1
|
Kadlecová Z, Sevriugina V, Lysáková K, Rychetský M, Chamradová I, Vojtová L. Liposomes Affect Protein Release and Stability of ITA-Modified PLGA-PEG-PLGA Hydrogel Carriers for Controlled Drug Delivery. Biomacromolecules 2024; 25:67-76. [PMID: 38135465 PMCID: PMC10777393 DOI: 10.1021/acs.biomac.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Fat grafting, a key regenerative medicine technique, often requires repeat procedures due to high-fat reabsorption and volume loss. Addressing this, a novel drug delivery system uniquely combines a thermosensitive, FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA copolymer) with FGF2-STAB, a stable fibroblast growth factor 2 with a 21-day stability, far exceeding a few hours of wild-type FGF2's stability. Additionally, the growth factor was encapsulated in "green" liposomes prepared via the Mozafari method, ensuring pH protection. The system, characterized by first-order FGF2-STAB release, employs green chemistry for biocompatibility, bioactivity, and eco-friendliness. The liposomes, with diameters of 85.73 ± 3.85 nm and 68.6 ± 2.2% encapsulation efficiency, allowed controlled FGF2-STAB release from the hydrogel compared to the unencapsulated FGF2-STAB. Yet, the protein compromised the carrier's hydrolytic stability. Prior tests were conducted on model proteins human albumin (efficiency 80.8 ± 3.2%) and lysozyme (efficiency 81.0 ± 2.7%). This injectable thermosensitive system could advance reconstructive medicine and cosmetic procedures.
Collapse
Affiliation(s)
- Zuzana Kadlecová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Veronika Sevriugina
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Klára Lysáková
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Matěj Rychetský
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 464, 612 00 Brno, Czech Republic
| | - Ivana Chamradová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Lucy Vojtová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Oskarsdotter K, Nordgård CT, Apelgren P, Säljö K, Solbu AA, Eliasson E, Sämfors S, Sætrang HEM, Asdahl LC, Thompson EM, Troedsson C, Simonsson S, Strand BL, Gatenholm P, Kölby L. Injectable In Situ Crosslinking Hydrogel for Autologous Fat Grafting. Gels 2023; 9:813. [PMID: 37888386 PMCID: PMC10606883 DOI: 10.3390/gels9100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Autologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex situ crosslinking of ETC/ALG hydrogels combined with lipoaspirate human adipose tissue (LAT) to generate an injectable formulation capable of retaining dimensional stability in vivo. We performed in situ crosslinking using two different approaches; inducing Ca2+ release from CaCO3 microparticles (CMPs) and physiologically available Ca2+ in vivo. Additionally, we generated ex situ-crosslinked, 3D-bioprinted hydrogel-fat grafts. We found that in vitro optimization generated a CMP-crosslinking system with comparable stiffness to ex situ-crosslinked gels. Comparison of outcomes following in vivo injection of each respective crosslinked hydrogel revealed that after 30 days, in situ crosslinking generated fat grafts with less shape retention than 3D-bioprinted constructs that had undergone ex situ crosslinking. However, CMP addition improved fat-cell distribution and cell survival relative to grafts dependent on physiological Ca2+ alone. These findings suggested that in situ crosslinking using CMP might promote the dimensional stability of injectable fat-hydrogel grafts, although 3D bioprinting with ex situ crosslinking more effectively ensured proper shape stability in vivo.
Collapse
Affiliation(s)
- Kristin Oskarsdotter
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Catherine T. Nordgård
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Peter Apelgren
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Karin Säljö
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Anita A. Solbu
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Edwin Eliasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sanna Sämfors
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Lise Cathrine Asdahl
- DuPont Nutrition Norge AS d/b/a NovaMatrix, Postboks 223, 1377 Billingstad, Norway
| | - Eric M. Thompson
- Ocean TuniCell AS, 5258 Blomsterdalen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | | | - Stina Simonsson
- Department of Medicinal Chemistry & Cell Biology, Institution of Biomedicine, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
| | - Berit L. Strand
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Lars Kölby
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
3
|
Janarthanan R, Jayakumar R, Iyer S. Injectable Pectin-Alginate Hydrogels for Improving Vascularization and Adipogenesis of Human Fat Graft. J Funct Biomater 2023; 14:409. [PMID: 37623654 PMCID: PMC10455938 DOI: 10.3390/jfb14080409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Autologous fat grafting (AFG) is the most prevailing tool for soft tissue regeneration in clinics, although efficiency is limited to unpredictable volume resorption due to poor vascularization and eventual necrosis. This study sought to improve the AFG efficiency using a hydrogel as a carrier for human fat graft (F) with and without platelet-rich plasma (PRP). PRP is clinically well known for the local release of several endogenous growth factors and has been in clinical use already. A human-fat-graft-encapsulated pectin-alginate hydrogel (FG) was developed and characterized. PRP was added to F to develop a human fat graft with PRP (FP). FP was admixed with a pectin-alginate hydrogel to develop FGP. FG and FGP showed the smooth injectable, elastic, and shear-thinning properties. FG and FGP groups showed enhanced cell viability and proliferation compared to the control F in vitro. We also investigated the in vivo angiogenesis and neo-adipogenesis ability of F, FG, FGP, and FP in nude mice after subcutaneous injection. After 2 and 4 weeks, an MRI of the mice was conducted, followed by graft explantation. The explanted grafts were also assessed histologically and with immunohistochemistry (IHC) studies. MRI and histology results revealed better vascularity of the FG and FGP system compared to fat graft alone. Further, the IHC studies, CD 31, and perilipin staining also revealed better vasculature and adipogenesis of FG and FGP systems. These results indicate the enhanced angiogenesis and adipogenesis of FG and FGP. Thus, developed pectin-alginate hydrogel-based fat graft systems FG and FGP replenish the native microenvironment by mediating angiogenesis and adipogenesis, thereby maximizing the clinical outcomes of autologous fat grafting.
Collapse
Affiliation(s)
- Ramu Janarthanan
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| | - Subramania Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| |
Collapse
|
4
|
Zheng Z, Lei X, Yang Y, Tan X, Cheng B, Huang W. Changes in Human Fat Injected Alongside Hyaluronic Acid in the Backs of Nude Mice. Aesthet Surg J 2021; 41:NP631-NP642. [PMID: 33326559 DOI: 10.1093/asj/sjaa351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cross-linked hyaluronic acid (HA) is an active anti-aging cosmetic filler. The combination of cross-linked HA and preadipocytes or adipose-derived stem cells has been previously investigated, but the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts remain unclear. OBJECTIVES The aim of this study was to explore the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts. METHODS The backs of nude mice were divided into 4 regions that received different treatments: nothing (control group), agglomerated Biohyalux (HA group), agglomerated fat (FAT group), and lumps formed by the sequential injection of Biohyalux and fat (HA/FAT group). Samples were collected after 1 month for weighing and hematoxylin and eosin staining, immunohistochemistry, image analysis, and Western blotting. RESULTS The weight of fat and the mean number of adipocytes in the HA/FAT group did not significantly differ from those in the FAT group. No living tissue was found in agglomerated HA. Some tiny HA particles were surrounded by tissue rich in blood vessels. The expression levels of CD31 and vascular endothelial growth factor (VEGF) in the HA/FAT group were higher than those in the FAT group, but the difference was only significant for VEGF expression. CONCLUSIONS Cross-linked HA had minimal effect on the early retention rate of surrounding fat grafts, but enhanced their vascularization. Fat grafts should be not injected into lumps of cross-linked HA. Therefore, agglomerated cross-linked HA should be dissolved before fat transplantation.
Collapse
Affiliation(s)
- Zhifang Zheng
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Lei
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yu Yang
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xi Tan
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Biao Cheng
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu PC, Tan QW, Zhang Y, Wang H, Zhou L, Yang QR, Xu L, He T, Xie HQ, Lv Q. Hydrogel from acellular porcine adipose tissue promotes survival of adipose tissue transplantation. Biomed Mater 2021; 16. [PMID: 33873165 DOI: 10.1088/1748-605x/abf982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Lipofilling is a popular technique for soft tissue augmentation, limited by unpredictable graft survival. This study aimed at exploring the effect of hydrogel from acellular porcine adipose tissue (HAPA) on angiogenesis and survival of adipose tissue used for lipofilling. The effect of HAPA on adipose-derived stem cells (ADSCs) proliferation, adipogenic differentiation, and vascular endothelial growth factor (VEGF) secretion were evaluated in hypoxia and normoxiain vitro. For thein vivostudy, adipose tissue with phosphate buffered saline, ADSCs, and HAPA (with or without ADSCs) were co-injected subcutaneously into nude mice. HAPA-ADSCs mixture (tissue engineering adipose tissue) was also grafted. Gross observation, volume measurement, and ultrasound observation were assessed. For histological assessment, hematoxylin and eosin, perilipin, cluster of differentiation 31 (CD31), Ki67, and transferase-mediated d-UTP nick end labelling (TUNEL) staining were performed. HAPA improved ADSCs proliferation, VEGF secretion, and adipogenic differentiation under normoxia and hypoxia conditionsin vitrostudy. For thein vivostudy, HAPA showed improved volume retention and angiogenesis, and reduced cell apoptosis when compared to ADSCs-assisted lipofilling and pure lipofilling. In conclusion, HAPA could maintain ADSCs viability and improve cell resistant to hypoxia and might be a promising biomaterial to assist lipofilling.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qiu-Wen Tan
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hua Wang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qian-Ru Yang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Xu
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao He
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qing Lv
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Abstract
BACKGROUND Autologous fat grafting is a dynamic modality used in plastic surgery as an adjunct to improve functional and aesthetic form. However, current practices in fat grafting for soft-tissue augmentation are plagued by tremendous variability in long-term graft retention, resulting in suboptimal outcomes and repetitive procedures. This systematic review identifies and critically appraises the evidence for various enrichment strategies that can be used to augment and improve the viability of fat grafts. METHODS A comprehensive literature search of the Medline and PubMed databases was conducted for animal and human studies published through October of 2017 with multiple search terms related to adipose graft enrichment agents encompassing growth factors, platelet-rich plasma, adipose-derived and bone marrow stem cells, gene therapy, tissue engineering, and other strategies. Data on level of evidence, techniques, complications, and outcomes were collected. RESULTS A total of 1382 articles were identified, of which 147 met inclusion criteria. The majority of enrichment strategies demonstrated positive benefit for fat graft survival, particularly with growth factors and adipose-derived stem cell enrichment. Platelet-rich plasma and adipose-derived stem cells had the strongest evidence to support efficacy in human studies and may demonstrate a dose-dependent effect. CONCLUSIONS Improved understanding of enrichment strategies contributing to fat graft survival can help to optimize safety and outcomes. Controlled clinical studies are lacking, and future studies should examine factors influencing graft survival through controlled clinical trials in order to establish safety and to obtain consistent outcomes.
Collapse
|
7
|
Mechanical experiments as a tool for study of swelling-deswelling and structural properties of porous polymers. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|