1
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Asadollahi N, Hajari MA, Alipour Choshali M, Ajoudanian M, Ziai SA, Vosough M, Piryaei A. Bioengineering scalable and drug-responsive in vitro human multicellular non-alcoholic fatty liver disease microtissues encapsulated in the liver extracellular matrix-derived hydrogel. EXCLI JOURNAL 2024; 23:421-440. [PMID: 38741724 PMCID: PMC11089098 DOI: 10.17179/excli2023-6878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/06/2024] [Indexed: 05/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a high-prevalence and progressive disorder. Due to lack of reliable in vitro models to recapitulate the consecutive phases, the exact pathogenesis mechanism of this disease and approved therapeutic medications have not been revealed yet. It has been proven that the interplay between multiple hepatic cell types and liver extracellular matrix (ECM) are critical in NAFLD initiation and progression. Herein, a liver microtissue (LMT) consisting of Huh-7, THP-1, and LX-2 cell lines and human umbilical vein endothelial cells (HUVEC), which could be substituted for the main hepatic cells (hepatocyte, Kupffer, stellate, and sinusoidal endothelium, respectively), encapsulated in liver derived ECM-Alginate composite, was bioengineered. When the microtissues were treated with free fatty acids (FFAs) including Oleic acid (6.6×10-4M) and Palmitic acid (3.3×10-4M), they displayed the key features of NAFLD, including similar pattern of transcripts for genes involved in lipid metabolism, inflammation, insulin-resistance, and fibrosis, as well as pro-inflammatory and pro-fibrotic cytokines' secretions and intracellular lipid accumulation. Continuing FFAs supplementation, we demonstrated that the NAFLD phenomenon was established on day 3 and progressed to the initial fibrosis stage by day 8. Furthermore, this model was stable until day 12 post FFAs withdrawal on day 3. Moreover, administration of an anti-steatotic drug candidate, Liraglutide (15 μM), on the NAFLD microtissues significantly ameliorated the NAFLD phenomenon. Overall, we bioengineered a drug-responsive, cost-benefit liver microtissues which can simulate the initiation and progression of NAFLD. It is expected that this platform could potentially be used for studying molecular pathogenesis of NAFLD and high-throughput drug screening. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Negar Asadollahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Ajoudanian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chen W, Sun Y, Chen S, Ge X, Zhang W, Zhang N, Wu X, Song Z, Han H, Desert R, Yan X, Yang A, Das S, Athavale D, Nieto N, You H. Matrisome gene-based subclassification of patients with liver fibrosis identifies clinical and molecular heterogeneities. Hepatology 2023; 78:1118-1132. [PMID: 37098756 PMCID: PMC10524702 DOI: 10.1097/hep.0000000000000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/27/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND AIMS Excessive deposition and crosslinking of extracellular matrix increases liver density and stiffness, promotes fibrogenesis, and increases resistance to fibrinolysis. An emerging therapeutic opportunity in liver fibrosis is to target the composition of the extracellular matrix or block pathogenic communication with surrounding cells. However, the type and extent of extracellular changes triggering liver fibrosis depend on the underlying etiology. Our aim was to unveil matrisome genes not dependent on etiology, which are clinically relevant to liver fibrosis. APPROACH RESULTS We used transcriptomic profiles from liver fibrosis cases of different etiologies to identify and validate liver fibrosis-specific matrisome genes (LFMGs) and their clinical and biological relevance. Dysregulation patterns and cellular landscapes of LFMGs were further explored in mouse models of liver fibrosis progression and regression by bulk and single-cell RNA sequencing. We identified 35 LFMGs, independent of etiology, representing an LFMG signature defining liver fibrosis. Expression of the LFMG signature depended on histological severity and was reduced in regressive livers. Patients with liver fibrosis, even with identical pathological scores, could be subclassified into LFMG Low and LFMG High , with distinguishable clinical, cellular, and molecular features. Single-cell RNA sequencing revealed that microfibrillar-associated protein 4 + activated HSC increased in LFMG High patients and were primarily responsible for the LFMG signature expression and dysregulation. CONCLUSIONS The microfibrillar-associated protein 4 + -activated HSC-derived LFMG signature classifies patients with liver fibrosis with distinct clinical and biological characteristics. Our findings unveil hidden information from liver biopsies undetectable using traditional histologic assessments.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Clinical Research Institute, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xuzhen Yan
- Beijing Clinical Research Institute, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Aiting Yang
- Beijing Clinical Research Institute, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
4
|
Li J, Sato T, Hernández-Tejero M, Beier JI, Sayed K, Benos PV, Wilkey DW, Humar A, Merchant ML, Duarte-Rojo A, Arteel GE. The plasma degradome reflects later development of NASH fibrosis after liver transplant. Sci Rep 2023; 13:9965. [PMID: 37340062 PMCID: PMC10282030 DOI: 10.1038/s41598-023-36867-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease and decreased survival. Lack of risk stratification strategies hampers early intervention against development of post-LT NASH fibrosis. The liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether liver injury caused by post-LT NASH would yield a unique degradome profile that is predictive of severe post-LT NASH fibrosis, a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without) was performed. Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ~ 2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (~ 15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. The plasma degradome profile of post-LT patients yielded stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.
Collapse
Affiliation(s)
- Jiang Li
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Toshifumi Sato
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - María Hernández-Tejero
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Juliane I Beier
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, New Haven, CT, USA
| | | | - Daniel W Wilkey
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Abhinav Humar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andres Duarte-Rojo
- Division of Gastroenterology and Hepatology, Northwestern Medicine and Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern Medicine and Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gavin E Arteel
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Aasadollahei N, Rezaei N, Golroo R, Agarwal T, Vosough M, Piryaei A. Bioengineering liver microtissues for modeling non-alcoholic fatty liver disease. EXCLI JOURNAL 2023; 22:367-391. [PMID: 37223084 PMCID: PMC10201011 DOI: 10.17179/excli2022-5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 05/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world's most common chronic liver disease. However, due to the lack of reliable in vitro NAFLD models, drug development studies have faced many limitations, and there is no food and drug administration-approved medicine for NAFLD treatment. A functional biomimetic in vitro human liver model requires an optimized natural microenvironment using appropriate cellular composition, to provide constructive cell-cell interactions, and niche-specific bio-molecules to supply crucial cues as cell-matrix interplay. Such a suitable liver model could employ appropriate and desired biochemical, mechanical, and physical properties similar to native tissue. Moreover, bioengineered three-dimensional tissues, specially microtissues and organoids, and more recently using infusion-based cultivation systems such as microfluidics can mimic natural tissue conditions and facilitate the exchange of nutrients and soluble factors to improve physiological function in the in vitro generated constructs. This review highlights the key players involved in NAFLD initiation and progression and discussed the available cells and matrices for in vitro NAFLD modeling. The strategies for optimizing the liver microenvironment to generate a powerful and biomimetic in vitro NAFLD model were described as well. Finally, the current challenges and future perospective for promotion in this subject were discussed.
Collapse
Affiliation(s)
- Negar Aasadollahei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reihaneh Golroo
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Effect of alcohol exposure on the efficacy and safety of tenofovir alafenamide fumarate, a major medicine against human immunodeficiency virus. Biochem Pharmacol 2022; 204:115224. [PMID: 36007574 DOI: 10.1016/j.bcp.2022.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV) continues to be a major health concern. AIDS-related deaths (acquired immunodeficiency syndrome) have decreased recently, but chronic liver disease is now a major cause of mortality among HIV patients. Widespread alcohol use is recognized to be a major contributing factor. Tenofovir alafenamide fumarate (TAF), one of the most used HIV drugs, requires hydrolysis followed by phosphorylation to produce tenofovir diphosphate, the ultimate anti-HIV metabolite. Carboxylesterase-1 (CES1), established to hydrolyze TAF, is known to catalyze transesterification in the presence of ethanol. The aim of the study was to test the hypothesis that metabolism-based interactions between TAF and ethanol negatively impact both efficacy and safety of TAF. To test this hypothesis, the metabolism of TAF was determined in human primary hepatocytes and with a large number of human liver samples (S9 fractions) in the presence or absence of ethanol. The metabolism was monitored by LC-MS/MS (liquid chromatography with tandem mass spectrometry) and the level of CES1 or CES2 was determined by Western blotting. Consistent with the hypothesis, TAF underwent transesterification in the presence of ethanol accompanied by decreased hydrolysis. The formation of tenofovir diphosphate (the therapeutically active metabolite) was significantly decreased. In addition, TAF but not its hydrolytic metabolite, was found to increase intracellular lipid retention, and the increase was enhanced by ethanol. These findings conclude that alcohol consumption, beyond commonly accepted poor adherence to HIV medications, directly impacts the efficacy and safety of TAF.
Collapse
|
7
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Simon L, Edwards S, Molina PE. Pathophysiological Consequences of At-Risk Alcohol Use; Implications for Comorbidity Risk in Persons Living With Human Immunodeficiency Virus. Front Physiol 2022; 12:758230. [PMID: 35115952 PMCID: PMC8804300 DOI: 10.3389/fphys.2021.758230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
At-risk alcohol use is a significant risk factor associated with multisystemic pathophysiological effects leading to multiorgan injury and contributing to 5.3% of all deaths worldwide. The alcohol-mediated cellular and molecular alterations are particularly salient in vulnerable populations, such as people living with HIV (PLWH), diminishing their physiological reserve, and accelerating the aging process. This review presents salient alcohol-associated mechanisms involved in exacerbation of cardiometabolic and neuropathological comorbidities and their implications in the context of HIV disease. The review integrates consideration of environmental factors, such as consumption of a Western diet and its interactions with alcohol-induced metabolic and neurocognitive dyshomeostasis. Major alcohol-mediated mechanisms that contribute to cardiometabolic comorbidity include impaired substrate utilization and storage, endothelial dysfunction, dysregulation of the renin-angiotensin-aldosterone system, and hypertension. Neuroinflammation and loss of neurotrophic support in vulnerable brain regions significantly contribute to alcohol-associated development of neurological deficits and alcohol use disorder risk. Collectively, evidence suggests that at-risk alcohol use exacerbates cardiometabolic and neurocognitive pathologies and accelerates biological aging leading to the development of geriatric comorbidities manifested as frailty in PLWH.
Collapse
|
9
|
Schnabl B, Arteel GE, Stickel F, Hengstler J, Vartak N, Ghallab A, Dooley S, Li Y, Schwabe RF. Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:36-44. [PMID: 35042252 PMCID: PMC8941985 DOI: 10.1055/a-1714-9330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Medicine, VA San Diego Healthcare System, San Diego, United States
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Liver Research Center, Pittsburgh, United States
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Jan Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Nachiket Vartak
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, United States
| |
Collapse
|
10
|
Arman T, Baron JA, Lynch KD, White LA, Aldan J, Clarke JD. MCLR-elicited hepatic fibrosis and carcinogenic gene expression changes persist in rats with diet-induced nonalcoholic steatohepatitis through a 4-week recovery period. Toxicology 2021; 464:153021. [PMID: 34740672 PMCID: PMC8629135 DOI: 10.1016/j.tox.2021.153021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - J Allen Baron
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Laura A White
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, United States
| | - Johnny Aldan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
11
|
Chavva H, Brazeau DA, Denvir J, Primerano DA, Fan J, Seeley SL, Rorabaugh BR. Methamphetamine-induced changes in myocardial gene transcription are sex-dependent. BMC Genomics 2021; 22:259. [PMID: 33845768 PMCID: PMC8042975 DOI: 10.1186/s12864-021-07561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prior work demonstrated that female rats (but not their male littermates) exposed to methamphetamine become hypersensitive to myocardial ischemic injury. Importantly, this sex-dependent effect persists following 30 days of subsequent abstinence from the drug, suggesting that it may be mediated by long term changes in gene expression that are not rapidly reversed following discontinuation of methamphetamine use. The goal of the present study was to determine whether methamphetamine induces sex-dependent changes in myocardial gene expression and whether these changes persist following subsequent abstinence from methamphetamine. RESULTS Methamphetamine induced changes in the myocardial transcriptome were significantly greater in female hearts than male hearts both in terms of the number of genes affected and the magnitude of the changes. The largest changes in female hearts involved genes that regulate the circadian clock (Dbp, Per3, Per2, BMal1, and Npas2) which are known to impact myocardial ischemic injury. These genes were unaffected by methamphetamine in male hearts. All changes in gene expression identified at day 11 returned to baseline by day 30. CONCLUSIONS These data demonstrate that female rats are more sensitive than males to methamphetamine-induced changes in the myocardial transcriptome and that methamphetamine does not induce changes in myocardial transcription that persist long term after exposure to the drug has been discontinued.
Collapse
Affiliation(s)
- Hasitha Chavva
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Daniel A Brazeau
- Department of Pharmacy Practice, Administration, and Research, Marshall University School of Pharmacy, 1 John Marshall Drive, Huntington, WV, 25755, USA
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - James Denvir
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Donald A Primerano
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Jun Fan
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Sarah L Seeley
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University College of Pharmacy, 525 South Main Street, Ada, OH, 45810, USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
12
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Arteel GE, Naba A. The liver matrisome - looking beyond collagens. JHEP Rep 2020; 2:100115. [PMID: 32637906 PMCID: PMC7330160 DOI: 10.1016/j.jhepr.2020.100115] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a diverse microenvironment that maintains bidirectional communication with surrounding cells to regulate cell and tissue homeostasis. The classical definition of the ECM has more recently been extended to include non-fibrillar proteins that either interact or are structurally affiliated with the ECM, termed the 'matrisome.' In addition to providing the structure and architectural support for cells and tissue, the matrisome serves as a reservoir for growth factors and cytokines, as well as a signaling hub via which cells can communicate with their environment and vice-versa. The matrisome is a master regulator of tissue homeostasis and organ function, which can dynamically and appropriately respond to any stress or injury. Failure to properly regulate these responses can lead to changes in the matrisome that are maladaptive. Hepatic fibrosis is a canonical example of ECM dyshomeostasis, leading to accumulation of predominantly collagenous ECM; indeed, hepatic fibrosis is considered almost synonymous with collagen accumulation. However, the qualitative and quantitative alterations of the hepatic matrisome during fibrosis are much more diverse than simple accumulation of collagens and occur long before fibrosis is histologically detected. A deeper understanding of the hepatic matrisome and its response to injury could yield new mechanistic insights into disease progression and regression, as well as potentially identify new biomarkers for both. In this review, we discuss the role of the ECM in liver diseases and look at new "omic" approaches to study this compartment.
Collapse
Key Words
- AUROC, area under the receiver operating characteristic curve
- CCl4, carbon tetrachloride
- ECM
- ECM, extracellular matrix
- Extracellular matrix
- Fibrosis
- HCC, hepatocellular carcinoma
- Liver disease
- MMP, matrix metalloproteinase
- NAFLD, non-alcoholic fatty liver disease
- NPV, negative predictive value
- POSTN, periostin
- PPV, positive predictive values
- Proteomics
- Regeneration
- TGFβ, transforming growth factor beta
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
14
|
Özkan A, Stolley D, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review. MICROMACHINES 2020; 11:E487. [PMID: 32397454 PMCID: PMC7281532 DOI: 10.3390/mi11050487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In chronic liver diseases and hepatocellular carcinoma, the cells and extracellular matrix of the liver undergo significant alteration in response to chronic injury. Recent literature has highlighted the critical, but less studied, role of the liver vasculature in the progression of chronic liver diseases. Recent advancements in liver-on-a-chip systems has allowed in depth investigation of the role that the hepatic vasculature plays both in response to, and progression of, chronic liver disease. In this review, we first introduce the structure, gradients, mechanical properties, and cellular composition of the liver and describe how these factors influence the vasculature. We summarize state-of-the-art vascularized liver-on-a-chip platforms for investigating biological models of chronic liver disease and their influence on the liver sinusoidal endothelial cells of the hepatic vasculature. We conclude with a discussion of how future developments in the field may affect the study of chronic liver diseases, and drug development and testing.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Danielle Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Department of Oncology, The University of Texas, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
15
|
Abstract
Chronic fatty liver disease is common worldwide. This disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation) to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of chronic liver disease is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) that ultimately impairs the function of the organ. The role of the ECM in early stages of chronic liver disease is less well-understood, but recent research has demonstrated that several changes in the hepatic ECM in prefibrotic liver disease are not only present but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic ECM that may contribute to inflammation during earlier stages of disease development, and to discuss potential mechanisms by which these changes may mediate the progression of the disease.
Collapse
Affiliation(s)
- Christine E. Dolin
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Poole LG, Pant A, Baker KS, Kopec AK, Cline-Fedewa HM, Iismaa SE, Flick MJ, Luyendyk JP. Chronic liver injury drives non-traditional intrahepatic fibrin(ogen) crosslinking via tissue transglutaminase. J Thromb Haemost 2019; 17:113-125. [PMID: 30415489 PMCID: PMC6322974 DOI: 10.1111/jth.14330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 12/25/2022]
Abstract
Essentials Fibrin clots are often implicated in the progression of liver fibrosis. Liver fibrosis was induced in transgenic mice with defects in clot formation or stabilization. Liver fibrosis and fibrin(ogen) deposition do not require fibrin polymerization or factor XIIIa. Fibrin(ogen) is an in vivo substrate of tissue transglutaminase in experimental liver fibrosis. SUMMARY: Background Intravascular fibrin clots and extravascular fibrin deposits are often implicated in the progression of liver fibrosis. However, evidence supporting a pathological role of fibrin in hepatic fibrosis is indirect and based largely on studies using anticoagulant drugs that inhibit activation of the coagulation protease thrombin, which has other downstream targets that promote fibrosis. Therefore, the goal of this study was to determine the precise role of fibrin deposits in experimental hepatic fibrosis. Methods Liver fibrosis was induced in mice expressing mutant fibrinogen insensitive to thrombin-mediated proteolysis (i.e. locked in the monomeric form), termed FibAEK mice, and factor XIII A2 subunit-deficient (FXIII-/- ) mice. Female wild-type mice, FXIII-/- mice and homozygous FibAEK mice were challenged with carbon tetrachloride (CCl4 ) twice weekly for 4 weeks or 6 weeks (1 mL kg-1 , intraperitoneal). Results Hepatic injury and fibrosis induced by CCl4 challenge were unaffected by FXIII deficiency or inhibition of thrombin-catalyzed fibrin polymer formation (in FibAEK mice). Surprisingly, hepatic deposition of crosslinked fibrin(ogen) was not reduced in CCl4 -challenged FXIII-/- mice or FibAEK mice as compared with wild-type mice. Rather, deposition of crosslinked hepatic fibrin(ogen) following CCl4 challenge was dramatically reduced in tissue transglutaminase-2 (TGM2)-deficient (TGM2-/- ) mice. However, the reduction in crosslinked fibrin(ogen) in TGM2-/- mice did not affect CCl4 -induced liver fibrosis. Conclusions These results indicate that neither traditional fibrin clots, formed by the thrombin-activated FXIII pathway nor atypical TGM2-crosslinked fibrin(ogen) contribute to experimental CCl4 -induced liver fibrosis. Collectively, the results indicate that liver fibrosis occurs independently of intrahepatic fibrin(ogen) deposition.
Collapse
Affiliation(s)
- L G Poole
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - A Pant
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - K S Baker
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - A K Kopec
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - H M Cline-Fedewa
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - S E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - M J Flick
- Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J P Luyendyk
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Di Rocco G, Baldari S, Pani G, Toietta G. Stem cells under the influence of alcohol: effects of ethanol consumption on stem/progenitor cells. Cell Mol Life Sci 2019; 76:231-244. [PMID: 30306211 PMCID: PMC6339663 DOI: 10.1007/s00018-018-2931-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Stem cells drive embryonic and fetal development. In several adult tissues, they retain the ability to self-renew and differentiate into a variety of specialized cells, thus contributing to tissue homeostasis and repair throughout life span. Alcohol consumption is associated with an increased risk for several diseases and conditions. Growing and developing tissues are particularly vulnerable to alcohol's influence, suggesting that stem- and progenitor-cell function could be affected. Accordingly, recent studies have revealed the possible relevance of alcohol exposure in impairing stem-cell properties, consequently affecting organ development and injury response in different tissues. Here, we review the main studies describing the effects of alcohol on different types of progenitor/stem cells including neuronal, hepatic, intestinal and adventitial progenitor cells, bone-marrow-derived stromal cell, dental pulp, embryonic and hematopoietic stem cells, and tumor-initiating cells. A better understanding of the nature of the cellular damage induced by chronic and episodic heavy (binge) drinking is critical for the improvement of current therapeutic strategies designed to treat patients suffering from alcohol-related disorders.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, 00168, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
18
|
Lin D, Sun Z, Jin Z, Lei L, Liu Y, Hu B, Wang B, Shen Y, Wang Y. Matrix Remodeling Associated 7 Deficiency Alleviates Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Front Immunol 2018; 9:773. [PMID: 29720975 PMCID: PMC5915751 DOI: 10.3389/fimmu.2018.00773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Matrix remodeling associated 7 (MXRA7) was first noted to co-express with a group of matrix remodeling related genes, and its biological functions had remained unclear. In this study, we investigated the presumed function of MXRA7 in a carbon tetrachloride (CCl4)-induced acute liver injury model in mice. Wild-type, MXRA7−/− mice, and mice that were pulsed with hydrodynamic injection of vehicle or MXRA7-harboring plasmids were challenged with a single dose of CCl4 for injury induction. The sera, spleens, and livers were harvested from mice for assay of cytokines/chemokines expression, cellular responses, or histological features. We found that MXRA7 deficiency alleviated, and MXRA7 overexpression aggravated liver damage in CCl4-challenged mice. FACS analysis showed that MXRA7 deficiency reduced the recruitment of neutrophils through downregulation the expression of CXCL1 and CXCL2 in liver, decreased the number of CD8+ T cells in liver and spleen, suppressed the release of IFNγ and TNFα from T cells, and decreased IFNγ in serum and liver. Western blot assay demonstrated that MXRA7 deficiency suppressed the activation of MAPK pathway and AKT/NF-κB pathway, respectively. Lastly, MXRA7 deficiency or overexpression regulated the expression of two matrix remodeling-related genes (fibronectin and TIMP1) in the liver. We concluded that MXRA7 was an active player in CCl4-induced liver injury, hypothetically by mediating the inflammation or immune compartments and matrix remodeling processes. Further exploration of MXRA7 as a possible new therapeutic target for management of inflammation-mediated liver injury was discussed.
Collapse
Affiliation(s)
- Dandan Lin
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Zhenjiang Sun
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ziqi Jin
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Lei Lei
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yonghao Liu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Bo Hu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yiqiang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Hudson SV, Dolin CE, Poole LG, Massey VL, Wilkey D, Beier JI, Merchant ML, Frieboes HB, Arteel GE. Modeling the Kinetics of Integrin Receptor Binding to Hepatic Extracellular Matrix Proteins. Sci Rep 2017; 7:12444. [PMID: 28963535 PMCID: PMC5622105 DOI: 10.1038/s41598-017-12691-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
The composition of the extracellular matrix (ECM) proteins and the expression of their cognate receptors dictate cell behavior and dynamics. In particular, the interactions of ECM proteins with integrin receptors are key mediators of these cellular processes, playing a crucial role in the progression of several diseases of the liver, including inflammation, fibrosis/cirrhosis and cancer. This study establishes a modeling approach combining computation and experiments to evaluate the kinetics of integrin receptor binding to hepatic ECM proteins. ECM ligand concentration was derived from LC-MS/MS quantification of the hepatic ECM from mice exposed to chronic carbon tetrachloride (CCl4); receptor density was derived from published literature. Mathematical models for ECM-integrin binding kinetics that were developed incorporate receptor divalence and an aggregation scheme to represent clustering. The computer simulations reproduced positive cooperativity in the receptor aggregation model when the aggregation equilibrium constant (Ka) was positive and greater than Keq for divalent complex formation. Importantly, the modeling projected an increase in integrin binding for several receptors for which signaling is known to be increased after CCl4 exposure in the liver. The proposed modeling approach may be of use to elucidate the kinetics of integrin receptor binding to ECM proteins for homeostatic and diseased livers.
Collapse
Affiliation(s)
- Shanice V Hudson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
| | - Christine E Dolin
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Lauren G Poole
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Veronica L Massey
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Daniel Wilkey
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Juliane I Beier
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, 40202, KY, USA.
| |
Collapse
|
20
|
Poole LG, Massey VL, Siow DL, Torres-Gonzáles E, Warner NL, Luyendyk JP, Ritzenthaler JD, Roman J, Arteel GE. Plasminogen Activator Inhibitor-1 Is Critical in Alcohol-Enhanced Acute Lung Injury in Mice. Am J Respir Cell Mol Biol 2017; 57:315-323. [PMID: 28445073 PMCID: PMC5625219 DOI: 10.1165/rcmb.2016-0184oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/19/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic alcohol exposure is a clinically important risk factor for the development of acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). However, the mechanisms by which alcohol sensitizes the lung to development of this disease are poorly understood. We determined the role of the antifibrinolytic protein plasminogen activator inhibitor-1 (PAI-1) in alcohol enhancement of experimental endotoxin-induced ALI. Wild-type, PAI-1-/-, and integrin β3-/- mice were fed ethanol-containing Lieber-DeCarli liquid or a control diet for 6 weeks, followed by systemic LPS challenge. LPS administration triggered coagulation cascade activation as evidenced by increased plasma thrombin-antithrombin levels and pulmonary fibrin deposition. Ethanol-exposed animals showed enhanced PAI-1 expression and pulmonary fibrin deposition with coincident exaggeration of pulmonary inflammatory edematous injury. PAI-1 deficiency markedly reduced pulmonary fibrin deposition and greatly reduced inflammation and injury without impacting upstream coagulation. Interestingly, pulmonary platelet accumulation was effectively abolished by PAI-1 deficiency in ethanol/LPS-challenged mice. Moreover, mice lacking integrin αIIBβ3, the primary platelet receptor for fibrinogen, displayed a dramatic reduction in early inflammatory changes after ethanol/LPS challenge. These results indicate that the mechanism whereby alcohol exaggerates LPS-induced lung injury requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel mechanism whereby alcohol contributes to inflammatory ALI by enhancing fibrinogen-platelet engagement.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Veronica L. Massey
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Deanna L. Siow
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Edilson Torres-Gonzáles
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Nikole L. Warner
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Ritzenthaler
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Jesse Roman
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Gavin E. Arteel
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
21
|
Núñez KG, Gonzalez-Rosario J, Thevenot PT, Cohen AJ. Cyclin D1 in the Liver: Role of Noncanonical Signaling in Liver Steatosis and Hormone Regulation. Ochsner J 2017; 17:56-65. [PMID: 28331449 PMCID: PMC5349637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Cyclin D1 is an important protein for cell cycle progression; however, functions independent of the cell cycle have been described in the liver. Cyclin D1 is also involved in DNA repair, is overexpressed in many cancers, and functions as a proto-oncogene. The lesser-known roles of Cyclin D1, specifically in hepatocytes, impact liver steatosis and hormone regulation in the liver. METHODS A comprehensive search of PubMed was conducted using the keywords Cyclin D1, steatosis, lipogenesis, and liver transplantation. In this article, we review the results from this literature search, with a focus on the role of Cyclin D1 in hepatic lipogenesis and gluconeogenesis, as well as the impact and function of this protein in hepatic steatosis. RESULTS Cyclin D1 represses carbohydrate response element binding protein (ChREBP) and results in a decrease in transcription of fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC). Cyclin D1 also inhibits peroxisome proliferator-activated receptor gamma (PPARγ) which is involved in hepatic lipogenesis. Cyclin D1 inhibits both hepatocyte nuclear factor 4 alpha (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and represses transcription of lipogenic genes FAS and liver-type pyruvate kinase (Pklr), along with the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). CONCLUSION Cyclin D1 represses multiple proteins involved in both lipogenesis and gluconeogenesis in the liver. Targeting Cyclin D1 to decrease hepatic steatosis in patients with nonalcoholic fatty liver disease or alcoholic fatty liver disease may help improve patient health and the quality of the donor liver pool.
Collapse
Affiliation(s)
- Kelley G. Núñez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
| | | | - Paul T. Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
| | - Ari J. Cohen
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|