide a multi-omics insight into UBXDF in cancers, review proof and mechanism of UBXDF effects on cancers, and prospect future research directions in-depth. We hope that this paper will be helpful for direct cancer-related UBXDF studies.
Collapse
Affiliation(s)
- Enyu Yang
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaowei Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haihan Ye
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyang Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong , 999077, Special Administrative Region, China
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shulian Zhong
- Zhejiang Sci-Tech University Hospital, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuo Zhao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cheng Xuan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Hu D, Yamada H, Yoshimura K, Ohta T, Tsuchiya K, Inoue Y, Funai K, Suda T, Iwashita Y, Watanabe T, Ogawa H, Kurono N, Shinmura K, Sugimura H. High Expression of Fas-Associated Factor 1 Indicates a Poor Prognosis in Non-Small-Cell Lung Cancer. Curr Oncol 2023; 30:9484-9500. [PMID: 37999107 PMCID: PMC10670600 DOI: 10.3390/curroncol30110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fas-associated factor 1 (FAF1) is a death-promoting protein identified as an interaction partner of the death receptor Fas. The downregulation and mutation of FAF1 have been reported in a variety of human tumors, but there have been few studies on lung cancer. Here, we investigated the prognostic significance of FAF1 expression in non-small-cell lung cancer (NSCLC), and whether aberrant FAF1 expression may be involved in the pathogenesis and prognosis of NSCLC. FAF1 expression was examined in NSCLC specimens as well as human lung cancer cell lines. In addition, changes in cell viability and apoptosis upon regulating FAF1 expression were investigated in lung cancer cell lines. As a result, high FAF1 expression was significantly associated with a poor prognosis in NSCLC. In lung cancer cell lines, FAF1 downregulation hindered cell viability and tended to promote early apoptosis. In conclusion, this is the first study of the clinical significance of FAF1 in NSCLC, showing that FAF1 overexpression is associated with a poor prognosis in NSCLC and that FAF1 acts as a dangerous factor rather than an apoptosis promoter in NSCLC.
Collapse
Affiliation(s)
- De Hu
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu 431-2102, Shizuoka, Japan
| | - Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Takuya Watanabe
- Division of Thoracic Surgery, Department of Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu 433-8558, Shizuoka, Japan;
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu 433-8558, Shizuoka, Japan;
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan; (D.H.); (K.Y.); (T.O.); (K.T.); (Y.I.); (Y.I.); (K.S.)
- Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan
| |
Collapse
|
3
|
miR-193b-3p Promotes Proliferation of Goat Skeletal Muscle Satellite Cells through Activating IGF2BP1. Int J Mol Sci 2022; 23:ijms232415760. [PMID: 36555418 PMCID: PMC9779864 DOI: 10.3390/ijms232415760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
As a well-known cancer-related miRNA, miR-193b-3p is enriched in skeletal muscle and dysregulated in muscle disease. However, the mechanism underpinning this has not been addressed so far. Here, we probed the impact of miR-193b-3p on myogenesis by mainly using goat tissues and skeletal muscle satellite cells (MuSCs), compared with mouse C2C12 myoblasts. miR-193b-3p is highly expressed in goat skeletal muscles, and ectopic miR-193b-3p promotes MuSCs proliferation and differentiation. Moreover, insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is the most activated insulin signaling gene when there is overexpression of miR-193b-3p; the miRNA recognition element (MRE) within the IGF1BP1 3' untranslated region (UTR) is indispensable for its activation. Consistently, expression patterns and functions of IGF2BP1 were similar to those of miR-193b-3p in tissues and MuSCs. In comparison, ectopic miR-193b-3p failed to induce PAX7 expression and myoblast proliferation when there was IGF2BP1 knockdown. Furthermore, miR-193b-3p destabilized IGF2BP1 mRNA, but unexpectedly promoted levels of IGF2BP1 heteronuclear RNA (hnRNA), dramatically. Moreover, miR-193b-3p could induce its neighboring genes. However, miR-193b-3p inversely regulated IGF2BP1 and myoblast proliferation in the mouse C2C12 myoblast. These data unveil that goat miR-193b-3p promotes myoblast proliferation via activating IGF2BP1 by binding to its 3' UTR. Our novel findings highlight the positive regulation between miRNA and its target genes in muscle development, which further extends the repertoire of miRNA functions.
Collapse
|
4
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
5
|
Abstract
A feature of the cell cycle is that the events of one cycle must be reset before the next one begins. A study now shows that the replication machinery is removed from fully replicated DNA by a conserved ubiquitin- and CDC48 (also known as p97)-dependent pathway. This explains how eukaryotic chromosomes are returned to the unreplicated state.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute and the Department of Biochemistry, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Philip Zegerman
- Wellcome Trust/Cancer Research UK Gurdon Institute and the Department of Biochemistry, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
6
|
Ramadan K, Halder S, Wiseman K, Vaz B. Strategic role of the ubiquitin-dependent segregase p97 (VCP or Cdc48) in DNA replication. Chromosoma 2016; 126:17-32. [PMID: 27086594 DOI: 10.1007/s00412-016-0587-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
Abstract
Genome amplification (DNA synthesis) is one of the most demanding cellular processes in all proliferative cells. The DNA replication machinery (also known as the replisome) orchestrates genome amplification during S-phase of the cell cycle. Genetic material is particularly vulnerable to various events that can challenge the replisome during its assembly, activation (firing), progression (elongation) and disassembly from chromatin (termination). Any disturbance of the replisome leads to stalling of the DNA replication fork and firing of dormant replication origins, a process known as DNA replication stress. DNA replication stress is considered to be one of the main causes of sporadic cancers and other pathologies related to tissue degeneration and ageing. The mechanisms of replisome assembly and elongation during DNA synthesis are well understood. However, once DNA synthesis is complete, the process of replisome disassembly, and its removal from chromatin, remains unclear. In recent years, a growing body of evidence has alluded to a central role in replisome regulation for the ubiquitin-dependent protein segregase p97, also known as valosin-containing protein (VCP) in metazoans and Cdc48 in lower eukaryotes. By orchestrating the spatiotemporal turnover of the replisome, p97 plays an essential role in DNA replication. In this review, we will summarise our current knowledge about how p97 controls the replisome from replication initiation, to elongation and finally termination. We will also further examine the more recent findings concerning the role of p97 and how mutations in p97 cofactors, also known as adaptors, cause DNA replication stress induced genomic instability that leads to cancer and accelerated ageing. To our knowledge, this is the first comprehensive review concerning the mechanisms involved in the regulation of DNA replication by p97.
Collapse
Affiliation(s)
- Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Swagata Halder
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Katherine Wiseman
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|