1
|
Freeman M, Huethorst E, Boland E, Dunne M, Burton F, Denning C, Myles R, Smith G. A novel method for the percutaneous induction of myocardial infarction by occlusion of small coronary arteries in the rabbit. Am J Physiol Heart Circ Physiol 2024; 326:H735-H751. [PMID: 38180449 PMCID: PMC11221806 DOI: 10.1152/ajpheart.00657.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Arrhythmic sudden cardiac death (SCD) is an important cause of mortality following myocardial infarction (MI). The rabbit has similar cardiac electrophysiology to humans and is therefore an important small animal model to study post-MI arrhythmias. The established approach of surgical coronary ligation results in thoracic adhesions that impede epicardial electrophysiological studies. Adhesions are absent following a percutaneously induced MI, which is also associated with reduced surgical morbidity and so represents a clear refinement of the approach. Percutaneous procedures have previously been described in large rabbits (3.5-5.5 kg). Here, we describe a novel method of percutaneous MI induction in smaller rabbits (2.5-3.5 kg) that are readily available commercially. New Zealand White rabbits (n = 51 males, 3.1 ± 0.3 kg) were anesthetized using isoflurane (1.5-3%) and underwent either a percutaneous MI procedure involving microcatheter tip deployment (≤1.5 Fr, 5 mm), coronary ligation surgery, or a sham procedure. Electrocardiography (ECG) recordings were used to confirm ST-segment elevation indicating coronary occlusion. Blood samples (1 and 24 h) were taken for cardiac troponin I (cTnI) levels. Ejection fraction (EF) was measured at 6-8 wk. Rabbits were then euthanized (Euthatal) and hearts were processed for magnetic resonance imaging and histology. Mortality rates were similar in both groups. Scar volume, cTnI, and EF were similar between both MI groups and significantly different from their respective sham controls. Thus, percutaneous coronary occlusion by microcatheter tip deployment is feasible in rabbits (2.5-3.5 kg) and produces an MI with similar characteristics to surgical ligation with lower procedural trauma and without epicardial adhesions.NEW & NOTEWORTHY Surgical coronary ligation is the standard technique to induce myocardial infarction (MI) in rabbits but is associated with procedural trauma and the generation of thoracic adhesions. Percutaneous coronary occlusion avoids these shortcomings and is established in pigs but has only been applicable to large rabbits because of a mismatch between the equipment used and target vessel size. Here, we describe a new scalable approach to percutaneous MI induction that is safe and effective in 2.5-3.5-kg rabbits.
Collapse
Affiliation(s)
- Michael Freeman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Eline Huethorst
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael Dunne
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francis Burton
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Myles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
2
|
Farag A, Mandour AS, Hamabe L, Yoshida T, Shimada K, Tanaka R. Novel protocol to establish the myocardial infarction model in rats using a combination of medetomidine-midazolam-butorphanol (MMB) and atipamezole. Front Vet Sci 2022; 9:1064836. [PMID: 36544554 PMCID: PMC9760920 DOI: 10.3389/fvets.2022.1064836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Myocardial infarction (MI) is one of the most common cardiac problems causing deaths in humans. Previously validated anesthetic agents used in MI model establishment are currently controversial with severe restrictions because of ethical concerns. The combination between medetomidine, midazolam, and butorphanol (MMB) is commonly used in different animal models. The possibility of MMB combination to establish the MI model in rats did not study yet which is difficult because of severe respiratory depression and delayed recovery post-surgery, resulting in significant deaths. Atipamezole is used to counter the cardiopulmonary suppressive effect of MMB. Objectives The aim of the present study is to establish MI model in rats using a novel anesthetic combination between MMB and Atipamezole. Materials and methods Twenty-five Sprague Dawley (SD) rats were included. Rats were prepared for induction of the Myocardial infarction (MI) model through thoracotomy. Anesthesia was initially induced with a mixture of MMB (0.3/5.0/5.0 mg/kg/SC), respectively. After endotracheal intubation, rats were maintained with isoflurane 1% which gradually reduced after chest closing. MI was induced through the left anterior descending (LAD) artery ligation technique. Atipamezole was administered after finishing all surgical procedures at a dose rate of 1.0 mg/kg/SC. Cardiac function parameters were evaluated using ECG (before and after atipamezole administration) and transthoracic echocardiography (before and 1 month after MI induction) to confirm the successful model. The induction time, operation time, and recovery time were calculated. The success rate of the MI model was also calculated. Results MI was successfully established with the mentioned anesthetic protocol through the LAD ligation technique and confirmed through changes in ECG and echocardiographic parameters after MI. ECG data was improved after atipamezole administration through a significant increase in heart rate (HR), PR Interval, QRS Interval, and QT correction (QTc) and a significant reduction in RR Interval. Atipamezole enables rats to recover voluntary respiratory movement (VRM), wakefulness, movement, and posture within a very short time after administration. Echocardiographic ally, MI rats showed a significant decrease in the left ventricular wall thickness, EF, FS, and increased left ventricular diastolic and systolic internal diameter. In addition, induction time (3.440 ± 1.044), operation time (29.40 ± 3.663), partial recovery time (10.84 ± 3.313), and complete recovery time (12.36 ± 4.847) were relatively short. Moreover, the success rate of the anesthetic protocol was 100%, and all rats were maintained for 1 month after surgery with a survival rate of 88%. Conclusion Our protocol produced a more easy anesthetic effect and time-saving procedures with a highly successful rate in MI rats. Subcutaneous injection of Atipamezole efficiently counters the cardiopulmonary side effect of MMB which is necessary for rapid recovery and subsequently enhancing the survival rate during the creation of the MI model in rats.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt,*Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt,Ahmed S. Mandour
| | - Lina Hamabe
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomohiko Yoshida
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Ryou Tanaka
| |
Collapse
|
3
|
Genovés P, Arias-Mutis ÓJ, Parra G, Such-Miquel L, Zarzoso M, Del Canto I, Soler C, Díaz A, Blanch E, Alberola A, Such L, Chorro FJ. Development and Long-Term Follow-Up of an Experimental Model of Myocardial Infarction in Rabbits. Animals (Basel) 2020; 10:ani10091576. [PMID: 32899601 PMCID: PMC7552163 DOI: 10.3390/ani10091576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Ischemic heart disease is one of the leading causes of death. A series of processes occur during acute myocardial infarction that contribute to the development of ventricular dysfunction, with subsequent heart failure and ventricular arrhythmias, which account for most episodes of sudden cardiac death in these patients. These complications are associated with the adverse cardiac remodeling that occurs during the healing process following an acute episode. The remodeling causes the appearance of a substrate that can trigger life-threatening arrhythmias, such as tachycardia and/or ventricular fibrillation. The development of experimental models for analyzing the basic mechanisms involved in the pathophysiology of myocardial infarction enables the study of different therapeutic approaches aimed at improving the patient´s prognosis. The present study describes the methodology and the results obtained in a 5-week chronic infarction (one hour followed by reperfusion) in a rabbit model. The viability of the model, the care provided, the characteristics and extent of the lesions, the inducibility of arrhythmias, and the reproducibility of the methods and results have been analyzed. Abstract A chronic model of acute myocardial infarction was developed to study the mechanisms involved in adverse postinfarction ventricular remodeling. In an acute myocardial infarction (AMI), the left circumflex coronary artery of New Zealand White rabbits (n = 9) was occluded by ligature for 1 h, followed by reperfusion. A specific care protocol was applied before, during, and after the intervention, and the results were compared with those of a sham operated group (n = 7). After 5 weeks, programmed stimulation and high-resolution mapping were performed on isolated and perfused hearts using the Langendorff technique. The infarct size determined by 2,3,5-triphenyltetrazolium chloride inside of the area at risk (thioflavin-S) was then determined. The area at risk was similar in both groups (54.33% (experimental infarct group) vs. 58.59% (sham group), ns). The infarct size was 73.16% as a percentage of the risk area. The experimental infarct group had a higher inducibility of ventricular arrhythmias (100% vs. 43% in the sham group, p = 0.009). A reproducible chronic experimental model of myocardial infarction is presented in which the extent and characteristics of the lesions enable the study of the vulnerability to develop ventricular arrhythmias because of the remodeling process that occurs during cardiac tissue repair.
Collapse
Affiliation(s)
- Patricia Genovés
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Óscar J. Arias-Mutis
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Germán Parra
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Luis Such-Miquel
- Department of Physiotherapy, Universitat de València, 46010 Valencia, Spain; (L.S.-M.); (M.Z.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
| | - Manuel Zarzoso
- Department of Physiotherapy, Universitat de València, 46010 Valencia, Spain; (L.S.-M.); (M.Z.)
| | - Irene Del Canto
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
- Electronic Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Carlos Soler
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
| | - Ana Díaz
- UCIM, Universitat de València, 46010 Valencia, Spain; (A.D.); (E.B.)
| | - Eva Blanch
- UCIM, Universitat de València, 46010 Valencia, Spain; (A.D.); (E.B.)
| | - Antonio Alberola
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
| | - Luis Such
- Department of Physiology, Universitat de València, 46010 Valencia, Spain; (C.S.); (A.A.); (L.S.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
| | - Francisco J. Chorro
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (P.G.); (Ó.J.A.-M.); (G.P.); (I.D.C.)
- CIBERCV, Carlos III Health Institute, 28029 Madrid, Spain
- Cardiology Department, Hospital Clinico Universitario, Universitat de València, Avda. Blasco Ibañez 17, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
4
|
A total closed chest sheep model of cardiogenic shock by percutaneous intracoronary ethanol injection. Sci Rep 2020; 10:12417. [PMID: 32709984 PMCID: PMC7381645 DOI: 10.1038/s41598-020-68571-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
To develop a reproducible and stable closed chest model of ischemic cardiogenic shock in sheep, with high survival rate and potential insight into human pathology. We established a protocol for multi-step myocardial alcoholisation of the left anterior descending coronary artery by percutaneous ethanol injection. A thorough hemodynamic assessment was obtained by invasive and non-invasive monitoring devices. Repeated blood samples were obtained to determine haemoglobin and alcohol concentration, electrolytes, blood gas parameters and cardiac troponin I. After sacrifice, tissue was excised for quantification of infarction and histology. Cardiogenic shock was characterized by a significant decrease in mean arterial pressure (− 33%), cardiac output (− 29%), dP/dtmax (− 28%), carotid blood flow (− 22%), left ventricular fractional shortening (− 28%), and left ventricle end-systolic pressure–volume relationship (− 51%). Lactate and cardiac troponin I levels increased from 1.4 ± 0.2 to 4.9 ± 0.7 mmol/L (p = 0.001) and from 0.05 ± 0.02 to 14.74 ± 2.59 µg/L (p = 0.001), respectively. All haemodynamic changes were stable over a three-hour period with a 71% survival rate. The necrotic volume (n = 5) represented 24.0 ± 1.9% of total ventricular mass. No sham exhibited any variation under general anaesthesia. We described and characterized, for the first time, a stable, reproducible sheep model of cardiogenic shock obtained by percutaneous intracoronary ethanol administration.
Collapse
|
5
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
6
|
Wu H, Li L, Niu P, Huang X, Liu J, Zhang F, Shen W, Tan W, Wu Y, Huo Y. The Structure-function remodeling in rabbit hearts of myocardial infarction. Physiol Rep 2018. [PMID: 28637704 PMCID: PMC5492201 DOI: 10.14814/phy2.13311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal models are of importance to investigate basic mechanisms for ischemic heart failure (HF). The objective of the study was to create a rabbit model through multiple coronary artery ligations to investigate the postoperative structure‐function remodeling of the left ventricle (LV) and coronary arterial trees. Here, we hypothesize that the interplay of the degenerated coronary vasculature and increased ventricle wall stress relevant to cardiac fibrosis in vicinity of myocardial infarction (MI) precipitates the incidence and progression of ischemic HF. Echocardiographic measurements showed an approximately monotonic drop of fractional shortening and ejection fraction from 40% and 73% down to 28% and 58% as well as persistent enlargement of LV cavity and slight mitral regurgitation at postoperative 12 weeks. Micro‐CT and histological measurements showed that coronary vascular rarefaction and cardiac fibrosis relevant to inflammation occurred concurrently in vicinity of MI at postoperative 12 weeks albeit there was compensatory vascular growth at postoperative 6 weeks. These findings validate the proposed rabbit model and prove the hypothesis. The post‐MI rabbit model can serve as a reference to test various drugs for treatment of ischemic HF.
Collapse
Affiliation(s)
- Haotian Wu
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,College of Medicine, Hebei University, Baoding, China
| | - Xu Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Jinyi Liu
- College of Medicine, Hebei University, Baoding, China
| | | | - Wenzeng Shen
- College of Medicine, Hebei University, Baoding, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,Shenzhen Graduate School, Peking University, Shenzhen, China.,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Yiling Wu
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China .,Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, China.,Key Laboratory, State Administration of Traditional Chinese Medicine (Cardiovascular and cerebrovascular collateral diseases), Shijiazhuang, China.,Hebei Province Key Laboratory of Collateral Diseases, Shijiazhuang, China
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China .,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| |
Collapse
|
7
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
8
|
Morrissey PJ, Murphy KR, Daley JM, Schofield L, Turan NN, Arunachalam K, Abbott JD, Koren G. A novel method of standardized myocardial infarction in aged rabbits. Am J Physiol Heart Circ Physiol 2017; 312:H959-H967. [PMID: 28213402 DOI: 10.1152/ajpheart.00582.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022]
Abstract
The incidence of both myocardial infarction (MI) and sudden cardiac death increases with age. Here, we describe the development of a minimally invasive large animal model of MI that can be applied to young or aged animals. We demonstrate that rabbit coronary anatomy is highly variable, more so than described in previous literature. In this work, we categorize the coronary pattern of 37 young rabbits and 64 aged rabbits. Aged rabbits had a higher degree of branching from the left main coronary artery. Standardizing the model across age cohorts required a new approach, targeting an area of myocardium rather than a specific vessel. Here, we present a method for achieving a reproducible infarct size, one that yielded a consistent scar encompassing ~30% of the apical left ventricular free wall. The model's consistency allowed for more valid comparisons of MI sequelae between age cohorts.NEW & NOTEWORTHY This study describes the coronary angiographic imaging of young and aged rabbits. We developed and improved a novel minimally invasive approach for coil embolization that targets a specific area of myocardium and yielded a consistent scar encompassing ~30% of the left ventricular free wall of young and aged rabbit hearts.
Collapse
Affiliation(s)
- Patrick J Morrissey
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Kevin R Murphy
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; .,Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island; and
| | - Jean M Daley
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Lorraine Schofield
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nilufer N Turan
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Karuppiah Arunachalam
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Internal Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - J Dawn Abbott
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island;
| |
Collapse
|