1
|
Tahmasebi F, Asl ER, Vahidinia Z, Barati S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell Mol Neurobiol 2024; 44:44. [PMID: 38713302 PMCID: PMC11076329 DOI: 10.1007/s10571-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
2
|
Jhanji V, Billig I, Yam GHF. Cell-Free Biological Approach for Corneal Stromal Wound Healing. Front Pharmacol 2021; 12:671405. [PMID: 34122095 PMCID: PMC8193853 DOI: 10.3389/fphar.2021.671405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal opacification is the fourth most common cause of blindness globally behind cataracts, glaucoma, and age-related macular degeneration. The standard treatment of serious corneal scarring is corneal transplantation. Though it is effective for restoring vision, the treatment outcome is not optimal, due to limitations such as long-term graft survival, lifelong use of immunosuppressants, and a loss of corneal strength. Regulation of corneal stromal wound healing, along with inhibition or downregulation of corneal scarring is a promising approach to prevent corneal opacification. Pharmacological approaches have been suggested, however these are fraught with side effects. Tissue healing is an intricate process that involves cell death, proliferation, differentiation, and remodeling of the extracellular matrix. Current research on stromal wound healing is focused on corneal characteristics such as the immune response, angiogenesis, and cell signaling. Indeed, promising new technologies with the potential to modulate wound healing are under development. In this review, we provide an overview of cell-free strategies and some approaches under development that have the potential to control stromal fibrosis and scarring, especially in the context of early intervention.
Collapse
Affiliation(s)
- Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isabelle Billig
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives. Int J Mol Sci 2020; 21:ijms21093114. [PMID: 32354122 PMCID: PMC7247696 DOI: 10.3390/ijms21093114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like-receptor (TLR) family members were detected in the central nervous system (CNS). TLR occurrence was noticed and widely described in glioblastomamultiforme (GBM) cells. After ligand attachment, TLR-4 reorients domains and dimerizes, activates an intracellular cascade, and promotes further cytoplasmatic signaling. There is evidence pointing at a strong relation between TLR-4 signaling and micro ribonucleic acid (miRNA) expression. The TLR-4/miRNA interplay changes typical signaling and encourages them to be a target for modern immunotherapy. TLR-4 agonists initiate signaling and promote programmed death ligand-1 (PD-1L) expression. Most of those molecules are intensively expressed in the GBM microenvironment, resulting in the autocrine induction of regional immunosuppression. Another potential target for immunotreatment is connected with limited TLR-4 signaling that promotes Wnt/DKK-3/claudine-5 signaling, resulting in a limitation of GBM invasiveness. Interestingly, TLR-4 expression results in bordering proliferative trends in cancer stem cells (CSC) and GBM. All of these potential targets could bring new hope for patients suffering from this incurable disease. Clinical trials concerning TLR-4 signaling inhibition/promotion in many cancers are recruiting patients. There is still a lot to do in the field of GBM immunotherapy.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence:
| | - Joanna Litak
- St. John‘s Cancer Center in Lublin, 20-090 Lublin, Poland
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Gosik
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Piotr Kamieniak
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Rolinski
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Chu Q, Yan X, Liu L, Xu T. The Inducible microRNA-21 Negatively Modulates the Inflammatory Response in Teleost Fish via Targeting IRAK4. Front Immunol 2019; 10:1623. [PMID: 31379828 PMCID: PMC6648887 DOI: 10.3389/fimmu.2019.01623] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Eradication of bacterial infection requires timely and appropriate immune and inflammatory responses, but excessive induction of inflammatory cytokines can cause acute or chronic inflammatory disorders. Thus, various layers of negative regulators and mechanisms are needed to ensure maintenance of the homeostasis for the immune system. miRNAs are a family of small non-coding RNAs that emerged as significant and versatile regulators involved in regulation of immune responses. Recently, the molecular mechanisms of miRNA in host-pathogen interaction networks have been extensively studied in mammals, whereas the underlying regulatory mechanisms in fish are still poorly understood. In this study, we identify miR-21 as a negative regulator of the teleost inflammatory response. We found that lipopolysaccharide and Vibrio anguillarum significantly upregulated the expression of fish miR-21. Upregulated miR-21 suppresses LPS-induced inflammatory cytokine expression by targeting IL-1 receptor-associated kinase 4 (IRAK4), thereby avoiding excessive inflammatory responses. Furthermore, we demonstrated that miR-21 regulates inflammatory responses through NF-κB signaling pathways. The collective findings indicate that miR-21 plays a regulatory role in host-pathogen interactions through IRAK4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Lihua Liu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Detection of Salivary miRNAs Reflecting Chronic Periodontitis: A Pilot Study. Molecules 2019; 24:molecules24061034. [PMID: 30875931 PMCID: PMC6470766 DOI: 10.3390/molecules24061034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
The purpose of this cross-sectional pilot study was to find salivary microRNAs (miRNAs) reflecting periodontal condition in chronic periodontitis. One hundred and twenty chronic periodontitis patients (mean age, 68.4 years) participated in the study, from whom unstimulated whole saliva was collected. A multiphase study was conducted to explore salivary miRNAs as biomarkers of periodontitis. At first, a polymerase chain reaction (PCR) array was performed to compare salivary miRNAs profiles in no and mild (no/mild) and severe periodontitis patients. Next, the relative expression of salivary miRNAs on individual samples was assessed by real-time reverse transcription-PCR. The numbers (%) of patients were 26 (21.6%, no/mild), 58 (48.3%, moderate) and 36 (30.0%, severe), respectively. Among 84 miRNAs, only the relative expression of hsa-miR-381-3p in the severe periodontitis group was significantly higher than that of the no/mild periodontitis group (p < 0.05). Among the 120 patients, there was also a significant correlation between the relative expression of hsa-miR-381-3p and the mean probing pocket depth (PPD) (r = 0.181, p < 0.05). Salivary hsa-miR-381-3p was correlated with periodontitis condition in chronic periodontitis patients.
Collapse
|
6
|
Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases. Cent Eur J Immunol 2018; 43:482-489. [PMID: 30799997 PMCID: PMC6384427 DOI: 10.5114/ceji.2018.81351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
The control of the immune response during the development of some diseases is crucial for the maintenance or restoration of homeostasis. Several mechanisms can initiate inflammation, one of which is the activation of toll-like receptors (TLRs), necessary to initiate the immune response to eliminate an infection. However, inappropriate activation can compromise immunological homeostasis, leading to pathologies such as autoimmune diseases, chronic inflammation, and even cancer. Regulatory mechanisms that intervene in the initiation or modulation of inflammation include microRNAs (miRNAs), which have emerged as key post-transcriptional regulators of proteins involved in distinct cellular processes, such as regulation of the immune response. The focus of this review is on the diverse roles of miRNAs in the regulation of TLR-signaling pathways by targeting multiple molecules, including TLRs, the signaling proteins and cytokines induced by TLRs. It will also address the relationships of these molecules with some diseases that involve inflammation such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), cancer, as well as bacterial or viral infections.
Collapse
|
7
|
Guo J, Cheng Y. RETRACTED: MicroRNA-1247 inhibits lipopolysaccharides-induced acute pneumonia in A549 cells via targeting CC chemokine ligand 16. Biomed Pharmacother 2018; 104:60-68. [DOI: 10.1016/j.biopha.2018.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023] Open
|
8
|
MicroRNA-216a Inhibits NF-κB-Mediated Inflammatory Cytokine Production in Teleost Fish by Modulating p65. Infect Immun 2018; 86:IAI.00256-18. [PMID: 29632247 DOI: 10.1128/iai.00256-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation is the host self-protection mechanism to eliminate pathogen invasion. The excessive inflammatory response can result in uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Recent studies have widely shown that microRNAs (miRNAs) contribute to the regulation of inflammation in mammals by repressing gene expression at the posttranscriptional level. However, the miRNA-mediated mechanism in the inflammatory response in fish remains hazy. In the present study, the regulatory mechanism of the miR-216a-mediated inflammatory response in teleost fish was addressed. We found that the expression of miR-216a could be significantly upregulated in the miiuy croaker after challenge with Vibrio anguillarum and lipopolysaccharide. Bioinformatics predictions demonstrated a potential binding site of miR-216a in the 3' untranslated region of the p65 gene, and the result was further confirmed by luciferase assay. Moreover, both the mRNA and protein levels of p65 in macrophages were downregulated by miR-216a. Deletion mutant analysis of the miR-216a promoter showed that the Ap1 and Sp1 transcription factor binding sites are indispensable for the transcription of miR-216a. Further study revealed that overexpression of miR-216a suppresses inflammatory cytokine expression and negatively regulates NF-κB signaling, which inhibit an excessive inflammatory response. The collective results indicate that miR-216a plays a role as a negative regulator involved in modulating the bacterium-induced inflammatory response.
Collapse
|
9
|
Fei S, Cao L, Pan L. microRNA‑3941 targets IGF2 to control LPS‑induced acute pneumonia in A549 cells. Mol Med Rep 2017; 17:4019-4026. [PMID: 29328418 DOI: 10.3892/mmr.2017.8369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the potential roles and regulatory mechanism of microRNA (miR)-3941 in lipopolysaccharides (LPS)‑induced acute pneumonia. The expression of miR‑3941 in child patients with acute pneumonia was detected and A549 cells were treated with LPS to establish the cellular model of acute pneumonia. The effects of miR‑3941 in LPS‑induced cell injury were investigated by assessing cell viability, apoptosis and inflammation. In addition, the regulatory relationship between miR‑3941 and insulin‑like growth factor 2 (IGF2) was explored, as well as the association between miR‑3941 and the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/protein kinase B (PI3K/AKT) pathway. miR‑3941 was significantly down‑regulated in patients with acute pneumonia (P<0.01). In the cell model of acute pneumonia, LPS treatment significantly induced cell injury via inhibiting cell viability (P<0.05 or P<0.01), inducing cell apoptosis (P<0.01) and enhancing the production of cytokines [interleukin (IL)‑6, IL‑8 and tumor necrosis factor‑α; P<0.01 or P<0.001]. LPS treatment also resulted in a significantly decreased expression of miR‑3941 in A549 cells (P<0.01) and the overexpression of miR‑3941 significantly alleviated LPS‑induced cell injury (P<0.05). In addition, IGF2 was confirmed as a direct target gene of miR‑3941. Knockdown of IGF2 significantly alleviated LPS‑induced cell injury (P<0.05, P<0.01 or P<0.001), which was significantly reversed by suppression of miR‑3941 (P<0.05, P<0.01 or P<0.001). Furthermore, inhibition of miR‑3941 was demonstrated to activate the PI3K/AKT pathway, which was inhibited following knockdown of IGF2. The present study indicates that miR‑3941 is downregulated in child patients with acute pneumonia and that downregulation of miR‑3941 may promote LPS‑induced cell injury in A549 cells via targeting IGF2 to regulate the activation of the PI3K/AKT pathway. Therefore, miR‑3941 may be a potential therapeutic target for the treatment of acute pneumonia in child patients.
Collapse
Affiliation(s)
- Shinuan Fei
- Department of Pediatrics, Edong Healthcare Group, Huangshi Maternity and Children's Health Hospital, Huangshi, Hubei 435000, P.R. China
| | - Lichun Cao
- Department of Pediatrics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Liangzhi Pan
- Department of Medical Records, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|
10
|
Keck J, Gupta R, Christenson LK, Arulanandam BP. MicroRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol 2017; 36:287-299. [PMID: 28800263 PMCID: PMC6904929 DOI: 10.1080/08830185.2017.1347649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence over the last couple decades has comprehensively established that short, highly conserved, non-coding RNA species called microRNA (miRNA) exhibit the ability to regulate expression and function of host genes at the messenger RNA (mRNA) level. MicroRNAs play key regulatory roles in immune cell development, differentiation, and protective function. Intrinsic host immune response to invading pathogens rely on intricate orchestrated events in the development of innate and adaptive arms of immunity. We discuss the involvement of miRNAs in regulating these processes against gram negative pathogens in this review.
Collapse
Affiliation(s)
- Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
11
|
Liu Y, Cheng Z, Pan F, Yan W. MicroRNA-373 Promotes Growth and Cellular Invasion in Osteosarcoma Cells by Activation of the PI3K/AKT-Rac1-JNK Pathway: The Potential Role in Spinal Osteosarcoma. Oncol Res 2017; 25:989-999. [PMID: 28244849 PMCID: PMC7841136 DOI: 10.3727/096504016x14813867762123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spinal osteosarcoma (OS) has been proven to be more difficult to treat owing to potently malignant metastasis. The present study aimed to explore the functional role of microRNA (miR)-373 in cell growth and invasion of OS cells, as well as its underlying mechanism. The expression of miR-373 was analyzed in spinal OS tissues and cell lines. MG-63 cells were transfected with the miR-373 mimic or inhibitor and/or treated with the phosphoinositide 3-kinase (PI3K) (LY294002) inhibitor or Ras-related C3 botulinum toxin substrate 1 (Rac) guanosine triphosphate (GTPase) (NSC23766) inhibitor, and then the impact of miR-373 aberrant expression on cell growth and invasion was measured, along with the impact of overexpressing miR-373 on the expression of p53 and PI3K/AKT pathway-related proteins. We found that miR-373 was specifically upregulated in spinal OS tissues (p < 0.01) and OS cell lines (p < 0.01 or p < 0.001). Moreover, miR-373 expression was significantly associated with TNM stage (p = 0.035) and tumor size (p = 0.002). Overexpression of miR-373 promoted MG-63 cell viability, migration, invasion, and colony formation (all p < 0.05), while silencing of miR-373 and LY294002 exerted the opposite effects. Additionally, miR-373 overexpression downregulated p53 as well as its downstream targeted genes and orderly activated the PI3K/AKT-Rac1-JNK signaling pathway. In conclusion, miR-373 promotes growth and cellular invasion in OS cells by activating the PI3K/AKT-Rac1-JNK pathway. Therefore, miR-373 might be a candidate for molecular targeted therapy of spinal OS.
Collapse
Affiliation(s)
- Yufeng Liu
- *Spinal Surgery Dept1, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, P.R. China
| | - Zhengliang Cheng
- †The First Department of Orthopedics, Ankang Hospital of Traditional Chinese Medicine, Ankang, P.R. China
| | - Feng Pan
- ‡Department of Acupuncture and Physiotherapy, Maternal and Child Health Care of Zaozhuang, Zaozhuang, P.R. China
| | - Weigang Yan
- §Spinal Surgery Dept4, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, P.R. China
| |
Collapse
|
12
|
Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, Devaskar SU. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS One 2017; 12:e0176493. [PMID: 28463968 PMCID: PMC5413012 DOI: 10.1371/journal.pone.0176493] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
Placental insufficiency leading to intrauterine growth restriction (IUGR) demonstrates perturbed gene expression affecting placental angiogenesis and nutrient transfer from mother to fetus. To understand the post-transcriptional mechanisms underlying such placental gene expression changes, our objective was to identify key non-coding microRNAs that express biological function. To this end, we initially undertook microarrays targeting microRNAs in a small sub-set of placentas of appropriate (AGA) versus small for gestational age (SGA) weight infants, and observed up-regulation of 97 miRs and down-regulation of 44 miRs in SGA versus AGA. In a larger cohort of samples (AGA, n = 21; SGA, n = 11; IUGR subset, n = 5), we validated by qRT-PCR differential expression of three specific microRNAs (miR-10b, -363 and -149) that target genes mediating angiogenesis and nutrient transfer. Validation yielded an increase in miR-10b and -363 expression of ~2.5-fold (p<0.02 each) in SGA versus AGA, and of ~3-fold (p<0.005) in IUGR versus AGA, with no significant change despite a trending increase in miR-149. To further establish a cause-and-effect paradigm, employing human HTR8 trophoblast cells, we assessed the effect of nutrient deprivation on miR expression and inhibition of endogenous miRs on target gene expression. In-vitro nutrient deprivation (~50%) increased the expression of miR-10b and miR-149 by 1.5-fold (p<0.02) while decreasing miR-363 (p<0.0001). Inhibition of endogenous miRs employing antisense sequences against miR-10b, -363 and -149 revealed an increase respectively in the expression of the target genes KLF-4 (transcription factor which regulates angiogenesis), SNAT1 and 2 (sodium coupled neutral amino acid transporters) and LAT2 (leucine amino acid transporter), which translated into a similar change in the corresponding proteins. Finally to establish functional significance we performed dual-luciferase reporter assays with 3'-insertion of miR-10b alone and observed a ~10% reduction in the 5'-luciferase activity versus the control. Lastly, we further validated by microarray and employing MirWalk software that the pathways and target genes identified by differentially expressed miRs in SGA/IUGR compared to AGA are consistent in a larger cohort. We have established the biological significance of various miRs that target common transcripts mediating pathways of importance, which are perturbed in the human IUGR placenta.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Katie Kempf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David A. Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, Wang L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:29. [PMID: 28193228 PMCID: PMC5307754 DOI: 10.1186/s13046-017-0499-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Abstract
Background MicroRNA-381 (miR-381) has been reported to play suppressive or promoting roles in different malignancies. However, the expression level, biological function, and underlying mechanisms of miR-381 in gastric cancer remain poorly understood. Our previous study indicated that transmembrane protein 16A (TMEM16A) contributed to migration and invasion of gastric cancer and predicted poor prognosis. In this study, we found that miR-381 inhibited the metastasis of gastric cancer through targeting TMEM16A expression. Methods MiR-381 expression was analyzed using bioinformatic software on open microarray datasets from the Gene Expression Omnibus (GEO) and confirmed by quantitative RT-PCR (qRT-PCR) in human gastric cancer tissues and cell lines. Cell proliferation was investigated using MTT and cell count assays, and cell migration and invasion abilities were evaluated by transwell assay. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Luciferase reporter assay, western blot, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were employed to explore the mechanisms of the effect of miR-381 on gastric cancer cells. Results MiR-381 was significantly down-regulated in gastric cancer tissues and cell lines. Low expression of miR-381 was negatively related to lymph node metastasis, advanced tumor stage and poor prognosis. MiR-381 decreased gastric cancer cell proliferation, migration and invasion in vitro and in vivo. TMEM16A was identified as a direct target of miR-381 and the expression of miR-381 was inversely correlated with TMEM16A expression in gastric cancer tissues. Combination analysis of miR-381 and TMEM16A revealed the improved prognostic accuracy for gastric cancer patients. Moreover, miR-381 inhibited TGF-β signaling pathway and down-regulated epithelial–mesenchymal transition (EMT) phenotype partially by mediating TMEM16A. Conclusions MiR-381 may function as a tumor suppressor by directly targeting TMEM16A and regulating TGF-β pathway and EMT process in the development of progression of gastric cancer. MiR-381/TMEM16A may be a novel therapeutic candidate target in gastric cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0499-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinghua Cao
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kaiyuan Ji
- Cancer Research Insitute, Southern Medical University, Guangzhou, 510515, China
| | - Ni Liu
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenhui Zhang
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Liantang Wang
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression. Int J Mol Sci 2016; 17:ijms17091377. [PMID: 27563877 PMCID: PMC5037657 DOI: 10.3390/ijms17091377] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3'-untranslated region (3'-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration.
Collapse
|