1
|
Kvandová M, Rajlic S, Stamm P, Schmal I, Mihaliková D, Kuntic M, Bayo Jimenez MT, Hahad O, Kollárová M, Ubbens H, Strohm L, Frenis K, Duerr GD, Foretz M, Viollet B, Ruan Y, Jiang S, Tang Q, Kleinert H, Rapp S, Gericke A, Schulz E, Oelze M, Keaney JF, Daiber A, Kröller-Schön S, Jansen T, Münzel T. Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological α1AMPK activation: molecular proof of a protective key role of endothelial α1AMPK against environmental noise exposure. Eur J Prev Cardiol 2023; 30:1554-1568. [PMID: 37185661 DOI: 10.1093/eurjpc/zwad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
AIMS Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.
Collapse
Affiliation(s)
- Miroslava Kvandová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1813 71 Bratislava, Slovak Republic
| | - Sanela Rajlic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Isabella Schmal
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dominika Mihaliková
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marta Kollárová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Henning Ubbens
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Lea Strohm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Rapp
- Department of Cardiology, Preventive Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Jansen
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, KVB Hospital Königstein, 61462 Königstein, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
2
|
Coyle ME, Liu J, Yang H, Wang K, Zhang AL, Guo X, Lu C, Xue CC. Licorice (Glycyrrhiza spp.) and jujube (Ziziphus jujuba Mill.) formula for menopausal symptoms: Classical records, clinical evidence and experimental data. Complement Ther Clin Pract 2021; 44:101432. [PMID: 34237667 DOI: 10.1016/j.ctcp.2021.101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study sought to determine the most common oral herbal formula for menopausal symptoms in classical Chinese medicine textbooks and investigate its clinical effectiveness and potential mechanisms of action. METHODS The most common formula used for menopause-like symptoms in past eras was identified from the Encyclopedia of Traditional Chinese Medicine. A systematic review of randomized controlled trials (RCTs) was undertaken and findings from relevant experimental studies were summarized. RESULTS Licorice (Glycyrrhiza spp.) and jujube (Ziziphus jujuba Mill.) formula (LJF) was used in 63 of the 175 citations (36%) in the classical literature. Evidence from four RCTs showed that while LJF may improve sleep symptoms, there is insufficient evidence to provide recommendations for clinical practice. Experimental studies showed sedative, antidepressant-like, estrogenic and antiprogestogenic actions. CONCLUSIONS LJF has a long history of use for menopause-like symptoms, but further research is needed to confirm its clinical effects and guide clinical decision-making.
Collapse
Affiliation(s)
- Meaghan E Coyle
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Jian Liu
- Gynaecology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongyan Yang
- Gynaecology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Kaiyi Wang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Anthony L Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Xinfeng Guo
- China-Australia International Research Centre for Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Chuanjian Lu
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, Australia; China-Australia International Research Centre for Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine; Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China.
| | - Charlie C Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, Australia; China-Australia International Research Centre for Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Jayachandran I, Sundararajan S, Venkatesan S, Paadukaana S, Balasubramanyam M, Mohan V, Manickam N. Asymmetric dimethylarginine (ADMA) accelerates renal cell fibrosis under high glucose condition through NOX4/ROS/ERK signaling pathway. Sci Rep 2020; 10:16005. [PMID: 32994511 PMCID: PMC7525240 DOI: 10.1038/s41598-020-72943-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
We previously reported that the circulatory level of Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, was increased in diabetic kidney disease patients. However, the mechanism and the role of ADMA in diabetic kidney injury remain unclear. Hence, our principal aim is to investigate the causal role of ADMA in the progression of renal cell fibrosis under high glucose (HG) treatment and to delineate its signaling alterations in kidney cell injury. High Glucose/ADMA significantly increased fibrotic events including cell migration, invasion and proliferation along with fibrotic markers in the renal cells; whereas ADMA inhibition reversed the renal cell fibrosis. To delineate the central role of ADMA induced fibrotic signaling pathway and its downstream signaling, we analysed the expression levels of fibrotic markers, NOX4, ROS and ERK activity by using specific inhibitors and genetic manipulation techniques. ADMA stimulated the ROS generation along with a significant increase in NOX4 and ERK activity. Further, we observed that ADMA activated NOX-4 and ERK are involved in the extracellular matrix proteins accumulation. Also, we observed that ADMA induced ERK1/2 phosphorylation was decreased after NOX4 silencing. Our study mechanistically demonstrates that ADMA is involved in the progression of kidney cell injury under high glucose condition by targeting coordinated complex mechanisms involving the NOX4- ROS-ERK pathway.
Collapse
Affiliation(s)
- Isaivani Jayachandran
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Saravanakumar Sundararajan
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Saravanakumar Venkatesan
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Sairaj Paadukaana
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Muthuswamy Balasubramanyam
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Viswanathan Mohan
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Nagaraj Manickam
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India.
| |
Collapse
|
4
|
Gawrys J, Gajecki D, Szahidewicz-Krupska E, Doroszko A. Intraplatelet L-Arginine-Nitric Oxide Metabolic Pathway: From Discovery to Clinical Implications in Prevention and Treatment of Cardiovascular Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1015908. [PMID: 32215167 PMCID: PMC7073508 DOI: 10.1155/2020/1015908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Despite the development of new drugs and other therapeutic strategies, cardiovascular disease (CVD) remains still the major cause of morbidity and mortality in the world population. A lot of research, performed mostly in the last three decades, revealed an important correlation between "classical" demographic and biochemical risk factors for CVD, (i.e., hypercholesterolemia, hyperhomocysteinemia, smoking, renal failure, aging, diabetes, and hypertension) with endothelial dysfunction associated directly with the nitric oxide deficiency. The discovery of nitric oxide and its recognition as an endothelial-derived relaxing factor was a breakthrough in understanding the pathophysiology and development of cardiovascular system disorders. The nitric oxide synthesis pathway and its regulation and association with cardiovascular risk factors were a common subject for research during the last decades. As nitric oxide synthase, especially its endothelial isoform, which plays a crucial role in the regulation of NO bioavailability, inhibiting its function results in the increase in the cardiovascular risk pattern. Among agents altering the production of nitric oxide, asymmetric dimethylarginine-the competitive inhibitor of NOS-appears to be the most important. In this review paper, we summarize the role of L-arginine-nitric oxide pathway in cardiovascular disorders with the focus on intraplatelet metabolism.
Collapse
Affiliation(s)
- Jakub Gawrys
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| | - Damian Gajecki
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
5
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
6
|
Jiang S, Zhou J, Zhang J, Du X, Zeng X, Pan K, Xie Y, Kan H, Sun Q, Cai J, Zhao J. The severity of lung injury and metabolic disorders induced by ambient PM 2.5 exposure is associated with cumulative dose. Inhal Toxicol 2018; 30:239-246. [PMID: 30249144 DOI: 10.1080/08958378.2018.1508258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lots of epidemiological and experimental studies have found that ambient fine particulate matter (PM2.5) exposure is associated with the development of cardiopulmonary diseases, obesity and diabetes. This study focused on the effects of cumulative PM2.5 exposure on pulmonary and systemic inflammation and insulin resistance. Thirty-two 6-week-old male Balb/c mice were randomly divided into four groups (FA, PM, WEEK and DAY groups) and were continuously or intermittently exposed to concentrated PM2.5 or filtered air (FA) for four weeks using Shanghai Meteorological and Environmental Animal Exposure System ("Shanghai-METAS"). The levels of IL-6 and TNF-α in serum, bronchoalveolar lavage fluid (BALF), lung tissues and white adipose tissue (WAT) were measured. Meanwhile, the expression of NF-κB and phosphor-NF-κB in lung tissue was detected by Western blot. Glucose tolerance and insulin resistance were also determined at the end of exposure. The results found that the mice in PM group displayed moderate inflammatory cell infiltration in lung, whereas the mice in WEEK and DAY groups displayed slight inflammatory cell infiltration in lung. Compared with the mice in FA group, the mRNA expressions of IL-6 and TNF-α in lung tissue and WAT significantly increased in the mice of PM group. Importantly, IL-6 and TNF-α mRNA expressions in PM group were higher than those in WEEK and DAY groups. The protein expression of phospho-NF-κB in lung tissue showed that PM group showed the activation of NF-κB, which was higher than that in the WEEK and DAY groups. Meanwhile, the mice in PM group showed more severe glucose tolerance and insulin resistance than that in the WEEK and DAY groups. The results suggested that the reduction of PM2.5 cumulative exposure may alleviate pulmonary and adipose inflammation, insulin resistance and glucose tolerance impairment. The results provided a clue that the interruption of ambient PM2.5 exposures by systems such as indoor air purification could be of benefit to people's health.
Collapse
Affiliation(s)
- Shuo Jiang
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China.,b Shanghai Changning Center for Disease Control and Prevention, Shanghai, China
| | - Ji Zhou
- c Shanghai Key Laboratory of Meteorology and Health , Shanghai , China
| | - Jia Zhang
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Xihao Du
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Xuejiao Zeng
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Kun Pan
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Yuquan Xie
- d Department of Cardiology , Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Haidong Kan
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Qinghua Sun
- e Division of Environmental Health Sciences, College of Public Health , The Ohio State University , Columbus , OH , USA
| | - Jing Cai
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Jinzhuo Zhao
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China.,c Shanghai Key Laboratory of Meteorology and Health , Shanghai , China
| |
Collapse
|
7
|
Brinkmann SJH, Wörner EA, van Leeuwen PAM. Strict glucose control and artificial regulation of the NO-ADMA-DDAH system in order to prevent endothelial dysfunction. J Physiol 2017; 594:2775-6. [PMID: 27246541 DOI: 10.1113/jp272183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - E A Wörner
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, Hong FF, Yang SL. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother 2017; 97:423-428. [PMID: 29091892 DOI: 10.1016/j.biopha.2017.10.122] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 12/25/2022] Open
Abstract
The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Zi-Xin Ye
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiu-Fen Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jian Chang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mei-Wen Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hua-Hua Zhong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
9
|
Camargo AB, Manucha W. Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.artere.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Camargo AB, Manucha W. Potencial rol protector del óxido nítrico y Hsp70 asociado a alimentos funcionales en la aterosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:36-45. [DOI: 10.1016/j.arteri.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
|
11
|
Ghebre YT, Yakubov E, Wong WT, Krishnamurthy P, Sayed N, Sikora AG, Bonnen MD. Vascular Aging: Implications for Cardiovascular Disease and Therapy. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2016; 6:183. [PMID: 28932625 PMCID: PMC5602592 DOI: 10.4172/2161-1025.1000183] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The incidence and prevalence of cardiovascular disease is highest among the elderly, in part, due to deleterious effects of advancing age on the heart and blood vessels. Aging, a known cardiovascular risk factor, is progressively associated with structural and functional changes to the vasculature including hemodynamic disturbance due to increased oxidative stress, premature cellular senescence and impairments in synthesis and/or secretion of endothelium-derived vasoactive molecules. These molecular and physiological changes lead to vessel wall stiffening and thickening, as well as other vascular complications that culminate to loss of vascular tone regulation and endothelial function. Intriguingly, the vessel wall, a biochemically active structure composed of collagen, connective tissue, smooth muscle and endothelial cells, is adversely affected by processes involved in premature or normal aging. Notably, the inner most layer of the vessel wall, the endothelium, becomes senescent and dysfunctional with advancing age. As a result, its ability to release vasoactive molecules such as acetylcholine (ACh), prostacyclin (PGI2), endothelium-derived hyperpolarizing factor (EDHF), and nitric oxide (NO) is reduced and the cellular response to these molecules is also impaired. By contrast, the vascular endothelium increases its generation and release of reactive oxygen (ROS) and nitrogen (RNS) species, vasoconstrictors such as endothelin (ET) and angiotensin (AT), and endogenous inhibitors of NO synthases (NOSs) to block NO. This skews the balance of the endothelium in favor of the release of highly tissue reactive and harmful molecules that promote DNA damage, telomere erosion, senescence, as well as stiffened and hardened vessel wall that is prone to the development of hypertension, diabetes, atherosclerosis and other cardiovascular risk factors. This Review discusses the impact of advancing age on cardiovascular health, and highlights the cellular and molecular mechanisms that underlie age-associated vascular changes. In addition, the role of pharmacological interventions in preventing or delaying age-related cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Eduard Yakubov
- phaRNA Comprehensive RNA Technologies, Houston, Texas, USA
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nazish Sayed
- Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Mark D Bonnen
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Li X, Li J, Li Z, Sang Y, Niu Y, Zhang Q, Ding H, Yin S. Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the l-NAME-induced hypertensive rat model. Food Funct 2016; 7:2398-408. [PMID: 27153123 DOI: 10.1039/c6fo00288a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Despite major scientific advances in its prevention, treatment and care, hypertension remains a serious condition that might lead to long-term complications such as heart disease and stroke. The great majority of forms of hypertension eventually result from an increased vasomotor tone activity that is regulated by endothelial NOS (eNOS) in vascular endothelium. Here, we examined the effect of fucoidan on eNOS activation in human umbilical vein endothelial cells (HUVECs). We also examined the effects of functional components of Undaria pinnatifida fucoidan on blood pressure and vascular function in eNOS inhibition-induced hypertensive rats in vivo. Our results suggest that fucoidan increased nitric oxide production by activating eNOS and Akt phosphorylation, which could be impaired by Akt or eNOS inhibitors. In the hypertensive rat model, treatment of fucoidan resulted in potent and persistent reduction of high blood pressure (BP) even after drug withdrawal. Our results showed that the mechanisms might involve protection against vascular structure damage, enhanced endothelium-independent vascular function and inhibition of abnormal proliferation of smooth muscle cells, which are mediated by the Akt-eNOS signaling pathway. Moreover, fucoidan treatment reduced the vascular inflammation and oxidative stress control caused by iNOS expression. Together, these results support a putative role of fucoidan in hypertension prevention and treatment.
Collapse
Affiliation(s)
- Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | | | | | | | | | | | | | | |
Collapse
|