1
|
Mohammed AN. Efficient control of newly emerging bacterial pathogens in wastewater effluents of livestock farms and abattoirs using terminator disinfectant-based copper oxide nanoparticles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:349. [PMID: 40032669 DOI: 10.1007/s10661-025-13764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
The development of highly operational, reusable, multifunctional antibacterial agents has become an urgent need of the hour in terms of environmental safety and sustenance. This study was aimed at determining newly emerging bacterial pathogens in the wastewater effluent of broiler chicken and dairy cattle farms, beside their slaughterhouses. Also, the study assesses the biocidal effect of chitosan (CS), terminator disinfectant (TD), copper oxide nanoparticles (CuO-NPs), and terminator-based copper oxide nanoparticles (TD/CuO-NPs) against isolated emerging bacterial pathogens from wastewater effluents. Eighty wastewater samples were collected from the local sewage systems of these farms and slaughterhouses for the isolation and identification of bacterial pathogens. The biocidal activity of compounds was tested against fifty strains of isolated bacterial pathogens using an agar well diffusion and broth micro-dilution assay. CuO-NPs and TD/CuO-NPs composites were characterized using the Fourier transform infrared spectrum (FT-IR), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and zeta potential distribution. The wastewater effluents of broiler chicken and dairy cattle farms reported the highest rates of bacterial pathogens (95.0% and 90.0%, respectively), followed by animal abattoirs (80.0%). The effectiveness of TD/CuO-NPs composites against all emerging bacteria was found to be highly efficient (100%) compared to the efficiency of CuO-NPs, TD, and CS (90, 70, and 60%, respectively), at the highest concentration (2.0 µg/ml, 1.0 mg/l, and 1.5 µg/ml, respectively). In conclusion, the TD/CuO-NPs composite proved its biocidal effect (100%) against all isolated bacterial pathogens at 1.0 µg/ml. The synthetic nanocomposite could be implemented in any disinfection program and/or as an effective control strategy for the bacterial pathogens in wastewater effluents in various investigated areas.
Collapse
Affiliation(s)
- Asmaa N Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Patne AY, Mohapatra S, Mohapatra SS. Role of Nanomedicine in Transforming Pharmacotherapy for Substance Use Disorder (SUD). WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70008. [PMID: 40190158 PMCID: PMC11973540 DOI: 10.1002/wnan.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
The field of nanomedicine offers revolutionary potential to reshape the discovery and development of therapeutics for diverse human diseases. However, its application has been limited in improving Substance Use Disorders (SUDs), which represent a profound public health crisis, including major types such as opioid, alcohol, stimulant, and cannabis use disorders. Pharmacotherapy, a cornerstone of SUD management, has reduced morbidity, mortality, and the societal impact of addiction, though its efficacy has ranged from none to moderate. Thus, there is a major unmet need to transform SUD pharmacotherapy to curb the epidemic of addiction. This article explores the potential roles of nanomedicine-inspired precision-targeted drug delivery, sustained release, and combination therapies to increase therapeutic efficacy and minimize side effects. Additionally, it discusses innovative mechanisms that align with the neurobiological complexities of addiction and synergistic approaches that integrate nanomedicine with behavioral interventions, device-based therapies, and emerging modalities such as immunotherapy and neurostimulation. Despite these advancements, barriers such as treatment accessibility, adherence challenges, and inequitable resource distribution persist, particularly in underserved populations. By harnessing the transformative capabilities of nanomedicine and integrating it into holistic, equitable, and personalized care frameworks, this review highlights a path forward to revolutionize the SUD pharmacotherapy landscape. The article underscores the need for continued nano-SUD pharmacotherapy research and the development of strategies to alleviate the substantial burden of addiction on individuals, families, and society.
Collapse
Affiliation(s)
- Akshata Y. Patne
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health DriveTampaFloridaUSA
| | - Subhra Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Department of Molecular Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| | - Shyam S. Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health DriveTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| |
Collapse
|
3
|
Buder C, Langkabel N, Kirse A, Kalusa M, Fietz SA, Meemken D. Nano-coating with silicon dioxide to reduce the occurrence of bacterial contamination in a pig abattoir drinking system. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01243-x. [PMID: 39904879 DOI: 10.1007/s12223-025-01243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
A recently discovered source for infection of slaughter pigs, and thus entry for bacteria into the food chain, is the installed drinking equipment in lairage pens of pig abattoirs. To mitigate this, nano-coating of stainless steel, currently used in human medicine fields as well as in other parts of the food chain, appears as promising technology. In this study, silicon dioxide nano-coating was applied to six drinkers and installed for one and three months in a lairage of a pig abattoir, while results were compared with those of drinkers that had not been nano-coated. Laboratory examination of eight sample types related to the drinkers was conducted for total aerobic plate count, Enterobacteriaceae count, Pseudomonas spp. count, Salmonella presence, pathogenic Yersinia enterocolitica presence, Listeria monocytogenes presence and methicillin-resistant Staphylococcus aureus presence. The nipple drinker, which the pigs take into their mouth for drinking, was then examined using scanning electron microscopy and elemental analysis. The nano-coating did not produce statistically significant reductions in the loads or presence of these bacteria compared to the same but uncoated drinking equipment used under the same conditions. Further studies should focus on the implementation of combined methods, such as nano-coating and sanitary treatment, as well as modifications to the coating itself, to produce meaningful reductions of the bacterial loads on/in abattoir lairage drinking equipment.
Collapse
Affiliation(s)
- Celine Buder
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| | - Nina Langkabel
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Alina Kirse
- Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Mirjam Kalusa
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
4
|
Epelle EI, Amaeze N, Mackay WG, Yaseen M. Dry biofilms on polystyrene surfaces: the role of oxidative treatments for their mitigation. BIOFOULING 2024; 40:772-784. [PMID: 39377105 DOI: 10.1080/08927014.2024.2411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/25/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Candida auris and Staphylococcus aureus are associated with a wide range of infections, as they exhibit multidrug resistance - a growing health concern. In this study, gaseous ozone, and ultraviolet-C (UVC) radiation are applied as infection control measures to inactivate dry biofilms of these organisms on polystyrene surfaces. The dosages utilised herein are 1000 and 3000 ppm.min for ozone and 2864 and 11592 mJ.cm-2 for UVC. Both organisms showed an increased sensitivity to UVC relative to ozone exposure in a bespoke decontamination chamber. While complete inactivation of both organisms (>7.5 CFU log) was realized after 60 mins of UVC application, this could not be achieved with ozonation for the same duration. However, a combined application of ozone and UVC yielded complete inactivation in only 20 mins. For both treatment methods, it was observed that dry biofilms of S. aureus were more difficult to inactivate than dry biofilms of C. auris. Compared to dry biofilms of C. auris, micrographs of wet C. auris biofilms revealed the presence of an abundance of extracellular material after treatments. Interestingly, wet biofilms were more difficult to inactivate than dry biofilms. These insights are crucial to preventing recalcitrant and recurrent infections via contact with contaminated polymeric surfaces.
Collapse
Affiliation(s)
- Emmanuel I Epelle
- Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ngozi Amaeze
- School of Health & Life Sciences, University of the West of Scotland, Blantyre, United Kingdom
| | - William G Mackay
- School of Health & Life Sciences, University of the West of Scotland, Blantyre, United Kingdom
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, United Kingdom
| |
Collapse
|
5
|
AlAzzam NF, Bajunaid SO, Mitwalli HA, Baras BH, Weir MD, Xu HHK. The Effect of Incorporating Dimethylaminohexadecyl Methacrylate and/or 2-Methacryloyloxyethyl Phosphorylcholine on Flexural Strength and Surface Hardness of Heat Polymerized and 3D-Printed Denture Base Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4625. [PMID: 39336366 PMCID: PMC11433138 DOI: 10.3390/ma17184625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND A major disadvantage of polymethyl methacrylate (PMMA) acrylic resins is susceptibility to biofilm accumulation. The incorporation of antimicrobial agents is a reliable prevention technique. The purpose of this study is to investigate the effect of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and/or 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base materials on the flexural strength, modulus of elasticity, and surface hardness. METHODS DMAHDM and/or MPC were mixed with the acrylic resin liquid of a heat-polymerized (ProBase Hot) and a 3D printed (NextDent Denture 3D) material at mass fractions of 1.5% and 3% and a combination of 3% MPC and 1.5% DMAHDM. RESULTS Significant differences in mechanical properties between the control and experimental groups have been detected (p-value < 0.0001). In HP materials, the addition of DMAHDM and/or MPC generally decreased the flexural strength, from (151.18 MPa) in G1 down to (62.67 MPa) in G5, and surface hardness, from (18.05 N/mm2) down to (10.07 N/mm2) in G5. Conversely, in 3DP materials, flexural strength was slightly enhanced, from (58.22 MPa) in G1 up to (62.76 MPa) in G6, although surface hardness was consistently reduced, from (13.57 N/mm2) down to (5.29 N/mm2) in G5. CONCLUSION It is recommended to carefully optimize the concentrations of DMAHDM and/or MPC to maintain mechanical integrity.
Collapse
Affiliation(s)
- Njood F AlAzzam
- Department of Prosthetic Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Salwa O Bajunaid
- Department of Prosthetic Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Heba A Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Bashayer H Baras
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Pradhan L, Hazra S, Manna S, Pal BN, Mukherjee S. Screening of Lithium Substituted Ag-TiO 2 Nanoparticle Coating for Antibiofilm Application. ACS APPLIED BIO MATERIALS 2024; 7:6101-6113. [PMID: 39121349 DOI: 10.1021/acsabm.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Bacterial infections and biofilm growth are common mishaps associated with medical devices, and they contribute significantly to ill health and mortality. Removal of bacterial deposition from these devices is a major challenge, resulting in an immediate necessity for developing antibacterial coatings on the surfaces of medical implants. In this context, we developed an innovative coating strategy that can operate at low temperatures (80 °C) and preserve the devices' integrity and functionality. An innovative Ag-TiO2 based coating was developed by ion exchange between silver nitrate (AgNO3) and lithium titanate (Li4Ti5O12) on glass substrates for different periods, ranging from 10 to 60 min. The differently coated samples were tested for their antibacterial and antibiofilm efficacy.
Collapse
Affiliation(s)
- Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sobhan Hazra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sumit Manna
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Bhola Nath Pal
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
8
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
9
|
Kour D, Khan SS, Kumari S, Singh S, Khan RT, Kumari C, Kumari S, Dasila H, Kour H, Kaur M, Ramniwas S, Kumar S, Rai AK, Cheng WH, Yadav AN. Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective. Folia Microbiol (Praha) 2024; 69:491-520. [PMID: 38421484 DOI: 10.1007/s12223-024-01147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Shilpa Kumari
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Shaveta Singh
- University School of Medical and Allied Sciences, Rayat Bahra University, Mohali, Chandigarh, India
| | - Rabiya Tabbassum Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Swati Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Science, GLA University, Mathura, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
10
|
El-Subeyhi M, Hamid LL, Gayadh EW, Saod WM, Ramizy A. Biogenic Synthesis and Characterisation of Novel Potassium Nanoparticles by Capparis spinosa Flower Extract and Evaluation of Their Potential Antibacterial, Anti-biofilm and Antibiotic Development. Indian J Microbiol 2024; 64:548-557. [PMID: 39010993 PMCID: PMC11246407 DOI: 10.1007/s12088-024-01190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/30/2023] [Indexed: 07/17/2024] Open
Abstract
Scientific researches on the synthesis, characterisation, and biological activity of potassium nanoparticles (K NPs) are extremely rare. In our study, we successfully synthesised a novel form of K NPs using Capparis spinosa (C. spinosa) flower extract as a reducing and capping agent. The formation of K NPs in new form (K2O NPs) was confirmed by UV-vis and XRD spectra. Furthermore, the FTIR results indicated the presence of specific active biomolecules in the C. spinosa extract which played a crucial role in reducing and stabilising K2O NPs. SEM imaging demonstrated that the K2O NPs exhibited irregular shapes with nanosizes ranging between 25 and 95 nm. Remarkably, the biosynthesised K2O NPs displayed considerable antibacterial activity against a wide range of multidrug-resistant (MDR) pathogenic bacteria. K2O NPs demonstrated considerable anti-biofilm activity against preformed biofilms produced by MDR bacteria. Combining K2O NPs with conventional antibiotics greatly improved their efficacy in compacting the MDR bacterial strains. Industrially, bulk form of potassium oxides was commonly used in the preparation of various antimicrobial compounds such as detergents, bleach, and oxidising solutions. The synthesis of potassium oxide in nanoform has shown remarkable biological efficacy, making it a promising therapeutic approach for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Marwa El-Subeyhi
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Layth L. Hamid
- Biology department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Estabraq W. Gayadh
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Wahran M. Saod
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Asmiet Ramizy
- Physics department, College of Science, University Of Anbar, Ramadi, Iraq
| |
Collapse
|
11
|
Divya M, Chen J, Durán-Lara EF, Kim KS, Vijayakumar S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb Pathog 2024; 191:106679. [PMID: 38718953 DOI: 10.1016/j.micpath.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.
Collapse
Affiliation(s)
- Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 462s41, Republic of Korea.
| | | |
Collapse
|
12
|
Perasoli FB, B Silva LS, C Figueiredo BI, Pinto IC, F Amaro LJ, S Almeida Bastos JC, Carneiro SP, R Araújo VP, G Beato FR, M Barboza AP, M Teixeira LF, Gallagher MP, Bradley M, Venkateswaran S, H dos Santos OD. Poly(methylmethacrylate-co-dimethyl acrylamide)-silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine (Lond) 2024; 19:1285-1296. [PMID: 38722243 PMCID: PMC11285241 DOI: 10.1080/17435889.2024.2345044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024] Open
Abstract
Aim: To investigate whether medical devices coated with a synthesized nanocomposite of poly(methylmethacrylate-co-dimethyl acrylamide) (PMMDMA) and silver nanoparticles (AgNPs) could improve their antibiofilm and antimicrobial activities. We also investigated the nanocomposite's safety. Materials & methods: The nanocomposite was synthesized and characterized using analytical techniques. Medical devices coated with the nanocomposite were evaluated for bacterial adhesion and hemolytic activity in vitro. Results: The nanocomposite formation was demonstrated with the incorporation of AgNPs into the polymer matrix. The nanocomposite proved to be nonhemolytic and significantly inhibited bacterial biofilm formation. Conclusion: The PMMDMA-AgNPs nanocomposite was more effective in preventing biofilm formation than PMMDMA alone and is a promising strategy for coating medical devices and reducing mortality due to hospital-acquired infections.
Collapse
Affiliation(s)
- Fernanda B Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luan S B Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruna I C Figueiredo
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Isabelle C Pinto
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Lorrane J F Amaro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Juliana C S Almeida Bastos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Simone P Carneiro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vânia P R Araújo
- Nano Lab, Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Felipe R G Beato
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Ana P M Barboza
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luiz F M Teixeira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maurice P Gallagher
- School of Biological Sciences, University of Edinburgh, King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Seshasailam Venkateswaran
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Orlando D H dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
13
|
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, Sava M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics (Basel) 2024; 13:400. [PMID: 38786129 PMCID: PMC11117271 DOI: 10.3390/antibiotics13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
| | - Cosmin Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
14
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Bereanu AS, Vintilă BI, Bereanu R, Codru IR, Hașegan A, Olteanu C, Săceleanu V, Sava M. TiO 2 Nanocomposite Coatings and Inactivation of Carbapenemase-Producing Klebsiella Pneumoniae Biofilm-Opportunities and Challenges. Microorganisms 2024; 12:684. [PMID: 38674628 PMCID: PMC11051735 DOI: 10.3390/microorganisms12040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat. The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms. Mortality related to this microorganism is high among immunosuppressed oncological patients and those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies have been studied and developed to prevent and combat serious health problems caused by biofilm infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated with nosocomial infections in intensive care units, including in our department, and to highlight studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice. We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices, and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and dental implants. The International Agency for Research on Cancer has recently classified titanium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles obtained via green, ecological technology have less applicability but are actively investigated.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Adrian Hașegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Vicențiu Săceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
16
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
17
|
Restivo E, Peluso E, Bloise N, Bello GL, Bruni G, Giannaccari M, Raiteri R, Fassina L, Visai L. Surface Properties of a Biocompatible Thermoplastic Polyurethane and Its Anti-Adhesive Effect against E. coli and S. aureus. J Funct Biomater 2024; 15:24. [PMID: 38248691 PMCID: PMC10816734 DOI: 10.3390/jfb15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM demonstrating no significant differences between brush and bar coater-modified surfaces, compared to the un-modified TPU (TPU Film). The effect of the surfaces on planktonic bacteria, evaluated by MTT assay, demonstrated their anti-adhesive effect on E. coli, while the bar coater significantly reduced staphylococcal planktonic adhesion and both bacterial biofilms compared to other samples. Interestingly, Pearson's R coefficient analysis showed that Ra roughness and Haralick's correlation feature were trend predictors for planktonic bacterial cells adhesion. The surface adhesion property was evaluated against NIH-3T3 murine fibroblasts by MTT and against human fibrinogen and human platelet-rich plasma by ELISA and LDH assay, respectively. An indirect cytotoxicity experiment against NIH-3T3 confirmed the biocompatibility of the TPUs. Overall, the results indicated that the deposition techniques did not alter the antibacterial and anti-adhesive surface properties of modified TPU compared to un-modified TPU, nor its bio- and hemocompatibility, confirming the suitability of TPU brush and bar coater films in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Elisa Restivo
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
| | - Emanuela Peluso
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Giovanni Lo Bello
- Department of Informatics, Bioengineering, Robotics and System Engineering—DIBRIS, University of Genoa, 16145 Genoa, Italy; (G.L.B.); (R.R.)
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy;
| | - Marialaura Giannaccari
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics and System Engineering—DIBRIS, University of Genoa, 16145 Genoa, Italy; (G.L.B.); (R.R.)
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
18
|
Vojnits K, Mohseni M, Parvinzadeh Gashti M, Nadaraja AV, Karimianghadim R, Crowther B, Field B, Golovin K, Pakpour S. Advancing Antimicrobial Textiles: A Comprehensive Study on Combating ESKAPE Pathogens and Ensuring User Safety. MATERIALS (BASEL, SWITZERLAND) 2024; 17:383. [PMID: 38255551 PMCID: PMC10817529 DOI: 10.3390/ma17020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Majid Mohseni
- Research and Development Laboratory, PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | | | - Anupama Vijaya Nadaraja
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Ramin Karimianghadim
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Ben Crowther
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Brad Field
- PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | - Kevin Golovin
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| |
Collapse
|
19
|
Tiwari S, Gidwani B, Vyas A. Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Curr Mol Med 2024; 24:876-888. [PMID: 37497706 DOI: 10.2174/1566524023666230727094635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.
Collapse
Affiliation(s)
- Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| | - Bina Gidwani
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| |
Collapse
|
20
|
Alghamdi S, Khandelwal K, Pandit S, Roy A, Ray S, Alsaiari AA, Aljuaid A, Almehmadi M, Allahyani M, Sharma R, Anand J, Alshareef AA. Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:13-31. [PMID: 37666284 DOI: 10.1016/j.pbiomolbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as "quorum quenching" (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Krisha Khandelwal
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ahmad Adnan Alshareef
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
21
|
Ghosh R, De M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS OMEGA 2023; 8:35442-35451. [PMID: 37810644 PMCID: PMC10551917 DOI: 10.1021/acsomega.3c04893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
The continued emergence and spread of drug-resistant pathogens and the decline in the approval of new antimicrobial drugs pose a major threat to managing infectious diseases, resulting in high morbidity and mortality. Even though a significant variety of antibiotics can effectively cure many bacterial infectious diseases, microbial infections remain one of the biggest global health problems, which may be due to the traditional drug delivery system's shortcomings which lead to poor therapeutic index, low drug absorption, and numerous other drawbacks. Further, the use of traditional antibiotics to treat infectious diseases has always been accompanied by the emergence of multidrug resistance and adverse side effects. Despite developing numerous new antibiotics, nanomaterials, and various techniques to combat infectious diseases, they have persisted as major global health issues. Improving the current antibiotic delivery systems is a promising approach to solving many life-threatening infections. In this context, nanoliposomal systems have recently attracted much attention. Herein, we attempt to provide a concise summary of recent studies that have used liposomal nanoparticles as delivery systems for antibacterial medicines. The minireview also highlights the enormous potential of liposomal nanoparticles as antibiotic delivery systems. The future of these promising approaches lies in developing more efficient delivery systems by precisely targeting bacterial cells with antibiotics with minimum cytotoxicity and high bacterial combating efficacy.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
22
|
Rajaramon S, Shanmugam K, Dandela R, Solomon AP. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: a review. Front Cell Infect Microbiol 2023; 13:1134433. [PMID: 37560318 PMCID: PMC10407108 DOI: 10.3389/fcimb.2023.1134433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
23
|
Park I, Jailani A, Lee JH, Ahmed B, Lee J. The Antibiofilm Effects of Antimony Tin Oxide Nanoparticles against Polymicrobial Biofilms of Uropathogenic Escherichia coli and Staphylococcus aureus. Pharmaceutics 2023; 15:1679. [PMID: 37376127 DOI: 10.3390/pharmaceutics15061679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are responsible for persistent or recurring microbial infections. Polymicrobial biofilms are prevalent in environmental and medical niches. Dual-species biofilms formed by Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus are commonly found in urinary tract infection sites. Metal oxide nanoparticles (NPs) are widely studied for their antimicrobial and antibiofilm properties. We hypothesized that antimony-doped tin (IV) oxide (ATO) NPs, which contain a combination of antimony (Sb) and tin (Sn) oxides, are good antimicrobial candidates due to their large surface area. Thus, we investigated the antibiofilm and antivirulence properties of ATO NPs against single- and dual-species biofilms formed by UPEC and S. aureus. ATO NPs at 1 mg/mL significantly inhibited biofilm formation by UPEC, S. aureus, and dual-species biofilms and reduced their main virulence attributes, such as the cell surface hydrophobicity of UPEC and hemolysis of S. aureus and dual-species biofilms. Gene expression studies showed ATO NPs downregulated the hla gene in S. aureus, which is essential for hemolysin production and biofilm formation. Furthermore, toxicity assays with seed germination and Caenorhabditis elegans models confirmed the non-toxic nature of ATO NPs. These results suggest that ATO nanoparticles and their composites could be used to control persistent UPEC and S. aureus infections.
Collapse
Affiliation(s)
- Inji Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Afreen Jailani
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
24
|
Kim HS, Ham SY, Ryoo HS, Kim DH, Yun ET, Park HD, Park JH. Inhibiting bacterial biofilm formation by stimulating c-di-GMP regulation using citrus peel extract from Jeju Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162180. [PMID: 36775169 DOI: 10.1016/j.scitotenv.2023.162180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biofilms consist of single or multiple species of bacteria embedded in extracellular polymeric substances (EPSs), which affect the increase in antibiotic resistance by restricting the transport of antibiotics to the bacterial cells. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In this study, we found that citrus peel extract from Jeju Island (CPEJ) can inhibit bacterial biofilm formation. According to the results, CPEJ concentration-dependently reduces biofilm formation without affecting bacterial growth. Additionally, CPEJ decreased the production of extracellular polymeric substances but increased bacterial swarming motility. These results led to the hypothesis that CPEJ can reduce intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) concentration. The results showed that CPEJ significantly reduced the c-di-GMP level through increased phosphodiesterase activity. Altogether, these findings suggest that CPEJ as a biofilm inhibitor has new potential for pharmacological (e.g. drug and medication) and industrial applications (e.g. ship hulls, water pipes, and membrane processes biofouling control).
Collapse
Affiliation(s)
- Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - So-Young Ham
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Hwa-Soo Ryoo
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Do-Hyung Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea
| | - Eun-Tae Yun
- Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea.
| |
Collapse
|
25
|
Hetta HF, Ramadan YN, Al-Harbi AI, A. Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023; 11:biomedicines11020413. [PMID: 36830949 PMCID: PMC9953167 DOI: 10.3390/biomedicines11020413] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (H.F.H.); (M.G.D.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Esraa A. Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: (H.F.H.); (M.G.D.)
| |
Collapse
|
26
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
27
|
Palii D, Kovalchuk V, Moroz L. ADDITIONAL RISKS ARISING IN THE PROCESS OF PROVIDING MEDICAL AID TO PATIENTS WITH COVID-19. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1906-1912. [PMID: 37898924 DOI: 10.36740/wlek202309102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
OBJECTIVE The aim: In order to assess the degree of transforming danger, for face masks, used in the providing respiratory support process to specialized department patients with varying degrees of the COVID-19 course severity, we conducted a series of bacteriological studies into an additional opportunistic bacteria reservoir. With the purpose of assessment of the face respiratory masks inner surface bacterial contamination intensity during their use to provide respiratory support to patients with COVID-19. PATIENTS AND METHODS Materials and methods: A bacteriological study of the inner surface of 60 disposable individual face respiratory masks was carried out at different times of providing respiratory support to patients with COVID-19. RESULTS Results: It is shown that during use, the inner surface of the respiratory mask is colonized by staphylococci and gram-negative opportunistic bacteria. With increasing time of the mask using, the density of colonization of its inner surface increases. CONCLUSION Conclusions: In the process of long-term non-invasive lung ventilation and oxygen therapy for patients with COVID-19, the inner surface of face respiratory masks is colonized with opportunistic bacteria, which creates the risk of contamination by the latter of the pathologically changed lung parenchyma and the addition of secondary bacterial infection.
Collapse
Affiliation(s)
- Dmytro Palii
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | | | - Larysa Moroz
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| |
Collapse
|
28
|
Maruthapandi M, Gupta A, Saravanan A, Jacobi G, Banin E, Luong JHT, Gedanken A. Ultrasonic-assisted synthesis of lignin-capped Cu 2O nanocomposite with antibiofilm properties. ULTRASONICS SONOCHEMISTRY 2023; 92:106241. [PMID: 36470127 PMCID: PMC9722477 DOI: 10.1016/j.ultsonch.2022.106241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw = 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L-Cu (92 % lignin and 8 % Cu2ONPs, w/w %). The MIC for bacterial eradication was noticeably lower; 0.3 mg/mL (87 % lignin + 13 % Cu2ONPs, w/w %) for PA and SA, whereas this value was appreciably higher for MDR E. coli (0.56 mg/mL, 86 % lignin and 14 % Cu2O NPs). Such results highlighted the potential of L-Cu as an alternative to neutralize MDR pathogens.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Akanksha Gupta
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Arumugam Saravanan
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
29
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
30
|
Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS OMEGA 2022; 7:45962-45980. [PMID: 36570317 PMCID: PMC9773971 DOI: 10.1021/acsomega.2c06211] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
Recently, the upsurge in hospital-acquired diseases has put global health at risk. Biomedical implants being the primary source of contamination, the development of biomedical implants with antimicrobial coatings has attracted the attention of a large group of researchers from around the globe. Bacteria develops biofilms on the surface of implants, making it challenging to eradicate them with the standard approach of administering antibiotics. A further issue of current concern is the fast resurgence of resistance to conventional antibiotics. As nanotechnology continues to advance, various types of nanomaterials have been created, including 2D nanoparticles and metal and metal oxide nanoparticles with antimicrobial properties. Researchers from all over the world are using these materials as a coating agent for biomedical implants to create an antimicrobial environment. This comprehensive and contemporary review summarizes various metals, metal oxide nanoparticles, 2D nanomaterials, and their composites that have been used or may be used in the future as an antimicrobial coating agent for biomedical implants, as well as their succinct mode of action to combat biofilm-associated infection and diseases.
Collapse
Affiliation(s)
| | | | - Nivedita Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
31
|
Jabber Al-Saady MAA, Aldujaili NH, Rabeea Banoon S, Al-Abboodi A. Antimicrobial properties of nanoparticles in biofilms. BIONATURA 2022; 7:1-9. [DOI: 10.21931/rb/2022.07.04.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Biofilm is a structure in the shape of a surface adherent composed of a microbe’s community and plays a crucial role in stimulating the infection. Due to the Biofilm’s complex structure compared with the individual microbe, it occasionally develops recalcitrant to the host immune system, which may lead to antibiotic resistance. The National Institutes of Health has reported that more than 80% of bacterial infections are caused by biofilm formation. Removing biofilm-mediated infections is an immense challenge that should involve various strategies that may induce sensitive and effective antibiofilm therapy. In the last decade, nanoparticle NPs application has been employed as one of the strategies that have grown great stimulus to target antibiofilm treatment due to their unique properties. Nanobiotechnology holds promise for the future because it has various antimicrobial properties in biofilms and promising new drug delivery methods that stand out from conventional antibiotics. Studying the interaction between the Biofilm and the nanoparticles can deliver additional insights regarding the mechanism of biofilm regulation. This review article will define synthetic nanoparticle NPs, their medical applications, and their potential use against a broad range of microbial biofilms in the coming years. The motivation of the current review is to focus on NPs materials’ properties and applications and their use as antimicrobial agents to fight resistant infections, which can locally terminate bacteria without being toxic to the surrounding tissue and share its role in improving human health in the future.
Keywords: Biofilms, antimicrobial, nanoparticles, bio-nanotechnology, drug resistance.
Collapse
Affiliation(s)
- Mohammed Abd Ali Jabber Al-Saady
- AL Sader Teaching Hospital, Maysan Health Directorate, Ministry of Health, Maysan, Iraq, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
| | - Nawfal H. Aldujaili
- Department of Biology, Faculty of Science, University of Kufa, Najaf, Iraq, Alameen Center for Advanced Research and Biotechnology, Imam Ali Holy Shrine, Najaf, Iraq
| | | | - Aswan Al-Abboodi
- Department of Biology, College of Science, University of Misan, Maysan, Iraq
| |
Collapse
|
32
|
Alabrahim OAA, Azzazy HMES. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson's disease. NANOSCALE ADVANCES 2022; 4:5233-5244. [PMID: 36540116 PMCID: PMC9724695 DOI: 10.1039/d2na00524g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the world's population ages, the incidence of Parkinson's disease (PD), the second most common neurological ailment, keeps increasing. It is estimated that 1% of the global population over the age of 60 has the disease. The continuous loss of dopaminergic neurons and the concomitant brain depletion of dopamine levels represent the hallmarks of PD. As a result, current PD therapies primarily target dopamine or its precursor (levodopa). Therapeutic approaches that aim to provide an exogenous source of levodopa or dopamine are hindered by their poor bioavailability and the blood-brain barrier. Nevertheless, the fabrication of many polymeric nanoparticles has been exploited to deliver several drugs inside the brain. In addition to a brief introduction of PD and its current therapeutic approaches, this review covers novel polymeric nanoparticulate drug delivery systems exploited lately for dopamine and levodopa replacement in PD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Graduate Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo 11835 New Cairo Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
33
|
Xu J, Ramasamy M, Tang T, Wang Y, Zhao W, Tam KC. Synthesis of silver nanoclusters in colloidal scaffold for biolabeling and antimicrobial applications. J Colloid Interface Sci 2022; 623:883-896. [DOI: 10.1016/j.jcis.2022.05.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 01/26/2023]
|
34
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
35
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
36
|
Khan SS, Ullah I, Zada S, Ahmad A, Ahmad W, Xu H, Ullah S, Liu L. Functionalization of Se-Te Nanorods with Au Nanoparticles for Enhanced Anti-Bacterial and Anti-Cancer Activities. MATERIALS 2022; 15:ma15144813. [PMID: 35888280 PMCID: PMC9316951 DOI: 10.3390/ma15144813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
The use of medical devices for therapeutic and diagnostic purpose is globally increasing; however, bacterial colonization on therapeutic devices can occur, causing severe infections in the human body. It has become an issue for public health. It is necessary to develop a nanomaterial based on photothermal treatment to kill toxic bacterial strains. Appropriately, high photothermal conversion and low-cost powerful photothermal agents have been investigated. Recently, gold nanocomposites have attracted great interest in biological applications. Here, we prepared rod-shaped Se-Te@Au nanocomposites of about 200 nm with uniform shape and surface-coated with gold nanoparticles for the first time showing high anti-bacterial and anti-cancer activities. Se-Te@Au showed proper structural consistency and natural resistance to bacterial and cancer cells. The strong absorption and high photothermal conversion efficacy made it a good photothermal agent material for the photothermal treatment of bacterial and cancer cells. The Se-Te@Au rod showed excellent anti-bacterial efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, with highest recorded inhibition zones of 25 ± 2 mm and 22 ± 2 mm, respectively. More than 99% of both types of strains were killed after 5 min with a near-infrared (NIR) laser at the very low concentration of 48 µg/mL. The Se-Te@Au rod’s explosion in HeLa cells was extensively repressed and demonstrated high toxicity at 100 µg/mL for 5 min when subjected to an NIR laser. As a result of its high photothermal characteristics, the exceptional anti-bacterial and anti-cancer effects of the Se-Te@Au rod are considerably better than those of other methods previously published in articles. This study could open a new framework for sterilization applications on the industrial level.
Collapse
Affiliation(s)
- Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Aftab Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Haijun Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Sadeeq Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
- Correspondence: (S.U.); (L.L.)
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
- Correspondence: (S.U.); (L.L.)
| |
Collapse
|
37
|
Copur B, Dosler S, Aktas Z, Basaran S, Simsek-Yavuz S, Cagatay A, Oncul O, Ozsut H, Eraksoy H. In vitro activities of antibiotic combinations against mature biofilms of ventilator-associated pneumonia isolates. Future Microbiol 2022; 17:1027-1042. [PMID: 35796076 DOI: 10.2217/fmb-2021-0305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The authors aimed to determine the efficacy of frequently used antibiotics, alone or in combination, against biofilms of ventilator-associated pneumonia isolates. Materials & methods: The authors determined the MICs, minimum biofilm inhibitory concentrations and minimum biofilm eradication concentrations of meropenem, ciprofloxacin and colistin as well as their combinations against planktonic forms and biofilms of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii clinical isolates. Results: Generally, the minimum biofilm inhibitory concentrations and minimum biofilm eradication concentrations of the antibiotics were 1000-fold higher than their MICs, and synergy was provided by different concentrations of meropenem-colistin and meropenem-ciprofloxacin combinations with checkerboard and time-kill curve methods. Conclusion: The combination of meropenem and ciprofloxacin seems to be a good candidate for the treatment of biofilm-associated infections; none of the concentrations obtained as a result of the synergy test were clinically significant.
Collapse
Affiliation(s)
- Betul Copur
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, 34116, Turkey
| | - Zerrin Aktas
- Department of Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Seniha Basaran
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Serap Simsek-Yavuz
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Atahan Cagatay
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Oral Oncul
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Halit Ozsut
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Haluk Eraksoy
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| |
Collapse
|
38
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
39
|
Pagani A, Aitzetmüller MM, Larcher L. A Forgotten Entity following Breast Implant Contracture: Does Baker Need a Change? Arch Plast Surg 2022; 49:360-364. [PMID: 35832169 PMCID: PMC9142220 DOI: 10.1055/s-0042-1744409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Although capsular contracture represents one of the most important complications after breast augmentation, local inflammation and fibrosis can lead, in very rare cases, to capsular calcification, an often-forgotten radiological sign of capsular contracture. In this article, the authors present a clinical case of breast implant calcification in an 81-year-old patient. Although this complication has been rarely described, the literature was reviewed to clarify the role of the local microenvironment in capsular contracture and calcification. At present, capsular contracture patients are classified using the conventional Baker score and the histological Wilflingseder classification. As it was not possible to consider capsular calcification when classifying our patient using the traditional scores, the authors propose an updated version of the current scale.
Collapse
Affiliation(s)
- Andrea Pagani
- Clinic and Policlinic of Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar–Technische Universität München, München, Germany
| | - Matthias M. Aitzetmüller
- Section of Plastic Surgery, Department for Traumatology and Hand Surgery, University Hospital Münster, Münster, Germany
- Plastic, Reconstructive, and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Münster, Germany
| | - Lorenz Larcher
- Plastic and Reconstructive Surgery Unit, SABES (South Tyrolean Health Care System), Bressanone, Italy
| |
Collapse
|
40
|
Bharti S, Zakir F, Mirza MA, Aggarwal G. Antifungal biofilm strategies: a less explored area in wound management. Curr Pharm Biotechnol 2022; 23:1497-1513. [PMID: 35410595 DOI: 10.2174/1389201023666220411100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Background- The treatment of wound associated infections has always remained a challenge for clinicians with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance against antimicrobials. Fungal biofilms are formed by a wide variety of fungal pathogens namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with increase in the number of surgical procedures, transplantation and the exponential use of medical devices, fungal bioburden is on the rise. Objectives- The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are highlighted. Further, the prospects of nanotechnology based medical devices to combat fungal biofilm resistance have also been explored. Some of the clinical trials and up-to-date patent technologies to eradicate the biofilms are also mentioned. Conclusion- Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have been able to make it to the market. Fungal biofilms are a fragmentary area which needs further exploration.
Collapse
Affiliation(s)
- Shilpa Bharti
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Foziyah Zakir
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
41
|
Farheen S, Oanz AM, Khan N, Umar MS, Jamal F, Altaf I, Kashif M, Alshameri AW, Somavarapu S, Wani IA, Khan S, Owais M. Fabrication of Microbicidal Silver Nanoparticles: Green Synthesis and Implications in the Containment of Bacterial Biofilm on Orthodontal Appliances. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.780783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among various metal-based nanoparticles, silver nanoparticles (AgNPs) manifest superior inhibitory effects against several microorganisms. In fact, the AgNP-based treatment has been reported to inhibit both sensitive and resistant isolates of bacteria and other disease-causing microbes with equal propensity. Keeping this fact into consideration, we executed bio-mediated synthesis of AgNPs employing extract of flower and various other parts (such as bud and leaf) of the Hibiscus rosa-sinensis plant. The physicochemical characterization of as-synthesized AgNPs was executed employing transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy, etc. The as-synthesized AgNPs demonstrated strong antimicrobial activity against both Gram-positive and Gram-negative bacteria with equal propensity. The as-synthesized AgNPs successfully inhibited Streptococcus mutans (S. mutans), one of the main causative bacteria responsible for dental caries. Considering the fact that orthodontic appliances facilitate infliction of the oral cavity with a range of microbes including S. mutans, we determined the growth inhibitory and anti-adherence activities of AgNPs on orthodontic appliances. We performed microbiological assays employing AgNPs adsorbed onto the surface of nickel–titanium (Ni-Ti) orthodontic wires. A topographic analysis of the decontaminated Ni-Ti orthodontic wires was performed by scanning electron microscopy. In addition to antimicrobial and anti-biofilm activities against oral S. mutans, the as-fabricated AgNPs demonstrated significant inhibitory and anti-biofilm properties against other biofilm-forming bacteria such as Escherichia coli and Listeria monocytogenes.
Collapse
|
42
|
Upmanyu K, Haq QMR, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100131. [PMID: 35909621 PMCID: PMC9325880 DOI: 10.1016/j.crmicr.2022.100131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii has notably become a superbug due to its mounting risk of infection and escalating rates of antimicrobial resistance, including colistin, the last-resort antibiotic. Its propensity to form biofilm on biotic and abiotic surfaces has contributed to the majority of nosocomial infections. Bacterial cells in biofilms are resistant to antibiotics and host immune response, and pose challenges in treatment. Therefore current scenario urgently requires the development of novel therapeutic strategies for successful treatment outcomes. This article provides a holistic understanding of sequential events and regulatory mechanisms directing A. baumannii biofilm formation. Understanding the key factors functioning and regulating the biofilm machinery of A. baumannii will provide us insight to develop novel approaches to combat A. baumannii infections. Further, the review article deliberates promising strategies for the prevention of biofilm formation on medically relevant substances and potential therapeutic strategies for the eradication of preformed biofilms which can help tackle biofilm-associated A. baumannii infections. Advances in emerging therapeutic opportunities such as phage therapy, nanoparticle therapy and photodynamic therapy are also discussed to comprehend the current scenario and future outlook for the development of successful treatment against biofilm-associated A. baumannii infections.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| |
Collapse
|
43
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
44
|
Munawar T, Nadeem MS, Mukhtar F, Manzoor S, Ashiq MN, Batool S, Hasan M, Iqbal F. Enhanced photocatalytic, antibacterial, and electrochemical properties of CdO-based nanostructures by transition metals co-doping. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Laourari I, Lakhdari N, Belgherbi O, Medjili C, Berkani M, Vasseghian Y, Golzadeh N, Lakhdari D. Antimicrobial and antifungal properties of NiCu-PANI/PVA quaternary nanocomposite synthesized by chemical oxidative polymerization of polyaniline. CHEMOSPHERE 2022; 291:132696. [PMID: 34718011 DOI: 10.1016/j.chemosphere.2021.132696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance has led to use of novel technologies such as nanomaterials and nanocomposites that have shown effective antimicrobial and/or antifungal activities against several gram-positive and gram-negative bacteria. There have been limited studies on antimicrobial properties of the combined polymer nanocomposites with transitional bimetallic nanoparticles such as nickel (Ni) and copper (Cu). Thus, the main objective of this study was to synthesis, characterize and investigate the antibacterial and antifungal properties of NiCu-PANI/PVA nanocomposite. The nanocomposite films with different amount of Ni and Cu salts were synthesized by chemical oxidative polymerization of polyaniline using HCl as oxidant and PVA as a stabilizer. Optical, chemical composition, and morphological characteristics as well as thermal stability were evaluated using UV-Visible, FTIR, SEM-EDX, and TGA analyses. Antimicrobial properties were then determined using the disc diffusion assay against gram-negative bacteria (i.e., Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC 700603, Proteus sp.,) and gram-positive bacteria (i.e., Staphylococcus aureus ATCC 2593). Fungal plant pathogens including Aspergillus niger and Fusarium oxysporum f. sp. pisi were also evaluated for determination of antifungal activity of NiCu-PANI/PVA films. Among the synthesized films, Ni65Cu35-PANI/PVA showed excellent antibacterial activity against all the bacteria strains examined in this study. The diameters of inhibition zones for Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Proteus sp., and Staphylococcus aureus ATCC 2593 were 23, 23, 17, and 18 mm, respectively indicating good antibacterial activities. Additionally, NiCu-PANI/PVA, particularly the films with higher Cu intake, showed better antifungal activity against Fusarium oxysporum f. sp. pisi. However, NiCu-PANI/PVA was ineffective against Aspergillus niger.
Collapse
Affiliation(s)
- Ines Laourari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Chahinaz Medjili
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.
| |
Collapse
|
46
|
Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:618. [PMID: 35214947 PMCID: PMC8878029 DOI: 10.3390/nano12040618] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Poor wound healing affects millions of people globally, resulting in increased mortality rates and associated expenses. The three major complications associated with wounds are: (i) the lack of an appropriate environment to enable the cell migration, proliferation, and angiogenesis; (ii) the microbial infection; (iii) unstable and protracted inflammation. Unfortunately, existing therapeutic methods have not solved these primary problems completely, and, thus, they have an inadequate medical accomplishment. Over the years, the integration of the remarkable properties of nanomaterials into wound healing has produced significant results. Nanomaterials can stimulate numerous cellular and molecular processes that aid in the wound microenvironment via antimicrobial, anti-inflammatory, and angiogenic effects, possibly changing the milieu from nonhealing to healing. The present article highlights the mechanism and pathophysiology of wound healing. Further, it discusses the current findings concerning the prospects and challenges of nanomaterial usage in the management of chronic wounds.
Collapse
Affiliation(s)
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Korea; (A.K.); (L.G.)
| |
Collapse
|
47
|
Singh A, Amod A, Pandey P, Bose P, Pingali MS, Shivalkar S, Varadwaj P, Sahoo A, Samanta S. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater 2022; 17. [PMID: 35105823 DOI: 10.1088/1748-605x/ac50f6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Nearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry. Biofilm impart enhanced antibiotic resistance and become recalcitrant to host immune responses leading to persistent and recurrent infections. It makes the clinical treatment for biofilm infections very difficult. Reduced penetration of antibiotic molecules through EPS, mutation of the target site, accumulation of antibiotic degrading enzymes, enhanced expression of efflux pump genes are the probable causes for antibiotics resistance. Accordingly, strategies like administration of topical antibiotics and combined therapy of antibiotics with antimicrobial peptides are considered for alternate options to overcome the antibiotics resistance. A number of other remediation strategies for both biofilm inhibition and dispersion of established biofilm have been developed. The metallic nanoparticles and their oxides have recently gained a tremendous thrust as antibiofilm therapy for their unique features. This present comprehensive review gives the understanding of antibiotic resistance mechanisms of biofilm and provides an overview of various currently available biofilm remediation strategies, focusing primarily on the applications of metallic nanoparticles and their oxides.
Collapse
Affiliation(s)
- Anirudh Singh
- Indian Institute of Information Technology Allahabad, Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Ayush Amod
- Indian Institute of Information Technology Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | | | - Pranay Bose
- KIIT University, Bhubaneswar, Odisha, India, Bhubaneswar, Orissa, 751024, INDIA
| | - M Shivapriya Pingali
- Indian Institute of Information Technology Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Saurabh Shivalkar
- Applied Sciences, IIIT Allahabad, UP, India, Allahabad, 211012, INDIA
| | - Pritish Varadwaj
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Amaresh Sahoo
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Sintu Samanta
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India, Allahabad, Uttar Pradesh, 211012, INDIA
| |
Collapse
|
48
|
Nosocomial Infections and Role of Nanotechnology. Bioengineering (Basel) 2022; 9:bioengineering9020051. [PMID: 35200404 PMCID: PMC8869428 DOI: 10.3390/bioengineering9020051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Nosocomial infections, termed hospital-acquired infections (HAIs), are acquired from a healthcare or hospital setting. HAI is mainly caused by bacteria, such as Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Enterococci spp., Methicillin-resistant Staphylococcus aureus (MRSA), and many more. Due to growing antibacterial resistance, nanotechnology has paved the way for more potent and sensitive methods of detecting and treating bacterial infections. Nanoparticles have been used with molecular beacons for identifying bactericidal activities, targeting drug delivery, and anti-fouling coatings, etc. This review addresses the looming threat of nosocomial infections, with a focus on the Indian scenario, and major initiatives taken by medical bodies and hospitals in spreading awareness and training. Further, this review focuses on the potential role nanotechnology can play in combating the spread of these infections.
Collapse
|
49
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
50
|
Abdulagatov IM, Ragimov RM, Khamidov МА, Maksumova AM, Abdullaeva NM. ALD coated polypropylene hernia meshes for prevention of mesh-related post-surgery complications: an experimental study in animals. Biomed Mater 2021; 17. [PMID: 34731849 DOI: 10.1088/1748-605x/ac361e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
In this work, thermal atomic layer deposition (ALD) was used to synthesize vanadium (V)-doped TiO2thin nanofilm on polypropylene (PP) hernia meshes. Multiple layers of (Al2O3+ TiVOx) nano-films were coated on the PP hernia mesh surface to provide a layer with a total thickness of 38 nm to improve its antibacterial properties, thereby, prevent mesh-related post-surgery complications. Highly conformal V-doped TiO2nanofilm were deposited on PP mesh at a temperature of 85 °C. Rats and rabbits have been used to evaluate the tissue reaction on coated PP hernia meshes and biomechanical testing of the healed tissue. Five rabbits and ten rats have been implanted with ALD coated and uncoated (control) PP meshes into the back of rats and abdominal wall of rabbits. Histology of the mesh-adjacent tissues and electron microscopy of the explanted mesh surface were performed to characterize host tissue response to the implanted PP meshes. The effect of V-doped TiO2coating on a living organism and fibroblast functions and bacterial activities were studied. The present results indicated that ALD coating improves adhesion properties and exhibited enhanced antibacterial activity compared to uncoated PP mesh. It was shown that V-doped TiO2coatings were highly effective in inhibitingS. aureusandE. coliadhesion and exhibited excellent antibacterial activity. We found that V-doping of TiO2, unlike bare TiO2, allows generated and further procured strong redox reactions which effectively kills bacteria under visible light. We have reported comparative analysis of the use of undoped (bare) TiO2and V-doped TiO2as a coating for PP meshes and their action in biological environment and preventing biofilms formation compared with uncoated PP meshes. The PP meshes coated with V-doped TiO2showed significantly lower shrinkage rates compared with an identical PP mesh without a coating. We have shown that ALD coatings provide non-adhesive and functional (antibacterial) properties.
Collapse
Affiliation(s)
- Ilmutdin M Abdulagatov
- Department of Physical Chemistry, Dagestan State University, Makhachkala, Dagestan, Russia.,Dagestan State Medical University, Makhachkala, Dagestan, Russia.,Dagestan State Medical University, Institute of Ecological Medicine, Makhachkala, Dagestan, Russia
| | - Razin M Ragimov
- Dagestan State Medical University, Makhachkala, Dagestan, Russia
| | | | - Abay M Maksumova
- Department of Physical Chemistry, Dagestan State University, Makhachkala, Dagestan, Russia
| | | |
Collapse
|