1
|
Singh A, Sarwat M, Gupta S. Pharmacological Mechanism of Herbal Interventions for Bipolar Disorder. Curr Pharm Des 2024; 30:1867-1879. [PMID: 38847247 DOI: 10.2174/0113816128312442240519184440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
Bipolar disorder is a neuropsychiatric disease characterized by an abundance of undesired ideas and thoughts associated with recurrent episodes of mania or hypomania and depression. Alterations in the circuits, including the prefrontal cortex, striatum, and limbic system, regulate mood and cause variation in several crucial neurotransmitters, including serotonin, dopamine, GABA, and glutamate. Imbalances in dopamine levels have been implicated in the manic phase, while variance in serotonin is linked to depressive episodes. The precise pathophysiology of bipolar disorder is still unknown. Though different treatments are available, like lithium, risperidone, valproic acid, etc., which are widely used, they come with certain limitations, including narrow therapeutic index, hypothyroidism, weight gain, extrapyramidal symptoms, etc. The interest in herbal- based treatments for bipolar disorder arises from the desire for alternative, potentially more natural, and holistic approaches with fewer side effects. The current review focuses on the potential effects of herbal drugs and their derivatives to alleviate the symptoms of bipolar disorder.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
2
|
Srivastava V, Mathur D, Rout S, Mishra BK, Pannu V, Anand A, Anand A. Ayurvedic Herbal Therapies: A Review of Treatment and Management of Dementia. Curr Alzheimer Res 2022; 19:568-584. [PMID: 35929620 DOI: 10.2174/1567205019666220805100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
Dementia has been characterized by atypical neurological syndromes and several cognitive deficits, such as extended memory loss, strange behavior, unusual thinking, impaired judgment, impotence, and difficulty with daily living activities. Dementia is not a disease, but it is caused by several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Lewy's bodies. Several drugs and remedies are indicated for alleviating unusual cognitive decline, but no effective pharmacological treatment regimens are available without side effects. Herbal drugs or traditional medicines like Ayurveda have been known for facilitating and corroborating the balance between mind, brain, body, and environment. Ayurvedic therapy comprises 600 herbal formulas, 250 single plant remedies, and natural and holistic health-giving treatments that relieve dementia in patients and increase vitality. Ayurvedic Rasayana herbs [rejuvenating elements] strengthen the brain cells, enhance memory, and decrease stress. The current medicine scenario in the treatment of dementia has prompted the shift in exploring the efficacy of ayurvedic medicine, its safety, and its efficiency. This review presents the literature on several herbal treatments for improving dementia symptomatology and patients' quality of life.
Collapse
Affiliation(s)
- Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, Kansas 67601, USA
| | - Deepali Mathur
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | - Soumyashree Rout
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | | | - Viraaj Pannu
- Department of Internal Medicine, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
3
|
Goyal A, Gopika S, Kumar A, Garabadu D. A Comprehensive Review on Preclinical Evidence Based Neuroprotective Potential of Bacopa Monnieri Against Parkinson's Disease. Curr Drug Targets 2022; 23:889-901. [PMID: 35297345 DOI: 10.2174/1389450123666220316091734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's diseaseis a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantianigra pars compacta characterized by the motor symptoms such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations arethe hallmarks of Parkinson's disease. The bioactive components of Brahmi such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, aggregation inhibition of α-synuclein, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress, neuroinflammation and enhance the dopamine level. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - S Gopika
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Abhishek Kumar
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
4
|
Biotechnology for propagation and secondary metabolite production in Bacopa monnieri. Appl Microbiol Biotechnol 2022; 106:1837-1854. [PMID: 35218388 DOI: 10.1007/s00253-022-11820-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.
Collapse
|
5
|
Singh B, Singh H, Singh B, Kumar N, Rajput A, Sidhu D, Kaur A, Arora S, Kaur S. A comprehensive review on medicinal herbs and novel formulations for the prevention of Alzheimer's disease. Curr Drug Deliv 2021; 19:212-228. [PMID: 34779370 DOI: 10.2174/1567201818666211015152733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer disease which will be highly beneficial for the researchers working in this area.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Navkaran Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Disha Sidhu
- Department Pharmaceutical Sciences, Guru Nanak Dev University, Grand Trunk Road, Off, NH 1 . India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
6
|
Lewis JE, Poles J, Shaw DP, Karhu E, Khan SA, Lyons AE, Sacco SB, McDaniel HR. The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review. J Clin Transl Res 2021; 7:575-620. [PMID: 34541370 PMCID: PMC8445631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/17/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Brain health is becoming more important to the average person as the number of people with cognitive impairments, such as Alzheimer's disease (AD), is rising significantly. The current Food and Drug Administration-approved pharmacotherapeutics for dementia neither cure nor halt cognitive decline; they just delay the worsening cognitive impairment. This narrative review summarizes the effects of nutrients and phytonutrients on cognitive function. METHODS A comprehensive literature search of PubMed was performed to find clinical trials in humans that assessed the effects of nutrients and phytonutrients on cognitive function published in English between 2000 and 2021. Six independent reviewers evaluated the articles for inclusion in this review. RESULTS Ninety-six articles were summarized in this narrative review. In total 21 categories of nutrients and phytonutrients were included, i.e., α-lipoic acid, Bacopa monnieri, B vitamins, cholinergic precursors, vitamin D, vitamin E, Ginkgo biloba, ginseng, lion's mane mushroom, N-acetyl cysteine, omega-3 fatty acids, aloe polysaccharides, Rhodiola rosea, rosemary, saffron, tart cherries, turmeric, wild yam, Withania somnifera, xanthines, and zinc. Particular noteworthy effects on cognition included memory, recollection, attention, intelligence, vocabulary, recognition, response inhibition, arousal, performance enhancement, planning, creative thinking, reaction time, vigilance, task switching, orientation to time, place, and person, reading, writing, comprehension, accuracy, learning, information processing speed, executive function, mental flexibility, daily functioning, decrease in mental fatigue, and freedom from distractibility. Some nutrients and phytonutrients also improved mood and contentedness and reduced anxiety and the need for caregiving. These effects are not completely consistent or ubiquitous across all patient populations or health statuses. Adverse effects were minimal or nonexistent. CONCLUSION Due to the growing population of people with cognitive impairment and the lack of effective pharmacotherapeutics, it is prudent for those afflicted or their caregivers to find alternative treatments. Our narrative review shows that many of these nutrients and phytonutrients may be promising for treating some aspects of cognitive impairment, especially for people afflicted with AD. RELEVANCE FOR PATIENTS As demonstrated in a number of clinical trials, healthy adults and patients with various health challenges (e.g., AD, mild cognitive impairment, multiple sclerosis, and Parkinson's disease) exhibiting a wide range of severity in cognitive defects would be best served to consider multiple nutrients and phytonutrients to improve aspects of their cognitive function.
Collapse
Affiliation(s)
- John E. Lewis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jillian Poles
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Delaney P. Shaw
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Elisa Karhu
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sher Ali Khan
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Annabel E. Lyons
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | | | | |
Collapse
|
7
|
Ghosh S, Khanam R, Acharya Chowdhury A. The Evolving Roles of Bacopa monnieri as Potential Anti-Cancer Agent: A Review. Nutr Cancer 2020; 73:2166-2176. [PMID: 33148034 DOI: 10.1080/01635581.2020.1841248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intermingled interrelationship of Bacopa monnieri and human health dates backs to the ancient times in the history of ayurveda making the plant an enriched source of alternative drug development in a nontoxic manner. In recent years, research on the biological effects of Bacopa monnieri has flourished as promising neuroprotective, memory boosting and more importantly as both chemopreventive and anti-neoplastic agent. Each naturally synthesized chemical constituent identified from Bacopa monnieri leaf extract with different solvents, has significant anti-metastatic, anti-angiogenic and anti-proliferative activity on different type of cancer cells. In this context, a substantial literature survey allows a deep understanding of the involvement of specific bioactive molecules along with the whole plant extract of Bacopa monnieri with their divergent effective molecular pathways. This comprehensive review covers literature up to the year 2020 highlighting all the anticancer efficacy along with signaling pathways activated by secondary metabolites found in bacopa plant.
Collapse
Affiliation(s)
- Sudeepa Ghosh
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | - Rahmat Khanam
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | | |
Collapse
|
8
|
Protective effect of Vigna unguiculata extract against aging and neurodegeneration. Aging (Albany NY) 2020; 12:19785-19808. [PMID: 33024055 PMCID: PMC7732273 DOI: 10.18632/aging.104069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Aging and age-related neurodegeneration are among the major challenges in modern medicine because of the progressive increase in the number of elderly in the world population. Nutrition, which has important long-term consequences for health, is an important way to prevent diseases and achieve healthy aging. The beneficial effects of Vigna unguiculata on metabolic disorders have been widely documented. Here, we show that an aqueous extract of V. unguiculata beans delays senescence both in Saccharomyces cerevisiae and Drosophila melanogaster, in a Snf1/AMPK-dependent manner. Consistently, an increased expression of FOXO, SIRT1, NOTCH and heme oxygenase (HO) genes, already known to be required for the longevity extension in D. melanogaster, is also shown. Preventing α-synuclein self-assembly is one of the most promising approaches for the treatment of Parkinson's disease (PD), for which aging is a risk factor. In vitro aggregation of α-synuclein, its toxicity and membrane localization in yeast and neuroblastoma cells are strongly decreased in the presence of bean extract. In a Caenorhabditis elegans model of PD, V. unguiculata extract substantially reduces the number of the age-dependent degeneration of the cephalic dopaminergic neurons. Our findings support the role of V. unguiculata beans as a functional food in age-related disorders.
Collapse
|
9
|
Mirkov I, Stojković D, Aleksandrov AP, Ivanov M, Kostić M, Glamočlija J, Soković M. Plant Extracts and Isolated Compounds Reduce Parameters of Oxidative Stress Induced by Heavy Metals: An up-to-Date Review on Animal Studies. Curr Pharm Des 2020; 26:1799-1815. [PMID: 32264808 DOI: 10.2174/1381612826666200407163408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heavy metals are elements that are naturally found in the earth. They are used in many modern-day applications in agriculture, medicine, and industry. Heavy metal poisoning occurs when the body's soft tissues absorb too much of a particular metal. The heavy metals of interest for this review paper were cadmium, arsenic, mercury, and lead since these are the most common metals that the human body can absorb in toxic amounts. Different plant species were investigated in recent years for their effect on oxidative stress parameters after intoxication with heavy metals. OBJECTIVES This review paper is focused on the current update to research on heavy metals induced oxidative stress in animal models and improvement of the oxidative stress parameters upon/co-/after treatment with different plant extracts and isolated compounds. METHODS The available literature was screened for the novel data regarding the influence of plant extracts and compounds on heavy metals induced oxidative stress. For that purposes Scopus database was used, looking for the publications in the last 5-10 years with the key terms: plant extracts, oxidative stress, in vivo, cadmium, lead, mercury and arcenic. RESULTS Various parameters of oxidative stress were investigated, and their improvement with plant extracts/ compounds was observed in the brain, lungs, kidneys, liver, uterus, testis, thymus, spleen, heart, skin and blood of experimental animals. Common parameters used to determine oxidative stress in animals were: superoxide dismutase; catalase; reduced glutathione; glutathione reductase; glutathione-S-transferase; glutathione peroxidase; lipid peroxidation; oxidized glutathione; malondialdehyde; xanthine oxidase; nonprotein-soluble thiol; thioredoxin reductase; total sulphydryl group; nitric oxide; γ-glutamyl cysteine synthetase. CONCLUSION The most investigated species for antioxidant effects upon intoxication with heavy metals seem to be Allium sp., Bacopa monniera, Camellia sinensis, Moringa oleifera, Vitis vinifera and Zingiber officinale. According to literature data, the most promising effect to alleviate symptoms of intoxication was achieved with proanthocyanidins obtained from Vitis vinifera.
Collapse
Affiliation(s)
- Ivana Mirkov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandra P Aleksandrov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jasmina Glamočlija
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- The University of Belgrade, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review. PLANTS 2020; 9:plants9040411. [PMID: 32224997 PMCID: PMC7238420 DOI: 10.3390/plants9040411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
Bacopa monnieri has been used as a reputed drug in the Indian traditional ayurvedic system for centuries. This medicinal herb with important phytopharmaceuticals has been popularly known as “Brahmi”. In recent years, B. monnieri has been extensively studied for its bioactive constituents, constituents responsible for memory enhancing effect, and also its diverse other useful effects. It possesses many pharmacological activities such as antioxidant, gastrointestinal, endocrine, antimicrobial, anti-inflammatory etc. The plant has been also used for the treatment of neurological and neuropsychiatric diseases. Due to its multipurpose therapeutic potential, micropropagation using axillary meristems and de novo organogenesis has been extensively studied in the species and is being reviewed. High frequency direct shoot organogenesis can be induced in excised leaf and internode explants in the absence of exogenous phytohormones and the rate of induction is enhanced in the presence of exogenous cytokinins, supplements, growth regulators, etc. Using explants from tissue culture raised plants, direct shoot regeneration leading to production of more than 100 rooted plants/explant within 8–12 weeks period with 85%–100% survival in the field after acclimatization can be expected following optimized protocols. Bioreactor based micropropagation was found to increase the multiplication rate of shoot cultures for the commercial propagation of B. monnieri plants. The maximum content of bacosides has been recorded in shoot biomass using an airlift bioreactor system. Further studies for the biosynthesis of bacosides and other secondary metabolites need to be conducted in the species utilizing untransformed shoot cultures in bioreactors.
Collapse
|
11
|
Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S. Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on Its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug Target Insights 2019; 13:1177392819866412. [PMID: 31391778 PMCID: PMC6669844 DOI: 10.1177/1177392819866412] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/24/2023] Open
Abstract
Alzheimer disease is a neurodegenerative disease that is signified by cognitive decline, memory loss, and erratic behavior. Till date, no cure for Alzheimer exists and the current Alzheimer medications have limited effectiveness. However, herbal medicines may slow down the disease’s progression, which may hopefully reduce the number of cases in the years to come. Numerous studies have been done on characterizing the neuroprotective properties from plants belonging to Scrophulariaceae family, particularly Bacopa monnieri and its polyphenolic compounds known as bacosides. This review presents the findings on bacosides in therapeutic plants and their impact on Alzheimer disease pathology. These reports present data on the clinical, cellular activities, phytochemistry, and biological applications that may be used in new drug treatment for Alzheimer disease.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Umesh Bindal
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
12
|
Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F. Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. Int J Mol Sci 2019; 20:ijms20133274. [PMID: 31277285 PMCID: PMC6651086 DOI: 10.3390/ijms20133274] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | - Maico Polzella
- Aliveda Laboratories, Crespina Lorenzana, 56042 Pisa (PI), Italy
| | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy.
- I.R.C.C.S Neuromed, Via Atinense, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
13
|
Kamkaew N, Paracha TU, Ingkaninan K, Waranuch N, Chootip K. Vasodilatory Effects and Mechanisms of Action of Bacopa monnieri Active Compounds on Rat Mesenteric Arteries. Molecules 2019; 24:E2243. [PMID: 31208086 PMCID: PMC6630913 DOI: 10.3390/molecules24122243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
B. monnieri extract (BME) is an abundant source of bioactive compounds, including saponins and flavonoids known to produce vasodilation. However, it is unclear which components are the more effective vasodilators. The aim of this research was to investigate the vasorelaxant effects and mechanisms of action of saponins and flavonoids on rat isolated mesenteric arteries using the organ bath technique. The vasorelaxant mechanisms, including endothelial nitric oxide synthase (eNOS) pathway and calcium flux were examined. Saponins (bacoside A and bacopaside I), and flavonoids (luteolin and apigenin) at 0.1-100 µM caused vasorelaxation in a concentration-dependent manner. Luteolin and apigenin produced vasorelaxation in endothelial intact vessels with more efficacy (Emax 99.4 ± 0.7 and 95.3 ± 2.6%) and potency (EC50 4.35 ± 1.31 and 8.93 ± 3.33 µM) than bacoside A and bacopaside I (Emax 83.6 ± 2.9 and 79.9 ± 8.2%; EC50 10.8 ± 5.9 and 14.6 ± 5.4 µM). Pretreatment of endothelial intact rings, with L-NAME (100 µM); an eNOS inhibitor, or removal of the endothelium reduced the relaxant effects of all compounds. In K+-depolarised vessels suspended in Ca2+-free solution, these active compounds inhibited CaCl2-induced contraction in endothelial denuded arterial rings. Moreover, the active compounds attenuated transient contractions induced by 10 µM phenylephrine in Ca2+-free medium containing EGTA (1 mM). Thus, relaxant effects occurred in both endothelial intact and denuded vessels which signify actions through both endothelium and vascular smooth muscle cells. In conclusion, the flavonoids have about twice the potency of saponins as vasodilators. However, in the BME, there is ~20 × the amount of vaso-reactive saponins and thus are more effective.
Collapse
Affiliation(s)
- Natakorn Kamkaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Tamkeen Urooj Paracha
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Center, Department of Pharmaceutical Technology and Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
14
|
Sukumaran NP, Amalraj A, Gopi S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst - A review on its mechanistic aspects. Complement Ther Med 2019; 44:68-82. [PMID: 31126578 DOI: 10.1016/j.ctim.2019.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Bacopa monnieri (L.) - (BM) is a perennial, creeping herb which is widely used in traditional ayurvedic medicine as a neural tonic to improve intelligence and memory. Research into the biological effects of this plant has burgeoned in recent years, promising its neuroprotective and memory boosting ability among others. In this context, an extensive literature survey allows an insight into the participation of numerous signaling pathways and oxidative mechanism involved in the mitigation of oxidative stress, along with other indirect mechanisms modulated by bioactive molecules of BM to improve the cognitive action by their synergistic potential and cellular multiplicity mechanism. This multi-faceted review describes the novel mechanisms that underlie the unfounded but long flaunted promises of BM and thereby direct a way to harness this acquired knowledge to develop innovative approaches to manipulate its intracellular pathways.
Collapse
Affiliation(s)
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India.
| |
Collapse
|
15
|
Bacopa monnieri abrogates alcohol abstinence-induced anxiety-like behavior by regulating biochemical and Gabra1, Gabra4, Gabra5 gene expression of GABAA receptor signaling pathway in rats. Biomed Pharmacother 2019; 111:1417-1428. [DOI: 10.1016/j.biopha.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
|
16
|
Mohammad-Beigi H, Kjaer L, Eskandari H, Aliakbari F, Christiansen G, Ruvo G, Ward JL, Otzen DE. A Possible Connection Between Plant Longevity and the Absence of Protein Fibrillation: Basis for Identifying Aggregation Inhibitors in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:148. [PMID: 30815009 PMCID: PMC6381023 DOI: 10.3389/fpls.2019.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/28/2019] [Indexed: 05/08/2023]
Abstract
The ability of proteins to aggregate to form well-organized β-sheet rich amyloid fibrils is increasingly viewed as a general if regrettable property of the polypeptide chain. Aggregation leads to diseases such as amyloidosis and neurodegeneration in humans and various mammalian species but is also found in a functional variety in both animals and microbes. However, there are to our knowledge no reports of amyloid formation in plants. Plants are also the source of a large number of aggregation-inhibiting compounds. We reasoned that the two phenomena could be connected and that one of (many) preconditions for plant longevity is the ability to suppress unwanted protein aggregation. In support of this, we show that while protein extracts from the sugar maple tree Acer saccharum fibrillate readily on their own, this process is efficiently abolished by addition of small molecule extracts from the same plant. Further analysis of 44 plants showed a correlation between plant longevity and ability to inhibit protein aggregation. Extracts from the best performing plant, the sugar maple, were subjected to chromatographic fractionation, leading to the identification of a large number of compounds, many of which were shown to inhibit aggregation in vitro. One cautious interpretation is that it may have been advantageous for plants to maintain an efficient collection of aggregation-inhibiting metabolites as long as they do not impair metabolite function. From a practical perspective, our results indicate that long-lived plants may be particularly appropriate sources of new anti-aggregation compounds with therapeutic potential.
Collapse
Affiliation(s)
| | - Lars Kjaer
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Hoda Eskandari
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Gianluca Ruvo
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Jane L. Ward
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Daniel Erik Otzen,
| |
Collapse
|
17
|
Patra JK, Das G, Lee S, Kang SS, Shin HS. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Epigenetic modulation by small molecule compounds for neurodegenerative disorders. Pharmacol Res 2018; 132:135-148. [PMID: 29684672 DOI: 10.1016/j.phrs.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The accumulation of somatic and genetic mutations which altered the structure and coding information of the DNA are the major cause of neurological disorders. However, our recent understanding of molecular mechanisms of 'epigenetic' phenomenon reveals that the modifications of chromatin play a significant role in the development and severity of neurological disorders. These epigenetic processes are dynamic and reversible as compared to genetic ablations which are stable and irreversible. Therefore, targeting these epigenetic processes through small molecule modulators are of great therapeutic potential. To date, large number of small molecule modulators have been discovered which are capable of altering the brain pathology by targeting epigenetic enzymes. In this review, we shall put forward the key studies supporting the role of altered epigenetic processes in neurological disorders with especial emphasis on neurodegenerative disorders. A few small molecule modulators which have been shown to possess promising results in the animal model system of neurological disorders will also be discussed with future perspectives.
Collapse
|
19
|
Khadrawy Y, Elhadidy M, Sawie H, Meguid N. Protective effect of ashwagandha (Withania somnifera) against neurotoxicity induced by aluminum chloride in rats. Asian Pac J Trop Biomed 2018. [DOI: 10.4103/2221-1691.221139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Pandey SP, Singh HK, Prasad S. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08) in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice. PLoS One 2015; 10:e0131862. [PMID: 26161865 PMCID: PMC4498885 DOI: 10.1371/journal.pone.0131862] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023] Open
Abstract
Bacopa monnieri extract has been implicated in the recovery of memory impairments due to various neurological disorders in animal models and humans. However, the precise molecular mechanism of the role of CDRI-08, a well characterized fraction of Bacopa monnieri extract, in recovery of the diabetes mellitus-induced memory impairments is not known. Here, we demonstrate that DM2 mice treated orally with lower dose of CDRI-08 (50- or 100 mg/kg BW) is able to significantly enhance spatial memory in STZ-DM2 mice and this is correlated with a significant decline in oxidative stress and up regulation of the AMPA receptor GluR2 subunit gene expression in the hippocampus. Treatment of DM2 mice with its higher dose (150 mg/kg BW or above) shows anti-diabetic effect in addition to its ability to recover the spatial memory impairment by reversing the DM2-induced elevated oxidative stress and decreased GluR2 subunit expression near to their values in normal and CDRI-08 treated control mice. Our results provide evidences towards molecular basis of the memory enhancing and anti diabetic role of the Bacopa monnieri extract in STZ-induced DM2 mice, which may have therapeutic implications.
Collapse
MESH Headings
- Animals
- Bacopa/chemistry
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Drug Evaluation, Preclinical
- Gene Expression/drug effects
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Male
- Malondialdehyde/metabolism
- Maze Learning
- Memory Disorders/drug therapy
- Memory Disorders/metabolism
- Mice
- Oxidative Stress
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Spatial Memory/drug effects
- Streptozocin
Collapse
Affiliation(s)
- Surya P. Pandey
- Biochemistry & Molecular Biology Lab, Centre of Advanced Study in Zoology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Hemant K. Singh
- Lumen Research Foundation, Ashok Nagar, Chennai, 600083, Tamilnadu, India
| | - S. Prasad
- Biochemistry & Molecular Biology Lab, Centre of Advanced Study in Zoology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|