1
|
Li K, Chen Z, Chang X, Xue R, Wang H, Guo W. Wnt signaling pathway in spinal cord injury: from mechanisms to potential applications. Front Mol Neurosci 2024; 17:1427054. [PMID: 39114641 PMCID: PMC11303303 DOI: 10.3389/fnmol.2024.1427054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.
Collapse
Affiliation(s)
| | | | | | | | - Huaibo Wang
- Department of Spine Surgery, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
2
|
Victor AK, Hedgecock T, Donaldson M, Johnson D, Rand CM, Weese-Mayer DE, Reiter LT. Analysis and comparisons of gene expression changes in patient- derived neurons from ROHHAD, CCHS, and PWS. Front Pediatr 2023; 11:1090084. [PMID: 37234859 PMCID: PMC10206321 DOI: 10.3389/fped.2023.1090084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Background Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome is an ultra-rare neurocristopathy with no known genetic or environmental etiology. Rapid-onset obesity over a 3-12 month period with onset between ages 1.5-7 years of age is followed by an unfolding constellation of symptoms including severe hypoventilation that can lead to cardiorespiratory arrest in previously healthy children if not identified early and intervention provided. Congenital Central Hypoventilation syndrome (CCHS) and Prader-Willi syndrome (PWS) have overlapping clinical features with ROHHAD and known genetic etiologies. Here we compare patient neurons from three pediatric syndromes (ROHHAD, CCHS, and PWS) and neurotypical control subjects to identify molecular overlap that may explain the clinical similarities. Methods Dental pulp stem cells (DPSC) from neurotypical control, ROHHAD, and CCHS subjects were differentiated into neuronal cultures for RNA sequencing (RNAseq). Differential expression analysis identified transcripts variably regulated in ROHHAD and CCHS vs. neurotypical control neurons. In addition, we used previously published PWS transcript data to compare both groups to PWS patient-derived DPSC neurons. Enrichment analysis was performed on RNAseq data and downstream protein expression analysis was performed using immunoblotting. Results We identified three transcripts differentially regulated in all three syndromes vs. neurotypical control subjects. Gene ontology analysis on the ROHHAD dataset revealed enrichments in several molecular pathways that may contribute to disease pathology. Importantly, we found 58 transcripts differentially expressed in both ROHHAD and CCHS patient neurons vs. control neurons. Finally, we validated transcript level changes in expression of ADORA2A, a gene encoding for an adenosine receptor, at the protein level in CCHS neurons and found variable, although significant, changes in ROHHAD neurons. Conclusions The molecular overlap between CCHS and ROHHAD neurons suggests that the clinical phenotypes in these syndromes likely arise from or affect similar transcriptional pathways. Further, gene ontology analysis identified enrichments in ATPase transmembrane transporters, acetylglucosaminyltransferases, and phagocytic vesicle membrane proteins that may contribute to the ROHHAD phenotype. Finally, our data imply that the rapid-onset obesity seen in both ROHHAD and PWS likely arise from different molecular mechanisms. The data presented here describes important preliminary findings that warrant further validation.
Collapse
Affiliation(s)
- A. Kaitlyn Victor
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tayler Hedgecock
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Martin Donaldson
- Department of Pediatric Dentistry and Community Oral Health, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Casey M. Rand
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
| | - Debra E. Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lawrence T. Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
3
|
Al-Maswary AA, O’Reilly M, Holmes AP, Walmsley AD, Cooper PR, Scheven BA. Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS One 2022; 17:e0277134. [PMID: 36331951 PMCID: PMC9635714 DOI: 10.1371/journal.pone.0277134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins βIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Maswary
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: , (AAA-M); (BAS)
| | - Molly O’Reilly
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - A. Damien Walmsley
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Ben A. Scheven
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: , (AAA-M); (BAS)
| |
Collapse
|
4
|
KÜÇÜKKAYA EREN S, BAHADOR ZIRH E, ZIRH S, SHARAFI P, ZEYBEK ND. Combined effects of bone morphogenetic protein-7 and mineral trioxide aggregate on the proliferation, migration, and differentiation of human dental pulp stem cells. J Appl Oral Sci 2022; 30:e20220086. [PMID: 36102412 PMCID: PMC9469872 DOI: 10.1590/1678-7757-2022-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bioactive molecules present the potential to be used along with biomaterials in vital pulp therapy and regenerative endodontic treatment. OBJECTIVE The aim of this study was to assess the effects of the combined use of bone morphogenetic protein-7 (BMP-7) and mineral trioxide aggregate (MTA) on the proliferation, migration, and differentiation of human dental pulp stem cells (DPSCs). METHODOLOGY For the proliferation analysis, DPSCs were incubated with a growth medium and treated with MTA and/or BMP-7 at different concentrations. For the following analyses, DPSCs were incubated with a differentiation medium and treated with MTA and/or BMP-7. Moreover, there were groups in which DPSCs were incubated with the growth medium (control), the differentiation medium, or DMEM/F12 containing fetal bovine serum, and not treated with MTA or BMP-7. Cell proliferation was analyzed using the WST-1 assay. The odontogenic/osteogenic differentiation was evaluated by immunocytochemistry, alkaline phosphatase (ALP) activity assay, alizarin red staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was evaluated using a wound-healing assay. Data were analyzed using analysis of variance and Tukey test (p=0.05). RESULTS The use of BMP-7 with MTA presented no significant effect on cell proliferation in comparison with the treatment with MTA alone (p>0.05), but showed higher ALP activity, increased mineralization, and higher expression of DMP1 and DSPP when compared with other groups (p<0.05). Nestin expression was higher in the control group than in groups treated with MTA and/or BMP-7 (p<0.05). The cell migration rate increased after treatment with MTA when compared with other groups in all periods of time (p<0.05). At 72 hours, the wound area was smaller in groups treated with MTA and/or BMP-7 than in the control group (p<0.05). CONCLUSION The use of BMP-7 with MTA increased odontogenic/osteogenic differentiation without adversely affecting proliferation and migration of DPSCs. The use of BMP-7 with MTA may improve treatment outcomes by increasing repair and regeneration capacity of DPSCs.
Collapse
Affiliation(s)
- Selen KÜÇÜKKAYA EREN
- Hacettepe UniversityFaculty of DentistryDepartment of EndodonticsAnkaraTurkeyHacettepe University, Faculty of Dentistry, Department of Endodontics, Ankara, Turkey.
| | - Elham BAHADOR ZIRH
- TOBB University of Economics and TechnologyFaculty of MedicineDepartment of Histology and EmbryologyAnkaraTurkeyTOBB University of Economics and Technology, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| | - Selim ZIRH
- Erzincan Binali Yıldırım UniversityFaculty of MedicineDepartment of Histology and EmbryologyErzincanTurkeyErzincan Binali Yıldırım University, Faculty of Medicine, Department of Histology and Embryology, Erzincan, Turkey.
| | - Parisa SHARAFI
- TOBB University of Economics and TechnologyFaculty of MedicineDepartment of Medical Biology and GeneticsAnkaraTurkeyTOBB University of Economics and Technology, Faculty of Medicine, Department of Medical Biology and Genetics, Ankara, Turkey.
| | - Naciye Dilara ZEYBEK
- Hacettepe UniversityFaculty of MedicineDepartment of Histology and EmbryologyAnkaraTurkeyHacettepe University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
5
|
The Role of Epigenetic in Dental and Oral Regenerative Medicine by Different Types of Dental Stem Cells: A Comprehensive Overview. Stem Cells Int 2022; 2022:5304860. [PMID: 35721599 PMCID: PMC9203206 DOI: 10.1155/2022/5304860] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Postnatal teeth, wisdom teeth, and exfoliated deciduous teeth can be harvested for dental stem cell (DSC) researches. These mesenchymal stem cells (MSCs) can differentiate and also consider as promising candidates for dental and oral regeneration. Thus, the development of DSC therapies can be considered a suitable but challenging target for tissue regeneration. Epigenetics describes changes in gene expression rather than changes in DNA and broadly happens in bone homeostasis, embryogenesis, stem cell fate, and disease development. The epigenetic regulation of gene expression and the regulation of cell fate is mainly governed by deoxyribonucleic acid (DNA) methylation, histone modification, and noncoding RNAs (ncRNAs). Tissue engineering utilizes DSCs as a target. Tissue engineering therapies are based on the multipotent regenerative potential of DSCs. It is believed that epigenetic factors are essential for maintaining the multipotency of DSCs. A wide range of host and environmental factors influence stem cell differentiation and differentiation commitment, of which epigenetic regulation is critical. Several lines of evidence have shown that epigenetic modification of DNA and DNA-correlated histones are necessary for determining cells' phenotypes and regulating stem cells' pluripotency and renewal capacity. It is increasingly recognized that nuclear enzyme activities, such as histone deacetylases, can be used pharmacologically to induce stem cell differentiation and dedifferentiation. In this review, the role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells is discussed in two new and promising areas of medical and biological researches in recent studies (2010-2022).
Collapse
|
6
|
Gao Y, Tian Z, Liu Q, Wang T, Ban LK, Lee HHC, Umezawa A, Almansour AI, Arumugam N, Kumar RS, Ye Q, Higuchi A, Chen H, Sung TC. Neuronal Cell Differentiation of Human Dental Pulp Stem Cells on Synthetic Polymeric Surfaces Coated With ECM Proteins. Front Cell Dev Biol 2022; 10:893241. [PMID: 35774224 PMCID: PMC9237518 DOI: 10.3389/fcell.2022.893241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Stem cells serve as an ideal source of tissue regeneration therapy because of their high stemness properties and regenerative activities. Mesenchymal stem cells (MSCs) are considered an excellent source of stem cell therapy because MSCs can be easily obtained without ethical concern and can differentiate into most types of cells in the human body. We prepared cell culture materials combined with synthetic polymeric materials of poly-N-isopropylacrylamide-co-butyl acrylate (PN) and extracellular matrix proteins to investigate the effect of cell culture biomaterials on the differentiation of dental pulp stem cells (DPSCs) into neuronal cells. The DPSCs cultured on poly-L-ornithine (PLO)-coated (TPS-PLO) plates and PLO and PN-coated (TPS-PLO-PN) plates showed excellent neuronal marker (βIII-tubulin and nestin) expression and the highest expansion rate among the culture plates investigated in this study. This result suggests that the TPS-PLO and TPS-PN-PLO plates maintained stable DPSCs proliferation and had good capabilities of differentiating into neuronal cells. TPS-PLO and TPS-PN-PLO plates may have high potentials as cell culture biomaterials for the differentiation of MSCs into several neural cells, such as cells in the central nervous system, retinal cells, retinal organoids and oligodendrocytes, which will expand the sources of cells for stem cell therapies in the future.
Collapse
Affiliation(s)
- Yan Gao
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Zeyu Tian
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Qian Liu
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Ting Wang
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Lee-Kiat Ban
- Department of Surgery, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
- Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, Taoyuan, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, Tokyo, Japan
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qingsong Ye, ; Akon Higuchi, ; Hao Chen, ; Tzu-Cheng Sung,
| | - Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
- Department of Reproduction, National Center for Child Health and Development, Tokyo, Japan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- *Correspondence: Qingsong Ye, ; Akon Higuchi, ; Hao Chen, ; Tzu-Cheng Sung,
| | - Hao Chen
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qingsong Ye, ; Akon Higuchi, ; Hao Chen, ; Tzu-Cheng Sung,
| | - Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qingsong Ye, ; Akon Higuchi, ; Hao Chen, ; Tzu-Cheng Sung,
| |
Collapse
|
7
|
Cho YD, Kim KH, Lee YM, Ku Y, Seol YJ. Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation. J Periodontal Implant Sci 2022; 52:437-454. [PMID: 36468465 PMCID: PMC9807848 DOI: 10.5051/jpis.2103760188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023] Open
Abstract
Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
8
|
Victor AK, Donaldson M, Johnson D, Miller W, Reiter LT. Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism Susceptibility. Front Mol Neurosci 2021; 14:747855. [PMID: 34776864 PMCID: PMC8586424 DOI: 10.3389/fnmol.2021.747855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hormonal dysregulation, obesity, intellectual disability, and behavioral problems. Most PWS cases are caused by paternal interstitial deletions of 15q11.2-q13.1, while a smaller number of cases are caused by chromosome 15 maternal uniparental disomy (PW-UPD). Children with PW-UPD are at higher risk for developing autism spectrum disorder (ASD) than the neurotypical population. In this study, we used expression analysis of PW-UPD neurons to try to identify the molecular cause for increased autism risk. Methods: Dental pulp stem cells (DPSC) from neurotypical control and PWS subjects were differentiated to neurons for mRNA sequencing. Significantly differentially expressed transcripts among all groups were identified. Downstream protein analysis including immunocytochemistry and immunoblots were performed to confirm the transcript level data and pathway enrichment findings. Results: We identified 9 transcripts outside of the PWS critical region (15q11.2-q13.1) that may contribute to core PWS phenotypes. Moreover, we discovered a global reduction in mitochondrial transcripts in the PW-UPD + ASD group. We also found decreased mitochondrial abundance along with mitochondrial aggregates in the cell body and neural projections of +ASD neurons. Conclusion: The 9 transcripts we identified common to all PWS subtypes may reveal PWS specific defects during neurodevelopment. Importantly, we found a global reduction in mitochondrial transcripts in PW-UPD + ASD neurons versus control and other PWS subtypes. We then confirmed mitochondrial defects in neurons from individuals with PWS at the cellular level. Quantification of this phenotype supports our hypothesis that the increased incidence of ASD in PW-UPD subjects may arise from mitochondrial defects in developing neurons.
Collapse
Affiliation(s)
- A Kaitlyn Victor
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Martin Donaldson
- Department of Pediatric Dentistry and Community Oral Health, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Winston Miller
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lawrence T Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Windmöller BA, Höving AL, Knabbe C, Greiner JFW. Inter- and Intrapopulational Heterogeneity of Characteristic Markers in Adult Human Neural Crest-derived Stem Cells. Stem Cell Rev Rep 2021; 18:1510-1520. [PMID: 34748196 PMCID: PMC9033708 DOI: 10.1007/s12015-021-10277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Adult human neural crest-derived stem cells (NCSCs) are found in a variety of adult tissues and show an extraordinary broad developmental potential. Despite their great differentiation capacity, increasing evidence suggest a remaining niche-dependent variability between different NCSC-populations regarding their differentiation behavior and expression signatures. In the present study, we extended the view on heterogeneity of NCSCs by identifying heterogeneous expression levels and protein amounts of characteristic markers even between NCSCs from the same niche of origin. In particular, populations of neural crest-derived inferior turbinate stem cells (ITSCs) isolated from different individuals showed significant variations in characteristic NCSC marker proteins Nestin, S100 and Slug in a donor-dependent manner. Notably, increased nuclear protein amounts of Slug were accompanied by a significantly elevated level of nuclear NF-κB-p65 protein, suggesting an NF-κB-dependent regulation of NCSC-makers. In addition to this interpopulational genetic heterogeneity of ITSC-populations from different donors, single ITSCs also revealed a strong heterogeneity regarding the protein amounts of Nestin, S100, Slug and NF-κB-p65 even within the same clonal culture. Our present findings therefor strongly suggest ITSC-heterogeneity to be at least partly based on an interpopulational genetic heterogeneity dependent on the donor accompanied by a stochastic intrapopulational heterogeneity between single cells. We propose this stochastic intrapopulational heterogeneity to occur in addition to the already described genetic variability between clonal NCSC-cultures and the niche-dependent plasticity of NCSCs. Our observations offer a novel perspective on NCSC-heterogeneity, which may build the basis to understand heterogeneous NCSC-behavior.
Collapse
Affiliation(s)
- Beatrice A Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.,Department of Cellular Neurophysiology, Faculty of Medicine, University of Bielefeld, Bielefeld, Germany
| | - Anna L Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.,Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany. .,Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.
| |
Collapse
|
10
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
11
|
McMillan H, Lundy FT, Dunne OM, Al-Natour B, Jeanneau C, About I, Curtis TM, El Karim I. Endogenous Mas-related G-protein-coupled receptor X1 activates and sensitizes TRPA1 in a human model of peripheral nerves. FASEB J 2021; 35:e21492. [PMID: 33788969 DOI: 10.1096/fj.202001667rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Mas-related G-protein-coupled receptor X1 (MrgprX1) is a human-specific Mrgpr and its expression is restricted to primary sensory neurons. However, its role in nociception and pain signaling pathways is largely unknown. This study aims to investigate a role for MrgprX1 in nociception via interaction with the pain receptor, Transient Receptor Potential Ankyrin 1 (TRPA1), using in-vitro and in-vivo human neuronal models. MrgprX1 protein expression in human trigeminal nociceptors was investigated by the immunolabeling of the dental pulp and cultured peripheral neuronal equivalent (PNE) cells. MrgprX1 receptor signaling was monitored by Fura-2-based Ca2+ imaging using PNEs and membrane potential responses were measured using FluoVoltTM . Immunofluorescent staining revealed MrgprX1 expression in-vivo in dental afferents, which was more intense in inflamed compared to healthy dental pulps. Endogenous MrgprX1 protein expression was confirmed in the in-vitro human PNE model. MrgprX1 receptor signaling and the mechanisms through which it couples to TRPA1 were studied by Ca2+ imaging. Results showed that MrgprX1 activates TRPA1 and induces membrane depolarization in a TRPA1 dependent manner. In addition, MrgprX1 sensitizes TRPA1 to agonist stimulation via Protein Kinase C (PKC). The activation and sensitization of TRPA1 by MrgprX1 in a model of human nerves suggests an important role for this receptor in the modulation of nociception.
Collapse
Affiliation(s)
- Hayley McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Fionnuala T Lundy
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Orla M Dunne
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Banan Al-Natour
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Tim M Curtis
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Ikhlas El Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| |
Collapse
|
12
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
13
|
Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro. Biomolecules 2020; 11:biom11010022. [PMID: 33379324 PMCID: PMC7823925 DOI: 10.3390/biom11010022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) and dental pulp stem cells (DPSCs) are attractive research topics, and their combined use in the field of tissue engineering seems to be very promising. HA is a natural extracellular biopolymer found in various tissues, including dental pulp, and due to its biocompatibility and biodegradability, it is also a suitable scaffold material. However, low molecular weight (LMW) fragments, produced by enzymatic cleavage of HA, have different bioactive properties to high molecular weight (HMW) HA. Thus, the impact of HA must be assessed separately for each molecular weight fraction. In this study, we present the effect of three LMW-HA fragments (800, 1600, and 15,000 Da) on DPSCs in vitro. Discrete biological parameters such as DPSC viability, morphology, and cell surface marker expression were determined. Following treatment with LMW-HA, DPSCs initially presented with an acute reduction in proliferation (p < 0.0016) and soon recovered in subsequent passages. They displayed significant size reduction (p = 0.0078, p = 0.0019, p = 0.0098) while maintaining high expression of DPSC markers (CD29, CD44, CD73, CD90). However, in contrast to controls, a significant phenotypic shift (p < 0.05; CD29, CD34, CD90, CD106, CD117, CD146, CD166) of surface markers was observed. These findings provide a basis for further detailed investigations and present a strong argument for the importance of HA scaffold degradation kinetics analysis.
Collapse
|
14
|
Luo L, Wang X, Zhang Y, Wu Y, Hu F, Xing Z, Wang L, Xiao J, Guastaldi F, He Y, Ye Q. Biological Behavioral Alterations of the Post-neural Differentiated Dental Pulp Stem Cells Through an in situ Microenvironment. Front Cell Dev Biol 2020; 8:625151. [PMID: 33344464 PMCID: PMC7744789 DOI: 10.3389/fcell.2020.625151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Transplantation of undifferentiated dental pulp stem cells (DPSCs) may suffer from tumorigenesis. Neuronal differentiated DPSCs (d-DPSCs) have emerged as an ideal source to treat central nervous system (CNS) disorders. Moreover, different components of culture medium functioned on the characteristics of d-DPSCs in vitro. In this study, d-DPSCs were cultured in three types of medium: Neurobasal®®-A medium supplemented with 2% B27 (the 2% B27 NM group), Neurobasal® -A medium supplemented with 2% B27 and 5% FBS (the 2% B27 + 5% FBS NM group), and α-MEM containing 10% FBS (the 10% FBS α-MEM group). We found that d-DPSCs in the 2% B27 + 5% FBS NM group had lower proliferation and reduced expression of transient receptor potential canonical 1 (TRPC1) and CD146, whereas up-regulated Nestin and microtubule-associated protein-2 (MAP-2). Notably, d-DPSCs in the 10% FBS α-MEM group possessed high proliferative capacity, decreased expression of neuron-like markers and partially restored stemness. It was demonstrated that d-DPSCs cultured in the 2% B27 + 5% FBS NM could maintain their neuron-like characteristics. Besides, d-DPSCs cultivated in the 10% FBS α-MEM could partially recover their stem cells properties, indicating that neural differentiation of DPSCs was reversible and could open novel avenues for exploring the pluripotency of DPSCs.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuwei Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fernando Guastaldi
- Skeletal Biology Research Center, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yan He
- Skeletal Biology Research Center, Massachusetts General Hospital, Harvard University, Boston, MA, United States.,Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Skeletal Biology Research Center, Massachusetts General Hospital, Harvard University, Boston, MA, United States.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Kandalam S, De Berdt P, Ucakar B, Vanvarenberg K, Bouzin C, Gratpain V, Diogenes A, Montero-Menei CN, des Rieux A. Human dental stem cells of the apical papilla associated to BDNF-loaded pharmacologically active microcarriers (PAMs) enhance locomotor function after spinal cord injury. Int J Pharm 2020; 587:119685. [PMID: 32712253 DOI: 10.1016/j.ijpharm.2020.119685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
There is no treatment for spinal cord injury (SCI) that fully repairs the damages. One strategy is to inject mesenchymal stem cells around the lesion to benefit from their immunomodulatory properties and neuroprotective effect. Our hypothesis was that the combination of dental stem cells from the apical papilla (SCAP) with pharmacologically active microcarriers (PAMs) releasing brain-derived neurotrophic factor (BDNF) would improve rat locomotor function by immunomodulation and neuroprotection. BDNF-PAMs were prepared by solid/oil/water emulsion of poly(L-lactide-co-glycolide) and nanoprecipitated BDNF and subsequent coating with fibronectin. SCAP were then seeded on BDNF-PAMs. SCAP expression of neuronal and immunomodulatory factors was evaluated in vitro. SCAP BDNF-PAMs were injected in a rat spinal cord contusion model and their locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) scoring. Impact on inflammation and neuroprotection/axonal growth was evaluated by immunofluorescence. Culture on PAMs induced the overexpression of immunomodulatory molecules and neural/neuronal markers. Injection of SCAP BDNF-PAMs at the lesion site improved rat BBB scoring, reduced the expression of inducible nitric oxide synthase and increased the expression of βIII tubulin, GAP43, and 5-HT. These results confirm the suitability and versatility of PAMs as combined drug and cell delivery system for regenerative medicine applications but also that BDNF-PAMs potentialize the very promising therapeutic potential of SCAP in the scope of SCI.
Collapse
Affiliation(s)
- Saikrishna Kandalam
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200 Bruxelles, Belgium; CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers F-49933, France
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200 Bruxelles, Belgium
| | - Bernard Ucakar
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200 Bruxelles, Belgium
| | - Kevin Vanvarenberg
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200 Bruxelles, Belgium
| | - Caroline Bouzin
- IREC Imaging platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, UCLouvain, IREC, 1200 Brussels, Belgium
| | - Viridiane Gratpain
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200 Bruxelles, Belgium
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
16
|
Laudani S, La Cognata V, Iemmolo R, Bonaventura G, Villaggio G, Saccone S, Barcellona ML, Cavallaro S, Sinatra F. Effect of a Bone Marrow-Derived Extracellular Matrix on Cell Adhesion and Neural Induction of Dental Pulp Stem Cells. Front Cell Dev Biol 2020; 8:100. [PMID: 32211401 PMCID: PMC7068778 DOI: 10.3389/fcell.2020.00100] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) represents an essential component of the cellular niche. In this conditioned microenvironment, the proliferation rates and differentiation states of stem cells are regulated by several factors. In contrast, in in vitro experimental models, cell growth, or induction procedures toward specific cell lines usually occur in contact with plastic, glass, or biogel supports. In this study, we evaluated the effect of a decellularized ECM, derived from bone marrow stem cells, on the neuronal differentiation of mesenchymal stem cells (MSCs) extracted from dental pulp (Dental Pulp Stem Cells - DPSCs). Since DPSCs derive from neuroectodermal embryonic precursors, they are thought to have a greater propensity toward neuronal differentiation than MSCs isolated from other sources. We hypothesized that the presence of a decellularized ECM scaffold could act positively on neuronal-DPSC differentiation through reproduction of an in vivo-like microenvironment. Results from scanning electron microscopy, immunofluorescence, and gene expression assays showed that ECM is able to positively influence the morphology of cells and their distribution and the expression of specific neuronal markers (i.e., NF-L, NF-M, NF-H, PAX6, MAP2).
Collapse
Affiliation(s)
- Samuele Laudani
- Section of Biology and Genetic, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Rosario Iemmolo
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Giusy Villaggio
- Section of Biology and Genetic, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Luisa Barcellona
- Section of Biochemistry, Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Fulvia Sinatra
- Section of Biology and Genetic, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Martellucci S, Santacroce C, Santilli F, Piccoli L, Delle Monache S, Angelucci A, Misasi R, Sorice M, Mattei V. Cellular and Molecular Mechanisms Mediated by recPrP C Involved in the Neuronal Differentiation Process of Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:E345. [PMID: 30654447 PMCID: PMC6358746 DOI: 10.3390/ijms20020345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Human Dental Pulp Stem Cells (hDPSCs) represent a type of adult mesenchymal stem cells that have the ability to differentiate in vitro in several lineages such as odontoblasts, osteoblasts, chondrocytes, adipocytes and neurons. In the current work, we used hDPSCs as the experimental model to study the role of recombinant prion protein 23⁻231 (recPrPC) in the neuronal differentiation process, and in the signal pathway activation of ERK 1/2 and Akt. We demonstrated that recPrPC was able to activate an intracellular signal pathway mediated by extracellular-signal-regulated kinase 1 and 2 (ERK 1/2) and protein kinase B (Akt). Moreover, in order to understand whether endogenous prion protein (PrPC) was necessary to mediate the signaling induced by recPrPC, we silenced PrPC, demonstrating that the presence of endogenous PrPC was essential for ERK 1/2 and Akt phosphorylation. Since endogenous PrPC is a well-known lipid rafts component, we evaluated the role of these structures in the signal pathway induced by recPrPC. Our results suggest that lipid rafts integrity play a key role in recPrPC activity. In fact, lipid rafts inhibitors, such as fumonisin B1 and MβCD, significantly prevented ERK 1/2 and Akt phosphorylation induced by recPrPC. In addition, we investigated the capacity of recPrPC to induce hDPSCs neuronal differentiation process after long-term stimulation through the evaluation of typical neuronal markers expression such as B3-Tubulin, neurofilament-H (NFH) and growth associated protein 43 (GAP43). Accordingly, when we silenced endogenous PrPC, we observed the inhibition of neuronal differentiation induced by recPrPC. The combined data suggest that recPrPC plays a key role in the neuronal differentiation process and in the activation of specific intracellular signal pathways in hDPSCs.
Collapse
Affiliation(s)
- Stefano Martellucci
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Costantino Santacroce
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
| | - Francesca Santilli
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Luca Piccoli
- Department of Science Dentistry and Maxillofacial, "Sapienza" University, 00161 Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| |
Collapse
|
18
|
Ganapathy K, Datta I, Bhonde R. Astrocyte-Like Cells Differentiated from Dental Pulp Stem Cells Protect Dopaminergic Neurons Against 6-Hydroxydopamine Toxicity. Mol Neurobiol 2018; 56:4395-4413. [PMID: 30327976 DOI: 10.1007/s12035-018-1367-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Abstract
Dental pulp stem cells (DPSCs) are promising for use in neurodegenerative-diseases because of their neural crest origin. While neuronal differentiation of DPSCs has been shown, their plasticity towards astrocyte-like cells remains to be studied. We aimed to examine differentiation potential of DPSCs to astrocytes and their consequent neuroprotective role towards dopaminergic (DA) neurons under 6-hydroxydopamine (6-OHDA) toxicity. Induction of DPSCs to astrocytes with differentiation factors showed definitive increase in astrocyte-specific markers glial fibrillary acidic protein (GFAP), and excitatory amino acid transporter 2 along with glial calcium-binding protein S100β through FACS and immunofluorescence assays. RT-PCR and ELISA showed significant increase in BDNF and GDNF expression and secretion in astrocyte-differentiated DPSCs over naïve DPSCs. Neuroprotective role of these cells on DA neurons under 6-OHDA stress was evaluated by both contact and non-contact methods. FACS analysis of PKH26-stained SH-SY5Y homogenous cells in contact method and of TH immunopositive cells in primary midbrain culture in non-contact method both indicated higher survival of DA neurons in astrocyte-differentiated DPSCs over naïve DPSCs. Recovery of β-tubulin III and TH immunopositive cells was reduced in the presence of TrkB inhibitor, suggesting a key neuroprotective role of BDNF secretion by DPSCs. When nitric oxide (NO) release was inhibited by L-NAME in primary midbrain culture, BDNF release in co-culture under 6-OHDA stress reduced further in naïve DPSCs than in astrocyte-differentiated DPSCs, suggesting that BDNF release in naïve DPSCs is primarily regulated by paracrine signaling while for differentiated DPSCs, it is equally through autocrine and paracrine signaling with NO being the mediator. In conclusion, we suggest that DPSCs exposed to glial commitment cues exhibit substantial differentiation towards astrocyte-like cells with better neuroprotective activity against 6-OHDA toxicity than naïve DPSCs.
Collapse
Affiliation(s)
- Kavina Ganapathy
- Department of Biophysics, National Institute of Mental Health and Neurosciences, P.B. No - 2900, Hosur Road, Bengaluru, Karnataka, 560029, India.,School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, 560065, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, P.B. No - 2900, Hosur Road, Bengaluru, Karnataka, 560029, India.
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, 560065, India.,Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411018, India
| |
Collapse
|
19
|
Raza SS, Wagner AP, Hussain YS, Khan MA. Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther 2018; 9:245. [PMID: 30257724 PMCID: PMC6158826 DOI: 10.1186/s13287-018-1005-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurodegenerative disorders have a complex pathology and are characterized by a progressive loss of neuronal architecture in the brain or spinal cord. Neuroprotective agents have demonstrated promising results at the preclinical stage, but this has not been confirmed at the clinical stage. Thus far, no neuroprotective drug that can prevent neuronal degeneration in patients with neurodegenerative disorders is available. MAIN BODY Recent studies have focused on neurorestorative measures, such as cell-based therapy, rather than neuroprotective treatment. The utility of cell-based approaches for the treatment of neurodegenerative disorders has been explored extensively, and the results have been somewhat promising with regard to reversing the outcome. Because of their neural crest origin, ease of harvest, accessibility, ethical suitability, and potential to differentiate into the neurogenic lineage, dental-derived stem cells (DSCs) have become an attractive source for cell-based neurorestoration therapies. In the present review, we summarize the possible use of DSC-based neurorestoration therapy as an alternative treatment for neurodegenerative disorders, with a particular emphasis on the mechanism underlying recovery in neurodegenerative disorders. CONCLUSION Transplantation research in neurodegenerative diseases should aim to understand the mechanism providing benefits both at the molecular and functional level. Due to their ease of accessibility, plasticity, and ethical suitability, DSCs hold promise to overcome the existing challenges in the field of neurodegeneration through multiple mechanisms, such as cell replacement, bystander effect, vasculogenesis, synaptogenesis, immunomodulation, and by inhibiting apoptosis.
Collapse
Affiliation(s)
- Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India. .,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, 226003, India.
| | - Aurel Popa Wagner
- Departmentof Dental Materials, RUHS College of Dental Sciences, Subhash Nagar, Jaipur, Rajasthan, 302002, India.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Yawer S Hussain
- Department of Neurology, Chair of Vascular Neurology and Dementia, Essen University Hospital, Essen, Germany
| | - Mohsin Ali Khan
- Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
20
|
Martellucci S, Manganelli V, Santacroce C, Santilli F, Piccoli L, Sorice M, Mattei V. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion 2018; 12:117-126. [PMID: 29644924 DOI: 10.1080/19336896.2018.1463797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular prion protein (PrPC) is expressed in a wide variety of stem cells in which regulates their self-renewal as well as differentiation potential. In this study we investigated the presence of PrPC in human dental pulp-derived stem cells (hDPSCs) and its role in neuronal differentiation process. We show that hDPSCs expresses early PrPC at low concentration and its expression increases after two weeks of treatment with EGF/bFGF. Then, we analyzed the association of PrPC with gangliosides and EGF receptor (EGF-R) during neuronal differentiation process. PrPC associates constitutively with GM2 in control hDPSCs and with GD3 only after neuronal differentiation. Otherwise, EGF-R associates weakly in control hDPSCs and more markedly after neuronal differentiation. To analyze the functional role of PrPC in the signal pathway mediated by EGF/EGF-R, a siRNA PrP was applied to ablate PrPC and its function. The treatment with siRNA PrP significantly prevented Akt and ERK1/2 phosphorylation induced by EGF. Moreover, siRNA PrP treatment significantly prevented neuronal-specific antigens expression induced by EGF/bFGF, indicating that cellular prion protein is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that PrPC interact with EGF-R within lipid rafts, playing a role in the multimolecular signaling complexes involved in hDPSCs neuronal differentiation.
Collapse
Affiliation(s)
- Stefano Martellucci
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Valeria Manganelli
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Costantino Santacroce
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Francesca Santilli
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Luca Piccoli
- c Department of Science Dentistry and Maxillofacial - "Sapienza" University , Viale Regina Elena 287/A, Rome , Italy
| | - Maurizio Sorice
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Vincenzo Mattei
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| |
Collapse
|
21
|
El Ayachi I, Zhang J, Zou XY, Li D, Yu Z, Wei W, O’Connell KM, Huang GTJ. Human dental stem cell derived transgene-free iPSCs generate functional neurons via embryoid body-mediated and direct induction methods. J Tissue Eng Regen Med 2018; 12:e1836-e1851. [PMID: 29139614 PMCID: PMC6482049 DOI: 10.1002/term.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/02/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) give rise to neural stem/progenitor cells, serving as a good source for neural regeneration. Here, we established transgene-free (TF) iPSCs from dental stem cells (DSCs) and determined their capacity to differentiate into functional neurons in vitro. Generated TF iPSCs from stem cells of apical papilla and dental pulp stem cells underwent two methods-embryoid body-mediated and direct induction, to guide TF-DSC iPSCs along with H9 or H9 Syn-GFP (human embryonic stem cells) into functional neurons in vitro. Using the embryoid body-mediated method, early stage neural markers PAX6, SOX1, and nestin were detected by immunocytofluorescence or reverse transcription-real time polymerase chain reaction (RT-qPCR). At late stage of neural induction measured at Weeks 7 and 9, the expression levels of neuron-specific markers Nav1.6, Kv1.4, Kv4.2, synapsin, SNAP25, PSD95, GAD67, GAP43, and NSE varied between stem cells of apical papilla iPSCs and H9. For direct induction method, iPSCs were directly induced into neural stem/progenitor cells and guided to become neuron-like cells. The direct method, while simpler, showed cell detachment and death during the differentiation process. At early stage, PAX6, SOX1 and nestin were detected. At late stage of differentiation, all five genes tested, nestin, βIII-tubulin, neurofilament medium chain, GFAP, and Nav, were positive in many cells in cultures. Both differentiation methods led to neuron-like cells in cultures exhibiting sodium and potassium currents, action potential, or spontaneous excitatory postsynaptic potential. Thus, TF-DSC iPSCs are capable of undergoing guided neurogenic differentiation into functional neurons in vitro, thereby may serve as a cell source for neural regeneration.
Collapse
Affiliation(s)
- Ikbale El Ayachi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Zhang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xiao-Ying Zou
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
- Department of Cariology, Endodontology and Operative Dentistry, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
| | - Dong Li
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zongdong Yu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Wei
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Kristen M.S. O’Connell
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - George T.-J. Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
22
|
Victor AK, Reiter LT. Dental pulp stem cells for the study of neurogenetic disorders. Hum Mol Genet 2018; 26:R166-R171. [PMID: 28582499 DOI: 10.1093/hmg/ddx208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
Dental pulp stem cells (DPSC) are a relatively new alternative stem cell source for the study of neurogenetic disorders. DPSC can be obtained non-invasively and collected from long-distances remaining viable during transportation. These highly proliferative cells express stem cell markers and retain the ability to differentiate down multiple cell lineages including chondrocytes, adipocytes, osteoblasts, and multiple neuronal cell types. The neural crest origin of DPSC makes them a useful source of primary cells for modeling neurological disorders at the molecular level. In this brief review, we will discuss recent developments in DPSC research that highlight the molecular etiology of DPSC derived neurons and how they may contribute to our understanding of neurogenetic disorders.
Collapse
Affiliation(s)
| | - Lawrence T Reiter
- Department of Neurology.,Department of Pediatrics.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
23
|
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20:479-498. [PMID: 29449086 DOI: 10.1016/j.jcyt.2017.12.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain.
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| |
Collapse
|
24
|
Hidalgo San Jose L, Stephens P, Song B, Barrow D. Microfluidic Encapsulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation. Tissue Eng Part C Methods 2018; 24:158-170. [PMID: 29258387 PMCID: PMC5865257 DOI: 10.1089/ten.tec.2017.0368] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cell encapsulation technology demonstrates much promise for the replacement of damaged tissue in several diseases, including spinal cord injury (SCI). The use of biocompatible microcapsules permits the control of stem cell fate in situ to facilitate the replacement of damaged/lost tissue. In this work, a novel customized microfluidic device was developed for the reproducible encapsulation of neural stem cells (NSCs) and dental pulp stem cells (DPSCs) within monodisperse, alginate-collagen microcapsules. Both cell types survived within the microcapsules for up to 21 days in culture. Stem cells demonstrated retention of their multipotency and neuronal differentiation properties upon selective release from the microcapsules, as demonstrated by high proliferation rates and the production of stem cell and neuronal lineage markers. When cell-laden microcapsules were transplanted into an organotypic SCI model, the microcapsules effectively retained the transplanted stem cells at the site of implantation. Implanted cells survived over a 10 day period in culture after transplantation and demonstrated commitment to a neural lineage. Our device provides a quick, effective, and aseptic method for the encapsulation of two different stem cell types (DPSCs and NSCs) within alginate-collagen microcapsules. Since stem cells were able to retain their viability and neural differentiation capacity within such microcapsules, this method provides a useful technique to study stem cell behavior within three-dimensional environments.
Collapse
Affiliation(s)
- Lorena Hidalgo San Jose
- 1 Biomedical Engineering Research Group, Cardiff School of Engineering, Cardiff University , Cardiff, United Kingdom .,2 Wound Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair, Cardiff University , Cardiff, United Kingdom
| | - Phil Stephens
- 2 Wound Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair, Cardiff University , Cardiff, United Kingdom
| | - Bing Song
- 2 Wound Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair, Cardiff University , Cardiff, United Kingdom
| | - David Barrow
- 1 Biomedical Engineering Research Group, Cardiff School of Engineering, Cardiff University , Cardiff, United Kingdom
| |
Collapse
|
25
|
Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4210867. [PMID: 29085837 PMCID: PMC5632471 DOI: 10.1155/2017/4210867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022]
Abstract
Adipose tissue-derived stromal cells (ADSCs) are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract) on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9). Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.
Collapse
|
26
|
NURR1 Downregulation Favors Osteoblastic Differentiation of MSCs. Stem Cells Int 2017; 2017:7617048. [PMID: 28769982 PMCID: PMC5523352 DOI: 10.1155/2017/7617048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in human dental tissues. Dental pulp stem cells (DPSCs) were classified within MSC family, are multipotent, can be isolated from adult teeth, and have been shown to differentiate, under particular conditions, into various cell types including osteoblasts. In this work, we investigated how the differentiation process of DPSCs toward osteoblasts is controlled. Recent literature data attributed to the nuclear receptor related 1 (NURR1), a still unclarified role in osteoblast differentiation, while NURR1 is primarily involved in dopaminergic neuron differentiation and activity. Thus, in order to verify if NURR1 had a role in DPSC osteoblastic differentiation, we silenced it during all the processes and compared the expression of the main osteoblastic markers with control cultures. Our results showed that the inhibition of NURR1 significantly increased the expression of osteoblast markers collagen I and alkaline phosphatase. Further, in long time cultures, the mineral matrix deposition was strongly enhanced in NURR1-silenced cultures. These results suggest that NURR1 plays a key role in switching DPSC differentiation toward osteoblasts rather than neuronal or even other cell lines. In conclusion, DPSCs represent a source of osteoblast-like cells and downregulation of NURR1 strongly prompted their differentiation toward the osteoblastogenesis process.
Collapse
|
27
|
Wolf G, Lotan A, Lifschytz T, Ben-Ari H, Kreisel Merzel T, Tatarskyy P, Valitzky M, Mernick B, Avidan E, Koroukhov N, Lerer B. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation. Front Aging Neurosci 2017; 9:191. [PMID: 28670274 PMCID: PMC5472721 DOI: 10.3389/fnagi.2017.00191] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
Bilateral common carotid artery stenosis (BCAS) models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month) and young adult (3 month) female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014): on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049), while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP) showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05) compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01) and old control mice (p < 0.05). These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.
Collapse
Affiliation(s)
- Gilly Wolf
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel.,Departments of Psychology and Life Sciences, School of Sciences, Achva Academic CollegeBe'er Tuvia, Israel
| | - Amit Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Hagar Ben-Ari
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Tirzah Kreisel Merzel
- Department of Developmental Biology and Cancer Research, Hadassah-Hebrew University Medical SchoolJerusalem, Israel
| | - Pavel Tatarskyy
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Michael Valitzky
- Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel.,Neurology Laboratory, Department of Neurology, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Ben Mernick
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Developmental Psychopathology Laboratory, Department of Psychology, University of HaifaHaifa, Israel
| | - Elad Avidan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Nickolay Koroukhov
- Cardiovascular Research Center, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| |
Collapse
|
28
|
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8:2041731417702531. [PMID: 28616151 PMCID: PMC5461911 DOI: 10.1177/2041731417702531] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.
Collapse
Affiliation(s)
- Elna Paul Chalisserry
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seung Yun Nam
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sang Hyug Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sukumaran Anil
- Division of Periodontics, Department of Preventive Dental Sciences, College of Dentistry Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|