1
|
Liu J, Gao J, Xing S, Yan Y, Yan X, Jing Y, Li X. Bioinformatics analysis of signature genes related to cell death in keratoconus. Sci Rep 2024; 14:12749. [PMID: 38830963 PMCID: PMC11148072 DOI: 10.1038/s41598-024-63109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Keratoconus is corneal disease in which the progression of conical dilation of cornea leads to reduced visual acuity and even corneal perforation. However, the etiology mechanism of keratoconus is still unclear. This study aims to identify the signature genes related to cell death in keratoconus and examine the function of these genes. A dataset of keratoconus from the GEO database was analysed to identify the differentially expressed genes (DEGs). A total of 3558 DEGs were screened from GSE151631. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that they mainly involved in response to hypoxia, cell-cell adhesion, and IL-17 signaling pathway. Then, the cell death-related genes datasets were intersected with the above 3558 DEGs to obtain 70 ferroptosis-related DEGs (FDEGs), 32 autophagy-related DEGs (ADEGs), six pyroptosis-related DEGs (PDEGs), four disulfidptosis-related DEGs (DDEGs), and one cuproptosis-related DEGs (CDEGs). After using Least absolute shrinkage and selection operator (LASSO), Random Forest analysis, and receiver operating characteristic (ROC) curve analysis, one ferroptosis-related gene (TNFAIP3) and five autophagy-related genes (CDKN1A, HSPA5, MAPK8IP1, PPP1R15A, and VEGFA) were screened out. The expressions of the above six genes were significantly decreased in keratoconus and the area under the curve (AUC) values of these genes was 0.944, 0.893, 0.797, 0.726, 0.882 and 0.779 respectively. GSEA analysis showed that the above six genes mainly play an important role in allograft rejection, asthma, and circadian rhythm etc. In conclusion, the results of this study suggested that focusing on these genes and autoimmune diseases will be a beneficial perspective for the keratoconus etiology research.
Collapse
Affiliation(s)
- Jinghua Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Juan Gao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, 300020, China
| | - Shulei Xing
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
| | - Yarong Yan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
| | - Xinlin Yan
- School of Medicine, Nankai University, Tianjin, 300071, China
- Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Yapeng Jing
- School of Medicine, Nankai University, Tianjin, 300071, China
- Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Xuan Li
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Nankai University Affiliated Eye Hospital, Tianjin, 300020, China.
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, 300020, China.
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China.
| |
Collapse
|
2
|
Tarvestad-Laise K, Ceresa BP. Knockout of c-Cbl/Cbl-b slows c-Met trafficking resulting in enhanced signaling in corneal epithelial cells. J Biol Chem 2023; 299:105233. [PMID: 37690689 PMCID: PMC10622846 DOI: 10.1016/j.jbc.2023.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.
Collapse
Affiliation(s)
- Kate Tarvestad-Laise
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
3
|
Wang X, Hui Q, Jin Z, Rao F, Jin L, Yu B, Banda J, Li X. Roles of growth factors in eye development and ophthalmic diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:613-625. [PMID: 36581579 PMCID: PMC10264994 DOI: 10.3724/zdxbyxb-2022-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022]
Abstract
Growth factors are active substances secreted by a variety of cells, which act as messengers to regulate cell migration, proliferation and differentiation. Many growth factors are involved in the eye development or the pathophysiological processes of eye diseases. Growth factors such as vascular endothelial growth factor and basic fibroblast growth factor mediate the occurrence and development of diabetic retinopathy, choroidal neovascularization, cataract, diabetic macular edema, and other retinal diseases. On the other hand, growth factors like nerve growth factor, ciliary neurotrophic factor, glial cell line-derived neurotrophic factor, pigment epithelial-derived factor and granulocyte colony-stimulating factor are known to promote optic nerve injury repair. Growth factors are also related to the pathogenesis of myopia. Fibroblast growth factor, transforming growth factor-β, and insulin-like growth factor regulate scleral thickness and influence the occurrence and development of myopia. This article reviews growth factors involved in ocular development and ocular pathophysiology, discusses the relationship between growth factors and ocular diseases, to provide reference for the application of growth factors in ophthalmology.
Collapse
|
4
|
Shirvani M, Soufi F, Nouralishahi A, Vakili K, Salimi A, Lucke-Wold B, Mousavi F, Mohammadzadehsaliani S, Khanzadeh S. The Diagnostic Value of Neutrophil to Lymphocyte Ratio as an Effective Biomarker for Eye Disorders: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5744008. [PMID: 36281463 PMCID: PMC9587911 DOI: 10.1155/2022/5744008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
The neutrophil to lymphocyte ratio (NLR) reflects a dynamic relationship between the innate (neutrophils) and adaptive (lymphocytes) cellular immune response. This systematic review and meta-analysis was conducted to critically evaluate the literature regarding the use of the NLR as a reliable means to detect several ocular disorders. Our study was registered with the PROSPERO (ID: CRD42022314850). Three databases, including PubMed, Embase, Scopus, and the Web of Science, were searched on September 9, 2022, with no restrictions on the article's language. Finally, 32 articles were recognized as eligible for our meta-analysis. We found that patients with eye diseases had significantly elevated levels of NLR in comparison to healthy controls (SMD =0.53, 95% CI =0.35-0.71, P < 0.001). In subgroup analysis, patients with keratoconus (SMD =0.69; 95% CI =0.33-1.05, P < 0.001), glaucoma (SMD =0.56, 95% CI =0.25-0.87, P < 0.001), pterygium (SMD =0.14; 95% CI =0.01-0.26, P < 0.001), and idiopathic epiretinal membrane (SMD =0.14; 95% CI =0.01-0.26, P < 0.001) had higher levels of NLR compared to healthy controls. However, NLR levels of patients with dry eye disease were similar to healthy controls (SMD =0.32, 95% CI = -0.49-1.13, P = 0.435). It can be said that NLR is a valuable marker of systemic inflammation, which is significantly increased in many eye disorders, suggesting that inflammation plays a key role in the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Mohammad Shirvani
- Geriatric Ophthalmology Research Center, Shahid Sadoughi University of Medical Science, Yazd, Iran
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Soufi
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Alireza Nouralishahi
- Isfahan Eye Research Center, Feiz Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhosseinn Salimi
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farideh Mousavi
- Nikukari Hospital, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Shokoufeh Khanzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Hao XD, Gao H, Xu WH, Shan C, Liu Y, Zhou ZX, Wang K, Li PF. Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Front Med (Lausanne) 2022; 8:770138. [PMID: 35141241 PMCID: PMC8818795 DOI: 10.3389/fmed.2021.770138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023] Open
Abstract
Keratoconus (KC) is an etiologically heterogeneous corneal ectatic disorder. To systematically display the pathogenesis of keratoconus (KC), this study reviewed all the reported genes involved in KC, and performed an enrichment analysis of genes identified at the genome, transcription, and protein levels respectively. Combined analysis of multi-level results revealed their shared genes, gene ontology (GO), and pathway terms, to explore the possible pathogenesis of KC. After an initial search, 80 candidate genes, 2,933 transcriptional differential genes, and 947 differential proteins were collected. The candidate genes were significantly enriched in extracellular matrix (ECM) related terms, Wnt signaling pathway and cytokine activities. The enriched GO/pathway terms of transcription and protein levels highlight the importance of ECM, cell adhesion, and inflammatory once again. Combined analysis of multi-levels identified 13 genes, 43 GOs, and 12 pathways. The pathogenic relationships among these overlapping factors maybe as follows. The gene mutations/variants caused insufficient protein dosage or abnormal function, together with environmental stimulation, leading to the related functions and pathways changes in the corneal cells. These included response to the glucocorticoid and reactive oxygen species; regulation of various signaling (P13K-AKT, MAPK and NF-kappaB), apoptosis and aging; upregulation of cytokines and collagen-related enzymes; and downregulation of collagen and other ECM-related proteins. These undoubtedly lead to a reduction of extracellular components and induction of cell apoptosis, resulting in the loosening and thinning of corneal tissue structure. This study, in addition to providing information about the genes involved, also provides an integrated insight into the gene-based etiology and pathogenesis of KC.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Xiao-Dan Hao
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Hua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Kun Wang
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Pei-Feng Li
| |
Collapse
|
6
|
Suppression of lipopolysaccharide-induced corneal opacity by hepatocyte growth factor. Sci Rep 2022; 12:494. [PMID: 35017561 PMCID: PMC8752742 DOI: 10.1038/s41598-021-04418-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Keratitis induced by bacterial toxins, including lipopolysaccharide (LPS), is a major cause of corneal opacity and vision loss. Our previous study demonstrates hepatocyte growth factor (HGF) promotes epithelial wound healing following mechanical corneal injury. Here, we investigated whether HGF has the capacity to suppress infectious inflammatory corneal opacity using a new model of LPS-induced keratitis. Keratitis, induced by two intrastromal injections of LPS on day 1 and 4 in C57BL/6 mice, resulted in significant corneal opacity for up to day 10. Following keratitis induction, corneas were topically treated with 0.1% HGF or PBS thrice daily for 5 days. HGF-treated mice showed a significantly smaller area of corneal opacity compared to PBS-treated mice, thus improving corneal transparency. Moreover, HGF treatment resulted in suppression of α-SMA expression, compared to PBS treatment. HGF-treated corneas showed normalized corneal structure and reduced expression of pro-inflammatory cytokine, demonstrating that HGF restores corneal architecture and immune quiescence in corneas with LPS-induced keratitis. These findings offer novel insight into the potential application of HGF-based therapies for the prevention and treatment of infection-induced corneal opacity.
Collapse
|
7
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Elbeyli A, Kurtul BE. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio levels are associated with keratoconus. Indian J Ophthalmol 2021; 69:1725-1729. [PMID: 34146015 PMCID: PMC8374788 DOI: 10.4103/ijo.ijo_3011_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose: The aim of this study was to assess the systemic immune-inflammation index (SII) levels, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) in patients with keratoconus (KC). Methods: A total of 42 patients with KC (KC group) and 42 age- and sex-matched healthy subjects (control group) were included into this cross sectional study. Complete blood count parameters were assayed. SII, NLR, red cell distribution width (RDW), and PLR values were calculated. The SII value was calculated as follows: platelet count × (neutrophil/lymphocyte). Results: SII, NLR, RDW, and PLR values were significantly higher in KC group compared to control group [709 ± 236 vs. 418 ± 117 (P < 0.001), 2.5 ± 0.8 vs. 1.76 ± 0.3 (P < 0.001), 14.3 ± 1.6% vs. 12.9 ± 0.54% (P < 0.001), and 143 ± 36 vs. 106 ± 23 (P < 0.001), respectively]. Using the receiver operating characteristics (ROC) curve analysis to predict KC, the highest area under the curve (AUC) was determined SII (0.846 for SII, 0.778 for NLR, and 0.796 for PLR). Conclusion: SII, NLR, RDW, and PLR levels were significantly increased in patients with KC. This study supports the idea that several inflammatory pathways may play important role in the pathogenesis of this disorder. SII may be much better marker than NLR and PLR for predicting the inflammatory status of the disease.
Collapse
Affiliation(s)
- Ahmet Elbeyli
- Department of Ophthalmology, Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| | - Bengi Ece Kurtul
- Department of Ophthalmology, Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| |
Collapse
|
9
|
Dai H, Zeng W, Luo H. C-MET-dependent signal transduction mediates retinoblastoma growth by regulating PKM2 nuclear translocation. Cell Biochem Funct 2020; 38:204-212. [PMID: 31729060 DOI: 10.1002/cbf.3464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
Mesenchymal epithelial transition (C-MET) factor overexpression has been found in many types of cancer and has served as an important molecular target for therapeutic intervention. However, the role of C-MET in retinoblastoma remains largely unclear. The present study aimed to investigate the potential role and mechanism of C-MET in Y79 retinoblastoma cells. We found that C-MET was highly expressed in Y79 retinoblastoma cells, and, in addition, the levels of C-MET were positively correlated with cell proliferation and retinoblastoma growth. Inhibition of C-MET suppressed Y79 retinoblastoma cell proliferation and tumour growth. Mechanistically, we showed that HGF-induced C-MET-dependent signal transduction resulted in ERK 1/2 phosphorylation, which subsequently promoted the nuclear translocation of PKM2. Nuclear PKM2 further interacted with histone H3 and contributed to C-MET-dependent cyclin D1 and c-Myc expression and cell proliferation. These findings highlight the role of C-MET in Y79 retinoblastoma cells and reveal a C-MET-dependent signal transduction mechanism. C-MET may be a potential therapeutic target for retinoblastoma. SIGNIFICANCE OF THE STUDY: We demonstrated a new target of retinoblastoma, C-MET. C-MET-dependent signal transduction promotes Y79 retinoblastoma cell proliferation and tumour growth through ERK 1/2/PKM2/histone H3 signalling pathway. C-MET may be a potential target for retinoblastoma therapy.
Collapse
Affiliation(s)
- Hanjun Dai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weijuan Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hong Luo
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Autophagy in corneal health and disease: A concise review. Ocul Surf 2019; 17:186-197. [DOI: 10.1016/j.jtos.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
|
11
|
Volatier TLA, Figueiredo FC, Connon CJ. Keratoconus at a Molecular Level: A Review. Anat Rec (Hoboken) 2019; 303:1680-1688. [DOI: 10.1002/ar.24090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Che J. Connon
- Institute of Genetic MedicineNewcastle University Newcastle upon Tyne UK
| |
Collapse
|
12
|
HGF-rs12536657 and Ocular Biometric Parameters in Hyperopic Children, Emmetropic Adolescents, and Young Adults: A Multicenter Quantitative Trait Study. J Ophthalmol 2019; 2019:7454250. [PMID: 30863626 PMCID: PMC6378066 DOI: 10.1155/2019/7454250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 12/30/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction Even though ocular refractive state is highly heritable and under strong genetic control, the identification of susceptibility genes remains a challenge. Several HGF (hepatocyte growth factor) gene variants have been associated with ocular refractive errors and corneal pathology. Purpose Here, we assess the association of an HGF gene variant, previously reported as associated with hyperopia, and ocular biometric parameters in a multicenter Spanish cohort. Methods An observational prospective multicenter cross-sectional study was designed, including a total of 403 unrelated subjects comprising 188 hyperopic children (5 to 17 years) and 2 control groups: 52 emmetropic adolescents (13 to 17 years) and 163 emmetropic young adults (18 to 28 years). Each individual underwent a comprehensive eye examination including cycloplegic refraction, and topographic and ocular biometric analysis. Genomic DNA was extracted from oral swabs. HGF single nucleotide polymorphism (SNP) rs12536657 was genotyped. Genotypic, allelic, and logistic regression analyses were performed comparing the different groups. A quantitative trait association test analyzing several biometric parameters was also performed using generalized estimating equations (GEEs) adjusting for age and gender. Results No association between rs12536657 and hyperopia was found through gender-adjusted logistic regression comparing the hyperopic children with either of the two control groups. Significant associations between mean topographic corneal curvature and rs12536657 for G/A (slope = +0.32; CI 95%: 0.04-0.60; p=0.023) and A/A (slope = +0.76; CI 95%: 0.12-1.40; p=0.020) genotypes were observed with the age- and gender-adjusted univariate GEE model. Both flat and steep corneal topographic meridians were also significantly associated with rs12536657 for the G/A and A/A genotypes. No association was found between rs12536657 and any other topographic or biometric measurements. Conclusions Our results support a possible role for HGF gene variant rs12536657 in corneal curvature in our population. To our knowledge, this is the first multicenter quantitative trait association study of HGF genotypes and ocular biometric parameters comprising a pediatric cohort.
Collapse
|
13
|
Shetty R, Sharma A, Pahuja N, Chevour P, Padmajan N, Dhamodaran K, Jayadev C, M. M. A. Nuijts R, Ghosh A, Nallathambi J. Oxidative stress induces dysregulated autophagy in corneal epithelium of keratoconus patients. PLoS One 2017; 12:e0184628. [PMID: 28902914 PMCID: PMC5597215 DOI: 10.1371/journal.pone.0184628] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress is one of the key factors that contributes to the pathogenesis of keratoconus (KC). Macroautophagy is a vital cellular mechanism that is activated in response to oxidative stress. The aim of this study was to understand the role of the autophagic lysosomal pathway in the oxidative damage of KC corneal epithelium and the human corneal epithelial cell line (HCE).The corneal epithelium was collected from 78 KC patients undergoing corneal cross-linking or topography guided photorefractive keratectomy. We performed microarray, qPCR and western blot analysis for the expression of autophagy markers on this epithelium from patients with different clinical grades of KC. A differential expression pattern of autophagy related markers was observed in the diseased corneal cone-specific epithelium compared to matched peripheral epithelium from KC patients with increasing clinical severity. Human corneal epithelial cells exposed to oxidative stress were analyzed for the expression of key proteins associated with KC pathogenesis and the autophagic pathway. Oxidative stress led to an increase in reactive oxygen species and an imbalanced expression of autophagy markers in the HCE cells. Further, reduced levels of Akt/p70S6 Kinase, which is a known target of the mTOR pathway was observed in HCE cells under oxidative stress as well as in KC epithelium. Our results suggest that an altered expression of proteins suggestive of defective autophagy and is a consequence of oxidative damage. This could play a possible role in the pathogenesis of KC.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive surgery, Narayana Nethralaya Eye Hospital, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Anupam Sharma
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Natasha Pahuja
- Department of Cornea and Refractive surgery, Narayana Nethralaya Eye Hospital, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Priyanka Chevour
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Neeraja Padmajan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Kamesh Dhamodaran
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Cornea and Refractive surgery, Narayana Nethralaya Eye Hospital, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | | | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
- * E-mail: (JN); (AG)
| | - Jeyabalan Nallathambi
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
- * E-mail: (JN); (AG)
| |
Collapse
|
14
|
Omoto M, Suri K, Amouzegar A, Li M, Katikireddy KR, Mittal SK, Chauhan SK. Hepatocyte Growth Factor Suppresses Inflammation and Promotes Epithelium Repair in Corneal Injury. Mol Ther 2017; 25:1881-1888. [PMID: 28502469 DOI: 10.1016/j.ymthe.2017.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
Abstract
Corneal injuries are among the major causes of ocular morbidity and vision impairment. Optimal epithelial wound healing is critical for the integrity and transparency of the cornea after injury. Hepatocyte growth factor (HGF) is a mitogen and motility factor that primarily regulates epithelial cell function. Herein, we investigate the effect of HGF on proliferation of corneal epithelial cells (CECs) in inflamed conditions both in vitro and in vivo. We demonstrate that HGF not only promotes CEC proliferation in homeostatic conditions but also reverses the anti-proliferative effect of the inflammatory environment on these cells. Furthermore, using a mouse model of ocular injury, we show that HGF treatment suppresses ocular inflammation and actively augments CEC proliferation, leading to improved and accelerated corneal epithelial repair. These findings have potential translational implications and could provide a framework for the development of novel HGF-based therapies for corneal epithelial defects.
Collapse
Affiliation(s)
- Masahiro Omoto
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kunal Suri
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Kishore R Katikireddy
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Molecular and Histopathological Changes Associated with Keratoconus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7803029. [PMID: 28251158 PMCID: PMC5303843 DOI: 10.1155/2017/7803029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism. It is one of the leading indicators for corneal transplantation in the Western countries. KC usually starts at puberty and progresses until the third or fourth decade; however its progression differs among patients. In the keratoconic cornea, all layers except the endothelium have been shown to have histopathological structural changes. Despite numerous studies in the last several decades, the mechanisms of KC development and progression remain unclear. Both genetic and environmental factors may contribute to the pathogenesis of KC. Many previous articles have reviewed the genetic aspects of KC, but in this review we summarize the histopathological features of different layers of cornea and discuss the differentially expressed proteins in the KC-affected cornea. This summary will help emphasize the major molecular defects in KC and identify additional research areas related to KC, potentially opening up possibilities for novel methods of KC prevention and therapeutic intervention.
Collapse
|
16
|
Corrigendum to “Expression of HGF and c-Met Proteins in Human Keratoconus Corneas”. J Ophthalmol 2016; 2016:4201505. [PMID: 27610241 PMCID: PMC5005519 DOI: 10.1155/2016/4201505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 11/17/2022] Open
|