1
|
Liu Y, Gao Q. Partial excision of infrapatellar fat pad for the treatment of knee osteoarthritis. J Orthop Surg Res 2024; 19:631. [PMID: 39375685 PMCID: PMC11457350 DOI: 10.1186/s13018-024-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
AIMS Knee osteoarthritis (KOA) is a common degenerative joint disease characterized by pain and functional limitations. Current treatments offer symptomatic relief but do not address the underlying pathology. This study explores the role of the infrapatellar fat pad (IFP) in KOA and evaluates the efficacy of its partial arthroscopic excision. METHODS A retrospective review was conducted on 37 KOA patients who underwent partial IFP excision. Pain and function were assessed using the WOMAC and VAS scores, while MRI evaluations focused on cartilage health. RESULTS Significant postoperative improvements were observed in both pain and functional outcomes, with substantial reductions in WOMAC and VAS scores (P < 0.001). MRI findings demonstrated notable enhancements in cartilage integrity, reflected in significantly improved WORMS scores (P < 0.001). CONCLUSIONS Partial excision of the IFP significantly reduces pain and improves function in KOA patients, while also promoting cartilage health. These findings support the IFP's role in KOA pathology and highlight the potential benefits of targeted surgical intervention.
Collapse
Affiliation(s)
- Yuwu Liu
- Orthopedics Department, Guangyuan Central Hospital, Guangyuan, 628000, China.
| | - Qun Gao
- Orthopedics Department, Jiangshan People's Hospital, Jiangshan, 324199, China
| |
Collapse
|
2
|
Tanadchangsaeng N, Pasanaphong K, Tawonsawatruk T, Rattanapinyopituk K, Tangketsarawan B, Rawiwet V, Kongchanagul A, Srikaew N, Yoyruerop T, Panupinthu N, Sangpayap R, Panaksri A, Boonyagul S, Hemstapat R. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Sci Rep 2024; 14:23240. [PMID: 39369014 PMCID: PMC11455937 DOI: 10.1038/s41598-024-73774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Gelatin methacryloyl (GelMA), typically derived from mammalian sources, has recently emerged as an ideal bio-ink for three-dimensional (3D) bioprinting. Herein, we developed a fish skin-based GelMA bio-ink for the fabrication of a 3D GelMA skin substitute with a 3D bioprinter. Several concentrations of methacrylic acid anhydride were used to fabricate GelMA, in which their physical-mechanical properties were assessed. This fish skin-based GelMA bio-ink was loaded with human adipose tissue-derived mesenchymal stromal cells (ASCs) and human platelet lysate (HPL) and then printed to obtain 3D ASCs + HPL-loaded GelMA scaffolds. Cell viability test and a preliminary investigation of its effectiveness in promoting wound closure were evaluated in a critical-sized full thickness skin defect in a rat model. The cell viability results showed that the number of ASCs increased significantly within the 3D GelMA hydrogel scaffold, indicating its biocompatibility property. In vivo results demonstrated that ASCs + HPL-loaded GelMA scaffolds could delay wound contraction, markedly enhanced collagen deposition, and promoted the formation of new blood vessels, especially at the wound edge, compared to the untreated group. Therefore, this newly fish skin-based GelMA bio-ink developed in this study has the potential to be utilized for the printing of 3D GelMA skin substitutes.
Collapse
Affiliation(s)
| | | | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Visut Rawiwet
- Central Animal Facility, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alita Kongchanagul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Narongrit Srikaew
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanaporn Yoyruerop
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | - Nattapon Panupinthu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratirat Sangpayap
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Pathum Thani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Pathum Thani, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Yue S, Zhai G, Zhao S, Liang X, Liu Y, Zheng J, Chen X, Dong Y. The biphasic role of the infrapatellar fat pad in osteoarthritis. Biomed Pharmacother 2024; 179:117364. [PMID: 39226725 DOI: 10.1016/j.biopha.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. It is a whole organ disease characterized by cartilage degeneration and varying degrees of synovitis, involving pathological changes in all joint tissues, such as cartilage, subchondral bone, ligaments, meniscus, synovium, and infrapatellar fat pad (IPFP). IPFP is the largest adipose tissue structure in the knee joint and is composed of fat cells, immune cells and blood vessels. Moreover, IPFP is located close to the cartilage and bone surface so that it may reduce the impact of loading and absorb forces generated through the knee joint, and may have a protective role in joint health. IPFP has been shown to release various cytokines and adipokines that play pro-inflammatory and pro-catabolic roles in cartilage, promoting OA progression. Intra-articular injections of IPFP-derived mesenchymal stem cells and exosomes have been shown to reduce pain and prevent OA progression in patients with knee OA. Previous studies have shown that IPFP has a biphasic effect on OA progression. This article reviews the latest research progress of IPFP, discusses the role and mechanism of IPFP in OA, provide new intervention strategies for the treatment of OA. This article will also discuss the handling of IPFP during the procedure of total knee arthroplasty.
Collapse
Affiliation(s)
- Songkai Yue
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Ganggang Zhai
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Siyu Zhao
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaming Liang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yunke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaoyang Chen
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
4
|
Maslennikov S, Avramenko Y, Tumanskiy V, Golovakha M. Comparative characteristics of the stem cells' number in the stromal vascular fraction of infrapatellar fat pad and subcutaneous fat tissue. J ISAKOS 2024; 9:615-619. [PMID: 38763383 DOI: 10.1016/j.jisako.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES The use of infrapatellar fat pad adipose stem cells (IPFP-ASCs) shows an age-independent proliferation and differentiation potential. In addition, the pronounced chondrogenic potential of IPFP-ASCs makes them promising candidates for research for use in other methods of regenerative therapy. The purpose of this study was to ascertain the presence and compare the relative abundance of cells exhibiting an immunohistochemical profile characteristic of adipose-derived mesenchymal stem cells in selected samples of the stromal vascular fraction (SVF) obtained from the IPFP and subcutaneous fat tissue. METHODS A direct immunohistochemical study was carried out in serial paraffin sections of the SVF of the infrapatellar fat pad (IPFP) and subcutaneous tissue, using monoclonal antibodies. The minimum criteria were established by the International Society for Cell Therapy to ensure the identity of mesenchymal stem cells use CD73, CD90, and CD105 as positive markers and CD34, CD31, and CD45 as a negative. RESULTS According to the results of histological, immunohistochemical, morphometric, and statistical studies, it was found that in the SVF of IPFP and subcutaneous adipose tissue, the relative number of cells with the profile CD105+, CD73+, CD34+, CD31-, CD45- in the standard field of view (×200), the SVF of IPFP was 1.58%, whereas the SVF of subcutaneous adipose tissue was 6.92 %, which was statistically significantly greater by 4.38 times (p < 0.05). CONCLUSION The presence of a sufficient number of mesenchymal stromal cells in IPFP in combination with their topographic relationship with the structures of the joint determines the use of the SVF of the IPFP for the treatment of diseases of the knee joint. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Serhii Maslennikov
- Department of Traumatology and Orthopedics of Zaporizhzhia State Medical and Pharmaceutical University, Ukraine.
| | - Yuliia Avramenko
- Department of Pathological Anatomy and Forensic Medicine of Zaporizhzhia State Medical and Pharmaceutical University, Ukraine
| | - Valeriy Tumanskiy
- Department of Pathological Anatomy and Forensic Medicine, Vice-Rector for Research, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine
| | - Maksym Golovakha
- Department of Traumatology and Orthopedics of Zaporizhzhia State Medical and Pharmaceutical University, Ukraine
| |
Collapse
|
5
|
Ponsuksili S, Siengdee P, Li S, Kriangwanich W, Oster M, Reyer H, Wimmers K. Effect of metabolically divergent pig breeds and tissues on mesenchymal stem cell expression patterns during adipogenesis. BMC Genomics 2024; 25:407. [PMID: 38664635 PMCID: PMC11044395 DOI: 10.1186/s12864-024-10308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Unraveling the intricate and tightly regulated process of adipogenesis, involving coordinated activation of transcription factors and signaling pathways, is essential for addressing obesity and related metabolic disorders. The molecular pathways recruited by mesenchymal stem cells (MSCs) during adipogenesis are also dependent on the different sources of the cells and genetic backgrounds of donors, which contribute to the functional heterogeneity of the stem cells and consequently affect the developmental features and fate of the cells. METHODS In this study, the alteration of transcripts during differentiation of synovial mesenchymal stem cells (SMSCs) derived from fibrous synovium (FS) and adipose synovial tissue (FP) of two pig breeds differing in growth performance (German Landrace (DL)) and fat deposition (Angeln Saddleback (AS)) was investigated. SMSCs from both tissues and breeds were stimulated to differentiate into adipocytes in vitro and sampled at four time points (day 1, day 4, day 7 and day 14) to obtain transcriptomic data. RESULTS We observed numerous signaling pathways related to the cell cycle, cell division, cell migration, or cell proliferation during early stages of adipogenesis. As the differentiation process progresses, cells begin to accumulate intracellular lipid droplets and changes in gene expression patterns in particular of adipocyte-specific markers occur. PI3K-Akt signaling and metabolic pathways changed most during adipogenesis, while p53 signaling and ferroptosis were affected late in adipogenesis. When comparing MSCs from FS and FP, only a limited number of differentially expressed genes (DEGs) and enriched signaling pathways were identified. Metabolic pathways, including fat, energy or amino acid metabolism, were highly enriched in the AS breed SMSCs compared to those of the DL breed, especially at day 7 of adipogenesis, suggesting retention of the characteristic metabolic features of their original source, demonstrating donor memory in culture. In contrast, the DL SMSCs were more enriched in immune signaling pathways. CONCLUSIONS Our study has provided important insights into the dynamics of adipogenesis and revealed metabolic shifts in SMSCs associated with different cell sources and genetic backgrounds of donors. This emphasises the critical role of metabolic and genetic factors as important indications and criteria for donor stem cell selection.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Puntita Siengdee
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, 10210, Bangkok, Thailand
| | - Shuaichen Li
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Wannapimol Kriangwanich
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059, Rostock, Germany
| |
Collapse
|
6
|
Witoonpanich B, Jinawath A, Wongtawan T, Tawonsawatruk T. Association of synovial expression of growth and differentiation factor 5 (GDF5) with radiographic severity of knee osteoarthritis. Heliyon 2022; 8:e11798. [DOI: 10.1016/j.heliyon.2022.e11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/21/2021] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
|
7
|
Towards Clinical Translation of In Situ Cartilage Engineering Strategies: Optimizing the Critical Facets of a Cell-Laden Hydrogel Therapy. Tissue Eng Regen Med 2022; 20:25-47. [PMID: 36244053 PMCID: PMC9852400 DOI: 10.1007/s13770-022-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Articular cartilage repair using implantable photocrosslinkable hydrogels laden with chondrogenic cells, represents a promising in situ cartilage engineering approach for surgical treatment. The development of a surgical procedure requires a minimal viable product optimized for the clinical scenario. In our previous work we demonstrated how gelatin based photocrosslinkable hydrogels in combination with infrapatellar derived stem cells allow the production of neocartilage in vitro. In this study, we aim to optimize the critical facets of the in situ cartilage engineering therapy: the cell source, the cell isolation methodology, the cell expansion protocol, the cell number, and the delivery approach. METHODS We evaluated the impact of the critical facets of the cell-laden hydrogel therapy in vitro to define an optimized protocol that was then used in a rabbit model of cartilage repair. We performed cells counting and immunophenotype analyses, chondrogenic potential evaluation via immunostaining and gene expression, extrusion test analysis of the photocrosslinkable hydrogel, and clinical assessment of cartilage repair using macroscopic and microscopic scores. RESULTS We identified the adipose derived stem cells as the most chondrogenic cells source within the knee joint. We then devised a minimally manipulated stem cell isolation procedure that allows a chondrogenic population to be obtained in only 85 minutes. We found that cell expansion prior to chondrogenesis can be reduced to 5 days after the isolation procedure. We characterized that at least 5 million of cells/ml is needed in the photocrosslinkable hydrogel to successfully trigger the production of neocartilage. The maximum repairable defect was calculated based on the correlation between the number of cells retrievable with the rapid isolation followed by 5-day non-passaged expansion phase, and the minimum chondrogenic concentration in photocrosslinkable hydrogel. We next optimized the delivery parameters of the cell-laden hydrogel therapy. Finally, using the optimized procedure for in situ tissue engineering, we scored superior cartilage repair when compared to the gold standard microfracture approach. CONCLUSION This study demonstrates the possibility to repair a critical size articular cartilage defect by means of a surgical streamlined procedure with optimized conditions.
Collapse
|
8
|
Kouroupis D, Kaplan LD, Best TM. Human infrapatellar fat pad mesenchymal stem cells show immunomodulatory exosomal signatures. Sci Rep 2022; 12:3609. [PMID: 35246587 PMCID: PMC8897449 DOI: 10.1038/s41598-022-07569-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Within the human knee infrapatellar fat pad (IFP) and synovium, resident synoviocytes and macrophages contribute to the onset and progression of inflammatory joint diseases. Our hypothesis is that IFP-derived mesenchymal stem cells (IFP-MSC) robust immunomodulatory therapeutic effects are largely exerted via their exosomal (IFP-MSC EXOs) secretome by attenuating synoviocytes and macrophages pro-inflammatory activation. IFP-MSC EXOs showed distinct miRNA and protein immunomodulatory profiles. Reactome analysis of 24 miRNAs highly present in exosomes showed their involvement in the regulation of six gene groups, including immune system. Exosomes were enriched for immunomodulatory and reparative proteins that are involved in positive regulation of cell proliferation, response to stimulus, signal transduction, signal receptor activity, and protein phosphorylation. Stimulated synoviocytes or macrophages exposed to IFP-MSC EXOs demonstrated significantly reduced proliferation, altered inflammation-related molecular profiles, and reduced secretion of pro-inflammatory molecules compared to stimulated alone. In an acute synovial/IFP inflammation rat model, IFP-MSC EXOs therapeutic treatment resulted in robust macrophage polarization towards an anti-inflammatory therapeutic M2 phenotype within the synovium/IFP tissues. Based on these findings, we propose a viable cell-free alternative to MSC-based therapeutics as an alternative approach to treating synovitis and IFP fibrosis.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA. .,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, USA. .,Department of Orthopaedics, Division of Sports Medicine, Diabetes Research Institute, Cell Transplant Center, University of Miami, Miller School of Medicine, 1450NW 10th Ave, Room 3014, Miami, FL, 33136, USA.
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Phenotypic and functional properties of dedifferentiated fat cells derived from infrapatellar fat pad. Regen Ther 2022; 19:35-46. [PMID: 35059478 PMCID: PMC8739472 DOI: 10.1016/j.reth.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Mature adipocyte-derived dedifferentiated fat cells (DFATs) are mesenchymal stem cell (MSC)-like cells with high proliferative ability and multilineage differentiation potential. In this study, we first examined whether DFATs can be prepared from infrapatellar fat pad (IFP) and then compared phenotypic and functional properties of IFP-derived DFATs (IFP-DFATs) with those of subcutaneous adipose tissue (SC)-derived DFATs (SC-DFATs). Methods Mature adipocytes isolated from IFP and SC in osteoarthritis patients (n = 7) were cultured by ceiling culture method to generate DFATs. Obtained IFP-DFATs and SC-DFATs were subjected to flow cytometric and microarray analysis to compare their immunophenotypes and gene expression profiles. Cell proliferation assay and adipogenic, osteogenic, and chondrogenic differentiation assays were performed to evaluate their functional properties. Results DFATs could be prepared from IFP and SC with similar efficiency. IFP-DFATs and SC-DFATs exhibited similar immunophenotypes (CD73+, CD90+, CD105+, CD31-, CD45-, HLA-DR-) and tri-lineage (adipogenic, osteogenic, and chondrogenic) differentiation potential, consistent with the minimal criteria for defining MSCs. Microarray analysis revealed that the gene expression profiles in IFP-DFATs were very similar to those in SC-DFATs, although there were certain number of genes that showed different levels of expression. The proliferative activity in IFP-DFATs was significantly (p < 0.05) higher than that in the SC-DFATs. IFP-DFATs showed higher chondrogenic differentiation potential than SC-DFATs in regard to production of soluble galactosaminogalactan and gene expression of type II collagen. Conclusions IFP-DFATs showed higher cellular proliferative potential and higher chondrogenic differentiation capacity than SC-DFATs. IFP-DFAT cells may be an attractive cell source for chondrogenic regeneration.
Collapse
|
10
|
Mak CCH, To K, Fekir K, Brooks RA, Khan WS. Infrapatellar fat pad adipose-derived stem cells co-cultured with articular chondrocytes from osteoarthritis patients exhibit increased chondrogenic gene expression. Cell Commun Signal 2022; 20:17. [PMID: 35151341 PMCID: PMC8841120 DOI: 10.1186/s12964-021-00815-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Aim The variable results in clinical trials of adipose tissue-derived stem cells (ASCs) for chondral defects may be due to the different ex vivo culture conditions of the ASCs which are implanted to treat the lesions. We sought to determine the optimal in vitro chondrocyte co-culture condition that promotes infrapatellar fat pad-derived (IFPD) ASC chondrogenic gene expression in a novel co-culture combination. Methods In our study, we utilized an in vitro autologous co-culture of IFPD ASCs and articular chondrocytes derived from Kellgren–Lawrence Grade III/IV osteoarthritic human knee joints at ASC-to-chondrocyte seeding log ratios of 1:1, 10:1, and 100:1. Gene expression following in vitro co-culture was quantified by RT-qPCR with a panel comprising COL1A1, COL2A1, COL10A1, L-SOX5, SOX6, SOX9, ACAN, HSPG2, and COMP for chondrogenic gene expression. Results The chondrogenic gene expression profiles from co-cultures were greater than would be expected from an expression profile modeled from chondrocyte and ASC-only monocultures. Additionally, chondrogenic gene expression decreased with increasing ASC-to-chondrocyte seeding ratios. Conclusions These findings provide insight into the mechanisms underlying clinical ASC therapies and signifies that IFPD ASCs pre-conditioned by chondrocyte co-culture may have improved chondrogenic potential for cartilage repair. This model can help further understand IFPD ASCs in chondral and osteochondral repair and the chondrogenic pathways involved. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00815-x.
Collapse
|
11
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
12
|
Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM. Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 2021; 13:1005-1029. [PMID: 34567422 PMCID: PMC8422933 DOI: 10.4252/wjsc.v13.i8.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.
Collapse
Affiliation(s)
- Hye Chang Rhim
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, Seoul 08308, Seoul, South Korea
| | - Dong Won Suh
- Department of Orthopaedic Surgery, Barunsesang Hospital, Seongnam 13497, South Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| |
Collapse
|
13
|
Vahedi P, Moghaddamshahabi R, Webster TJ, Calikoglu Koyuncu AC, Ahmadian E, Khan WS, Jimale Mohamed A, Eftekhari A. The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. Int J Mol Sci 2021; 22:ijms22179215. [PMID: 34502123 PMCID: PMC8431575 DOI: 10.3390/ijms22179215] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.
Collapse
Affiliation(s)
- Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran;
| | - Rana Moghaddamshahabi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, North Cyprus, Turkey;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Ayse Ceren Calikoglu Koyuncu
- Materials and Metallurgical Engineering Department, Faculty of Technology, Marmara University, Istanbul 34722, Turkey;
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 51666-15731, Iran;
| | - Wasim S. Khan
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (W.S.K.); (A.E.)
| | - Ali Jimale Mohamed
- Department of Pharmacology, Faculty of Medicine, Somali National University, Mogadishu 801, Somalia;
| | - Aziz Eftekhari
- Department of Toxicology and Pharmacology, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences (SAS), Dúbravská cesta, 9, 845 41 Bratislava, Slovakia
- Correspondence: (W.S.K.); (A.E.)
| |
Collapse
|
14
|
Myogenic Differentiation of Stem Cells for Skeletal Muscle Regeneration. Stem Cells Int 2021; 2021:8884283. [PMID: 33628275 PMCID: PMC7884123 DOI: 10.1155/2021/8884283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have become a hot research topic in the field of regenerative medicine due to their self-renewal and differentiation capabilities. Skeletal muscle tissue is one of the most important tissues in the human body, and it is difficult to recover when severely damaged. However, conventional treatment methods can cause great pain to patients. Stem cell-based tissue engineering can repair skeletal muscle to the greatest extent with little damage. Therefore, the application of stem cells to skeletal muscle regeneration is very promising. In this review, we discuss scaffolds and stem cells for skeletal muscle regeneration and put forward our ideas for future development.
Collapse
|
15
|
Zhou Y, Li H, Xiang D, Shao J, Fu Q, Han Y, Zhu J, Chen Y, Qian Q. The clinical efficacy of arthroscopic therapy with knee infrapatellar fat pad cell concentrates in treating knee cartilage lesion: a prospective, randomized, and controlled study. J Orthop Surg Res 2021; 16:87. [PMID: 33509248 PMCID: PMC7841893 DOI: 10.1186/s13018-021-02224-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction To evaluate the clinical efficacy of arthroscopic therapy with infrapatellar fat pad cell concentrates in treating knee cartilage lesions, we conducted a prospective randomized single-blind clinical study of controlled method. Methods Sixty cases from Shanghai Changzheng Hospital from April 2018 to December 2019 were chosen and randomly divided into 2 groups equally. Patients in the experiment group were treated through knee arthroscopy with knee infrapatellar fat pad cell concentrates containing mesenchymal stromal cells, while patients in the control group were treated through regular knee arthroscopic therapy. VAS and WOMAC scores were assessed at pre-operation, and 6 weeks, 12 weeks, 6 months, and 12 months after intervention. MORCART scores were assessed at pre-operation and 12 months after intervention. Results Twenty-nine cases in the experiment group and 28 cases in the control group were followed up. No significant difference in VAS, WOMAC, and MOCART scores were found between the two groups before surgery (P > 0.05). The WOMAC total and WOMAC function scores of the experiment group were significantly lower than those of the control group 6 months and 12 months after surgery (P < 0.05). The VAS rest and VAS motion scores of the experiment group were found significantly lower than those of the control group 12 months after surgery (P < 0.05). The MOCART scores of the experiment group were found significantly higher compared with the control group 12 months after surgery (P < 0.05). No significant difference in WOMAC stiffness scores were found between the two groups. Conclusions The short-term results of our study are encouraging and demonstrate that knee arthroscopy with infrapatellar fat pad cell concentrates containing mesenchymal stromal cells is safe and provides assistance in reducing pain and improving function in patients with knee cartilage lesions. Trial registration ChiCTR1800015379. Registered on 27 March 2018, http://www.chictr.org.cn/showproj.aspx?proj=25901.
Collapse
Affiliation(s)
- Yiqin Zhou
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Haobo Li
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Dong Xiang
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jiahua Shao
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Qiwei Fu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yaguang Han
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jun Zhu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| | - Yi Chen
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| | - Qirong Qian
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
16
|
van Schaik TJA, Gaul F, Dorthé EW, Lee EE, Grogan SP, D’Lima DD. Development of an Ex Vivo Murine Osteochondral Repair Model. Cartilage 2021; 12:112-120. [PMID: 30373381 PMCID: PMC7755972 DOI: 10.1177/1947603518809402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mouse models are commonly used in research applications due to the relatively low cost, highly characterized strains, as well as the availability of many genetically modified phenotypes. In this study, we characterized an ex vivo murine osteochondral repair model using human infrapatellar fat pad (IPFP) progenitor cells. DESIGN Femurs from euthanized mice were removed and clamped in a custom multidirectional vise to create cylindrical osteochondral defects 0.5 mm in diameter and 0.5 mm deep in both condyles. The IPFP contains progenitors that are a promising cell source for the repair of osteochondral defects. For proof of concept, human IPFP-derived progenitor cells, from osteoarthritic (OA) patients, cultured as pellets, were implanted into the defects and cultured in serum-free medium with TGFβ3 for 3 weeks and then processed for histology and immunostaining. RESULTS The custom multidirectional vise enabled reproducible creation of osteochondral defects in murine femoral condyles. Implantation of IPFP-derived progenitor cells led to development of cartilaginous tissue with Safranin O staining and deposition of collagen type II in the extracellular matrix. CONCLUSIONS We showed feasibility in creating ex vivo osteochondral defects and demonstrated the regenerative potential of OA human IPFP-derived progenitors in mouse femurs. The murine model can be used to study the effects of aging and OA on tissue regeneration and to explore molecular mechanisms of cartilage repair using genetically modified mice.
Collapse
Affiliation(s)
- Thomas J. A. van Schaik
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Florian Gaul
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik W. Dorthé
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Emily E. Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA,Darryl D. D’Lima, Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 North Torrey Pines Road, MS126, La Jolla, CA 92027, USA.
| |
Collapse
|
17
|
Sriwatananukulkit O, Tawonsawatruk T, Rattanapinyopituk K, Luangwattanawilai T, Srikaew N, Hemstapat R. Scaffold-Free Cartilage Construct from Infrapatellar Fat Pad Stem Cells for Cartilage Restoration. Tissue Eng Part A 2020; 28:199-211. [PMID: 32972295 DOI: 10.1089/ten.tea.2020.0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Once damaged, the articular cartilage has a very limited intrinsic capacity for self-renewal due to its avascular nature. If left untreated, damaged cartilage can lead to progressive degeneration of bone and eventually causes pain. Infrapatellar fat pad adipose-derived mesenchymal stromal cells (IPFP-ASCs) has a potential role for cartilage restoration. However, the therapeutic role for IPFP-ASCs remains to be evaluated in an appropriate osteochondral defect model. Thus, this study aimed to investigate the potential of using a three-dimensional (3D) cartilage construct of IPFP-ASCs as a promising source of cells to restore articular cartilage and to attenuate pain associated with the cartilage defect in an osteochondral defect model. The chondrogenic differentiation potential of the 3D cartilage construct derived from IPFP-ASCs was determined before implantation and postimplantation by gene expression and immunohistochemistry analysis. Pain-related behavior was also assessed by using a weight-bearing test. A significant pain-associated with the osteochondral defect was observed in this model in all groups postinduction; however, this pain can spontaneously resolve within 3 weeks postimplantation regardless of implantation of IPFP-ASCs constructs. The expression of SOX9 and COL2A1 genes in addition to protein expression were strongly expressed in 3D construct IPFP-ASCs. The existence of mature chondrocytes, along with significant (p < 0.05) positive immunostaining for type II collagen and aggrecan, were identified in the implanted site for up to 12 weeks compared with the untreated group, indicating hyaline cartilage regeneration. Taken together, this study demonstrated the successful outcome of osteochondral regeneration with scaffold-free IPFP-ASCs constructs in an osteochondral defect rat model. It provides novel and interesting insights into the current hypothesis that 3D construct IPFP-ASCs may offer potential benefits as an alternative approach to repair the cartilage defect. Impact statement This study provides evidence of using the human 3D scaffold-free infrapatellar fat pad adipose-derived mesenchymal stromal cells (IPFP-ASCs) construct to restore the full-thickness osteochondral defect in a rat model. This study showed that chondrogenic features of the construct could be retained for up to 12 weeks postimplantation. The results of this proof-of-concept study support that human 3D scaffold-free IPFP-ASCs construct has potential benefits in promoting the hyaline-like native cartilage restoration, which may be beneficial as a tissue-specific stem cell for cell-based cartilage therapy. There are several clinical advantages of IPFP-ASC including ease and minimal invasive harvesting, chondrogenic inducible property, and tissue-specific progenitors in the knee.
Collapse
Affiliation(s)
| | | | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narongrit Srikaew
- Research Centre, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Kumar A, Ghosh Kadamb A, Ghosh Kadamb K. Mesenchymal or Maintenance Stem Cell & Understanding Their Role in Osteoarthritis of the Knee Joint: A Review Article. THE ARCHIVES OF BONE AND JOINT SURGERY 2020; 8:560-569. [PMID: 33088856 DOI: 10.22038/abjs.2020.42536.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesenchymal Stem Cell (MSC) therapy in osteoarthritis has been hailed as a promising treatment for osteoarthritis due to their unlimited potential of healing and regeneration. Existing literature regarding their proper name, optimal sources, mechanisms of action, dosage, and route of administration, efficacy, and safety is debatable. This index review article has tried to connect these puzzling pieces of available information and brought clarity on some of these crucial issues. The author believes that Maintenance Stem Cells (MSC) may be a more suitable term than mesenchymal stem cell or medicinal signaling cells as their origin might not be limited to mesodermal tissue. Also, they have been shown capable of self-renewal, differentiation, and maintaining a cascade of healing & possibly regeneration at the implanted site. Only a small percentage of implanted MSC survive and rest undergo apoptosis after releasing growth factors, cytokines, and extracellular vesicles. These surviving MSC become active due to conformational changes induced by anti-environment stimuli and undergo limited self-renewal, proliferation, and differentiation, but only a few of them might incorporate into the host tissues. These cells generate & maintain a momentum of series of regenerative activities to improve the function of joint, stabilize or possibly enhance the cartilage quality. More randomized studies with long term follow-up are required to bring clarity on their ideal source, expansion, culture technique, optimum dosage, and route of administration and long-term safety issues.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Orthopaedics, Saudi German Hospital, Dubai, UAE
| | | | | |
Collapse
|
19
|
Degenerative osteoarthritis a reversible chronic disease. Regen Ther 2020; 15:149-160. [PMID: 33426213 PMCID: PMC7770340 DOI: 10.1016/j.reth.2020.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common chronic musculoskeletal disorder. It can affect any joint and is the most frequent single cause of disability in older adults. OA is a progressive degenerative disease involving the entire joint structure in a vicious circle that includes the capsule-bursa tissue inflammation, synovial fluid modifications, cartilage breakdown and erosions, osteochondral inflammatory damage leading to bone erosion and distortion. Research has identified the initial inflammatory-immunologic process that starts this vicious cycle leading to so-called early OA. Research has also identified the role played in the disease advancement by synoviocytes type A and B, chondrocytes, extracellular matrix, local immune-inflammatory mediators and proteases. This article investigates the joint-resident MSCs that play an essential local homeostatic role and regulate cell turn over and tissue repair. Resident MSCs establish and maintain a local regenerative microenvironment. The understanding of OA physiopathology clarifies the core mechanisms by which minimally invasive interventions might be able to halt and reverse the course of early stage OA. Interventions employing PRP, MSCs and exosomes are considered in this article.
Collapse
|
20
|
Tangchitphisut P, Srikaew N, Phongkitkarun S, Jaovisidha S, Tawonsawatruk T. Using iron sucrose-labeled adipose-derived mesenchymal stem cells in 1.5 and 3 T MRI tracking: An in vitro study. Heliyon 2020; 6:e04582. [PMID: 32775748 PMCID: PMC7398940 DOI: 10.1016/j.heliyon.2020.e04582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/31/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023] Open
Abstract
Objectives The objective of this study was to investigate iron sucrose labeling in mesenchymal stem cell (MSCs) tracking. Background Adipose-derived mesenchymal stem cell-based therapy is a promising strategy for promoting musculoskeletal repair. Methods Iron sucrose-labeled adipose-derived mesenchymal stem cells (IS-labeled ASCs) were tracked using T2-and T2∗-weighted sequences by 1.5 and 3 T MRI in an in vitro model. ASCs were isolated from cosmetic liposuction specimens. ASCs from passages 4-6 were labeled with iron sucrose (Venofer®) which was added to the cell culture medium. Pre- and post-iron sucrose labeled ASCs were evaluated for cell surface immunophenotypes. Cell viability as well as chondrogenic, adipogenic and osteogenic differentiation of IS-labeled-ASCs were evaluated. The IS-labeled ASCs were titrated into microtubes at 1 × 103, 1 × 104, 1 × 105 and 1 × 106 cells/ml/microtube and their intensities were determined by 1.5 and 3T MRI using T2-and T2∗-weighted sequences. Results The expression markers of IS-labeled ASCs from flow cytometry were equivalent to control. The mean cell viability was 97.73 ± 2.06%. Cell differentiations of IS-labeled ASCs were confirmed in each lineage using specific staining solutions. T2∗-weighted sequences (T2∗) were able to detect iron sucrose labeled-ASCs at a minimum of 1 × 105 cells/ml/microtube using 1.5 and 3T MRI, but the detection sensitivity was lower with T2-weighted sequences (T2). Conclusions Iron sucrose incubation is a safe alternative method for ASCs labeling and tracking using MRI following treatment. Clinicians and researchers should be able to visualize the location of ASCs engraftment without secondary surgical investigation involving tissue sampling.
Collapse
Affiliation(s)
| | | | - Sith Phongkitkarun
- Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Thailand
| | | | | |
Collapse
|
21
|
Greif DN, Kouroupis D, Murdock CJ, Griswold AJ, Kaplan LD, Best TM, Correa D. Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Front Bioeng Biotechnol 2020; 8:860. [PMID: 32850724 PMCID: PMC7399076 DOI: 10.3389/fbioe.2020.00860] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
The infrapatellar fat pad (IFP) has until recently been viewed as a densely vascular and innervated intracapsular/extrasynovial tissue with biomechanical roles in the anterior compartment of the knee. Over the last decade, secondary to the proposition that the IFP and synovium function as a single unit, its recognized tight molecular crosstalk with emerging roles in the pathophysiology of joint disease, and the characterization of immune-related resident cells with varying phenotypes (e.g., pro and anti-inflammatory macrophages), this structural complex has gained increasing attention as a potential therapeutic target in patients with various knee pathologies including osteoarthritis (KOA). Furthermore, the description of the presence of mesenchymal stem/stromal cells (MSC) as perivascular cells within the IFP (IFP-MSC), exhibiting immunomodulatory, anti-fibrotic and neutralizing activities over key local mediators, has promoted the IFP as an alternative source of MSC for cell-based therapy protocols. These complementary concepts have supported the growing notion of immune and inflammatory events participating in the pathogenesis of KOA, with the IFP/synovium complex engaging not only in amplifying local pathological responses, but also as a reservoir of potential therapeutic cell-based products. Consequently, the aim of this review is to outline the latest discoveries related with the IFP/synovium complex as both an active participant during KOA initiation and progression thus emerging as a potential target, and a source of therapeutic IFP-MSCs. Finally, we discuss how these notions may help the design of novel treatments for KOA through modulation of local cellular and molecular cascades that ultimately lead to joint destruction.
Collapse
Affiliation(s)
- Dylan N Greif
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Christopher J Murdock
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
22
|
Kouroupis D, Bowles AC, Greif DN, Leñero C, Best TM, Kaplan LD, Correa D. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells. Cytotherapy 2020; 22:677-689. [PMID: 32723596 DOI: 10.1016/j.jcyt.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cell (MSC)-based therapies have gained attention as potential alternatives for multiple musculoskeletal indications based on their trophic and immunomodulatory properties. The infrapatellar fat pad (IFP) serves as a reservoir of MSCs, which play crucial roles modulating inflammatory and fibrotic events at the IFP and its neighboring tissue, the synovium. In an effort to comply with the existing regulatory framework regarding cell-based product manufacturing, we interrogated the in vitro immunomodulatory capacity of human-derived IFP-MSCs processed under different conditions, including a regulatory-compliant protocol, in addition to their response to the inflammatory and fibrotic environments often present in joint disease. METHODS Immunophenotype, telomere length, transcriptional and secretory immunomodulatory profiles and functional immunopotency assay were assessed in IFP-MSCs expanded in regular fetal bovine serum (FBS)-supplemented medium and side-by-side compared with same-donor cells processed with two media alternatives (i.e., regulatory-compliant pooled human platelet lysate [hPL] and a chemically reinforced/serum-reduced [Ch-R] formulation). Finally, to assess the effects of such formulations on the ability of the cells to respond to pro-inflammatory and pro-fibrotic conditions, all three groups were stimulated ex vivo (i.e., cell priming) with a cocktail containing TNFα, IFNγ and connective tissue growth factor (tumor-initiating cells) and compared with non-induced cohorts assessing the same outcomes. RESULTS Non-induced and primed IFP-MSCs expanded in either hPL or Ch-R showed distinct morphology in vitro, similar telomere dynamics and distinct phenotypical and molecular profiles when compared with cohorts grown in FBS. Gene expression of IL-8, CD10 and granulocyte colony-stimulating factor was highly enriched in similarly processed IFP-MSCs. Cell surface markers related to the immunomodulatory capacity, including CD146 and CD10, were highly expressed, and secretion of immunomodulatory and pro-angiogenic factors was significantly enhanced with both hPL and Ch-R formulations. Upon priming, the immunomodulatory phenotype was enhanced, resulting in further increase in CD146 and CD10, significant CXCR4 presence and reduction in TLR3. Similarly, transcriptional and secretory profiles were enriched and more pronounced in IFP-MSCs expanded in either hPL or Ch-R, suggesting a synergistic effect between these formulations and inflammatory/fibrotic priming conditions. Collectively, increased indoleamine-2,3-dioxygenase activity and prostaglandin E2 secretion for hPL- and Ch-R-expanded IFP-MSCs were functionally reflected by their robust T-cell proliferation suppression capacity in vitro compared with IFP-MSCs expanded in FBS, even after priming. CONCLUSIONS Compared with processing using an FBS-supplemented medium, processing IFP-MSCs with either hPL or Ch-R similarly enhances their immunomodulatory properties, which are further increased after exposure to an inflammatory/fibrotic priming environment. This evidence supports the adoption of regulatory-compliant practices during the manufacturing of a cell-based product based on IFP-MSCs and anticipates a further enhanced response once the cells face the pathological environment after intra-articular administration. Mechanistically, the resulting functionally enhanced cell-based product has potential utilization as a novel, minimally invasive cell therapy for joint disease through modulation of local immune and inflammatory events.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Annie C Bowles
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Miami, Florida, USA
| | - Dylan N Greif
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Clarissa Leñero
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Cryovida Banco de Células Madre Adultas, Guadalajara, Jalisco, Mexico
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
23
|
Adipose Tissue-Derived Stem Cells Retain Their Adipocyte Differentiation Potential in Three-Dimensional Hydrogels and Bioreactors †. Biomolecules 2020; 10:biom10071070. [PMID: 32709032 PMCID: PMC7408056 DOI: 10.3390/biom10071070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disorder with a significant economic and healthcare impact. The knee joint is composed of cartilage and the adjoining bone, a synovial capsule, the infrapatellar fat pad (IPFP), and other connective tissues such as tendons and ligaments. Adipose tissue has recently been highlighted as a major contributor to OA through strong inflammation mediating effects. In this study, methacrylated gelatin (GelMA) constructs seeded with adipose tissue-derived mesenchymal stem cells (ASCs) and cultured in a 3D printed bioreactor were investigated for use in microphysiological systems to model adipose tissue in the knee joint. Four patient-derived ASC populations were seeded at a density of 20 million cells/mL in GelMA. Live/Dead and boron-dipyrromethene/4′,6-diamidino-2-phenylindole (BODIPY/DAPI) staining of cells within the constructs demonstrated robust cell viability after 28 days in a growth (control) medium, and robust cell viability and lipid accumulation in adipogenic differentiation medium. qPCR gene expression analysis and protein analysis demonstrated an upregulated expression of key adipogenesis-associated genes. Overall, these data indicate that ASCs retain their adipogenic potential when seeded within GelMA hydrogels and cultured within perfusion bioreactors, and thus can be used in a 3D organ-on-a-chip system to study the role of the IPFP in the pathobiology of the knee OA.
Collapse
|
24
|
Francis SL, Yao A, Choong PFM. Culture Time Needed to Scale up Infrapatellar Fat Pad Derived Stem Cells for Cartilage Regeneration: A Systematic Review. Bioengineering (Basel) 2020; 7:bioengineering7030069. [PMID: 32635513 PMCID: PMC7552776 DOI: 10.3390/bioengineering7030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a rich source of stem cells, which are reported to represent 2% of the stromal vascular fraction (SVF). The infrapatellar fat pad (IFP) is a unique source of tissue, from which human adipose-derived stem cells (hADSCs) have been shown to harbour high chondrogenic potential. This review aims to calculate, based on the literature, the culture time needed before an average knee articular cartilage defect can be treated using stem cells obtained from arthroscopically or openly harvested IFP. Firstly, a systematic literature review was performed to search for studies that included the number of stem cells isolated from the IFP. Subsequent analysis was conducted to identify the amount of IFP tissue harvestable, stem cell count and the overall yield based on the harvesting method. We then determined the minimum time required before treating an average-sized knee articular cartilage defect with IFP-derived hADSCs by using our newly devised equation. The amount of fat tissue, the SVF cell count and the stem cell yield are all lower in arthroscopically harvested IFP tissue compared to that collected using arthrotomy. As an extrapolation, we show that an average knee defect can be treated in 20 or 17 days using arthroscopically or openly harvested IFP-derived hADSCs, respectively. In summary, the systematic review conducted in this study reveals that there is a higher amount of fat tissue, SVF cell count and overall yield (cells/volume or cells/gram) associated with open (arthrotomy) compared to arthroscopic IFP harvest. In addition to these review findings, we demonstrate that our novel framework can give an indication about the culture time needed to scale up IFP-derived stem cells for the treatment of articular cartilage defects based on harvesting method.
Collapse
Affiliation(s)
- Sam L. Francis
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3065, Australia;
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC 3065, Australia
- Correspondence: ; Tel.: +61-466-640-801
| | - Angela Yao
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
| | - Peter F. M. Choong
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3065, Australia;
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC 3065, Australia
| |
Collapse
|
25
|
Stocco E, Barbon S, Piccione M, Belluzzi E, Petrelli L, Pozzuoli A, Ramonda R, Rossato M, Favero M, Ruggieri P, Porzionato A, Di Liddo R, De Caro R, Macchi V. Infrapatellar Fat Pad Stem Cells Responsiveness to Microenvironment in Osteoarthritis: From Morphology to Function. Front Cell Dev Biol 2019; 7:323. [PMID: 31921840 PMCID: PMC6914674 DOI: 10.3389/fcell.2019.00323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
Recently, infrapatellar fat pad (IFP) has been considered as a source of stem cells for cartilage regeneration in osteoarthritis (OA) due to their ability for differentiation into chondrocytes. However, stressful conditions, like that related to OA, may induce a pathogenic reprograming. The aim of this study was to characterize the structural and functional properties of a new population of stem cells isolated from osteoarthritic infrapatellar fat pad (OA-IFP). Nine OA patients undergoing total knee arthroplasty (TKA) were enrolled in this study [median age = 74 years, interquartile range (IQR) = 78.25-67.7; median body mass index = 29.4 Kg/m2, IQR = 31.7-27.4]. OA-IFP stem cells were isolated and characterized for morphology, stemness, metabolic profile and multi-differentiative potential by transmission electron microscopy, flow cytometric analysis, gene expression study and cytochemistry. OA-IFP stem cells displayed a spindle-like morphology, self-renewal potential and responsiveness (CD44, CD105, VEGFR2, FGFR2, IL1R, and IL6R) to microenvironmental stimuli. Characterized by high grade of stemness (STAT3, NOTCH1, c-Myc, OCT-4, KLF4, and NANOG), the cells showed peculiar immunophenotypic properties (CD73+/CD39+/CD90+/CD105+/CD44–/+/CD45–). The expression of HLA-DR, CD34, Fas and FasL was indicative of a possible phenotypic reprograming induced by inflammation. Moreover, the response to mechanical stimuli together with high expression level of COL1A1 gene, suggested their possible protective response against in vivo mechanical overloading. Conversely, the low expression of CD38/NADase was indicative of their inability to counteract NAD+-mediated OA inflammation. Based on the ultrastructural, immunophenotypic and functional characterization, OA-IFP stem cells were hypothesized to be primed by the pathological environment and to exert incomplete protective activity from OA inflammation.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, Padua, Italy
| | - Silvia Barbon
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, Padua, Italy
| | - Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padua, Italy.,Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padua, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padua, Italy.,Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padua, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| | - Marco Rossato
- Clinica Medica 3, Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, Padua, Italy.,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy.,LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| |
Collapse
|
26
|
Radhakrishnan S, Trentz OA, Reddy MS, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte 2019; 8:164-177. [PMID: 31033391 PMCID: PMC6768268 DOI: 10.1080/21623945.2019.1607424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The present Study investigated the intrinsic ability of adipose tissue-derived stem cells (ADSCs) and their neural transdifferentiation in a stage-specific manner. Woodbury’s Chemical induction was implemented with modifications to achieve neural transdifferentiation. In Group I, ADSCs were preinduced with β-mercaptoethanol (β-ME) and later, with neural induction medium (NIM). In Group II, ADSCs were directly treated with NIM. In Group III, a DNA methyltransferase (DNMT) inhibitor 5-azacytidine was applied to understand whether transdifferentiation is controlled by epigenetic marks. Irrespective of the presence of (β-ME), the differentiation protocol resulted in glial-lineage cells. Group III produced poorly -differentiated neural cells with neuron-specific enolase positivity. A neuroprogenitor stage (NPC) was identified at d 11 after induction only in Group I. In other groups, this stage was not morphologically distinct. We explored the stage-specific incidence NPC, by alternatively treating them with basic fibroblast growth factor (bFGF), and antioxidants to validate if different signalling could cause varied outcomes (Group IV). They differentiated into neurons, as defined by cell polarity and expression of specific proteins. Meanwhile, neuroprogenitors exposed to NIM (Group I) produced glial-lineage cells. Further refinement and study of the occurrence and terminal differentiation of neuroprogenitors would identify a promising source for neural tissue replacement.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | - Omana Anna Trentz
- MIOT Institute of Research (MIR), MIOT International, Chennai, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mohamed Rela
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mahesh Kandasamy
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
27
|
Eymard F, Pigenet A, Rose C, Bories A, Flouzat-Lachaniette CH, Berenbaum F, Chevalier X, Houard X, Nourissat G. Contribution of adipocyte precursors in the phenotypic specificity of intra-articular adipose tissues in knee osteoarthritis patients. Arthritis Res Ther 2019; 21:252. [PMID: 31775901 PMCID: PMC6882235 DOI: 10.1186/s13075-019-2058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/08/2019] [Indexed: 01/15/2023] Open
Abstract
Background Intra-articular adipose tissues (IAATs) are involved in osteoarthritis (OA) pathophysiology. We hypothesize that mesenchymal cells residing in IAATs may account for the specific inflammatory and metabolic patterns in OA patients. Methods Adipocyte precursors (preadipocytes and dedifferentiated fat cells (DFATc)) from IAATs (infrapatellar and suprapatellar fat pads) and autologous subcutaneous adipose tissues (SCATs) were isolated from knee OA patients. The ability of these precursors to differentiate into adipocytes was assessed by oil red O staining after 14 days of culture in adipogenic medium. The gene expression of adipocyte-related transcription factors (C/EBP-α and PPAR-γ) and development-related factors (EN1 and SFRP2) were analyzed. The inflammatory pattern was assessed by RT-qPCR and ELISA (interleukin 6 (IL-6), IL-8, Cox2, and prostaglandin E2 (PGE2)) after a 24-h stimulation by IL-1β (1 ng/mL) and by conditioned medium from OA synovium. Results IAAT preadipocytes displayed a significantly higher ability to differentiate into adipocytes and expressed significantly more C/EBP-α mRNA than SCAT preadipocytes. IAAT preadipocytes expressed significantly less EN-1 and SFRP2 mRNA than SCAT preadipocytes. Unstimulated IAAT preadipocytes displayed a less inflammatory pattern (IL-6, IL-8, and Cox2/PGE2) than SCAT preadipocytes. In contrast, the response of IAAT preadipocytes to an inflammatory stimulus (IL-1β and conditioned media of OA synovium) was exacerbated compared to that of SCAT preadipocytes. Similar results were obtained with DFATc. Conclusion IAAT adipocyte precursors from OA patients have a specific phenotype, which may account for the unique phenotype of OA IAATs. The exacerbated response of IAAT preadipocytes to inflammatory stimulation may contribute to OA pathophysiology.
Collapse
Affiliation(s)
- Florent Eymard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France.,Department of Rheumatology, AP-HP Henri Mondor Hospital, F-94010, Créteil Cedex, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Cindy Rose
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Anouchka Bories
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | | | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France. .,Department of Rheumatology, AP-HP Saint-Antoine Hospital, Labex Transimmunomics, DHU i2B, F-75012, Paris, France. .,INSERM UMR-S 938 "Metabolism and Age-related Joint Diseases", Saint-Antoine Research Center, 27 rue Chaligny, F-75571, Paris Cedex 12, France.
| | - Xavier Chevalier
- Department of Rheumatology, AP-HP Henri Mondor Hospital, F-94010, Créteil Cedex, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Geoffroy Nourissat
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France.,Groupe Ramsay Générale de Santé, Clinique Maussins Nollet, F-75019, Paris, France
| |
Collapse
|
28
|
Mantripragada VP, Piuzzi NS, Bova WA, Boehm C, Obuchowski NA, Lefebvre V, Midura RJ, Muschler GF. Donor-matched comparison of chondrogenic progenitors resident in human infrapatellar fat pad, synovium, and periosteum - implications for cartilage repair. Connect Tissue Res 2019; 60:597-610. [PMID: 31020864 DOI: 10.1080/03008207.2019.1611795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: There is a clinical need to better characterize tissue sources being used for stem cell therapies. This study focuses on comparison of cells and connective tissue progenitors (CTPs) derived from native human infrapatellar fatpad (IPFP), synovium (SYN), and periosteum (PERI). Materials and Methods: IPFP, SYN, PERI were harvested from twenty-eight patients undergoing arthroplasty. CTPs were quantitatively characterized using automated colony-forming-unit assay to compare total nucleated cell concentration-[Cell], cells/mg; prevalence-(PCTP), CTPs/million nucleated cells; CTP concentration-[CTP], CTPs/mg; proliferation and differentiation potential; and correlate outcomes with patient's age and gender. Results: [Cell] did not differ between IPFP, SYN, and PERI. PCTP was influenced by age and gender: patients >60 years, IPFP and SYN had higher PCTP than PERI (p < 0.001) and females had higher PCTP in IPFP (p < 0.001) and SYN (p = 0.001) than PERI. [CTP] was influenced by age: patients <50 years, SYN (p = 0.0165) and PERI (p < 0.001) had higher [CTP] than IPFP; patients between 60 and 69 years, SYN (p < 0.001) had higher [CTP] than PERI; patients >70 years, IPFP (p = 0.006) had higher [CTP] than PERI. In patients >60 years, proliferation potential of CTPs differed significantly (SYN>IPFP>PERI); however, differentiation potentials were comparable between all three tissue sources. Conclusion: SYN and IPFP may serve as a preferred tissue source for patients >60 years, and PERI along with SYN and IPFP may serve as a preferred tissue source for patients <60 years for cartilage repair. However, the heterogeneity among the CTPs in any given tissue source suggests performance-based selection might be useful to optimize cell-sourcing strategies to improve efficacy of cellular therapies for cartilage repair.
Collapse
Affiliation(s)
- V P Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - N S Piuzzi
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA.,Department of Orthopedic Surgery, Cleveland Clinic , Cleveland , OH , USA.,Department of Orthopaedic Surgery, Instituto Universitario del Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
| | - W A Bova
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - C Boehm
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - N A Obuchowski
- Department of Quantitative Health Science, Cleveland Clinic , Cleveland , OH , USA
| | - V Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic , Cleveland , OH , USA
| | - R J Midura
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - G F Muschler
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA.,Department of Orthopedic Surgery, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
29
|
Kouroupis D, Bowles AC, Willman MA, Perucca Orfei C, Colombini A, Best TM, Kaplan LD, Correa D. Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Sci Rep 2019; 9:10864. [PMID: 31350444 PMCID: PMC6659713 DOI: 10.1038/s41598-019-47391-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
The infrapatellar fat pad (IFP) serves as a reservoir of Mesenchymal Stem Cells (MSC), and with adjacent synovium plays key roles in joint disease including the production of Substance P (SP) affecting local inflammatory responses and transmitting nociceptive signals. Here, we interrogate human IFP-derived MSC (IFP-MSC) reaction to inflammatory and pro-fibrotic environments (cell priming by TNFα/IFNγ and TNFα/IFNγ/CTGF exposure respectively), compared with bone marrow-derived MSC (BM-MSC). Naïve IFP-MSC exhibit increased clonogenicity and chondrogenic potential compared with BM-MSC. Primed cells experienced dramatic phenotypic changes, including a sharp increase in CD10, upregulation of key immunomodulatory transcripts, and secreted growth factors/cytokines affecting key pathways (IL-10, TNF-α, MAPK, Ras and PI3K-Akt). Naïve, and more so primed MSC (both) induced SP degradation in vitro, reproduced with their supernatants and abrogated with thiorphan, a CD10 inhibitor. These findings were reproduced in vivo in a rat model of acute synovitis, where transiently engrafted human IFP-MSC induced local SP reduction. Functionally, primed IFP-MSC demonstrated sustained antagonism of activated human peripheral blood mononuclear cells (PBMC) proliferation, significantly outperforming a declining dose-dependent effect with naïve cohorts. Collectively, our in vitro and in vivo data supports cell priming as a way to enhance the immunoregulatory properties of IFP-MSC, which selectively engraft in areas of active synovitis/IFP fibrosis inducing SP degradation, resulting in a cell-based product alternative to BM-MSC to potentially treat degenerative/inflammatory joint diseases.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Annie C Bowles
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Miami, FL, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Thomas M Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Lee D Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Radhakrishnan S, Trentz OA, Martin CA, Reddy MS, Rela M, Chinnarasu M, Kalkura N, Sellathamby S. Effect of passaging on the stemness of infrapatellar fat pad‑derived stem cells and potential role of nucleostemin as a prognostic marker of impaired stemness. Mol Med Rep 2019; 20:813-829. [PMID: 31115526 PMCID: PMC6579983 DOI: 10.3892/mmr.2019.10268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Infrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle‑shaped morphology, self‑renewability and homogeneity at P2‑4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell‑based therapy, particularly for neurodegenerative diseases.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Omana Anna Trentz
- MIOT Institute of Research, MIOT International, Chennai 600089, India
| | - Catherine Ann Martin
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Mohamed Rela
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Marimuthu Chinnarasu
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | | | | |
Collapse
|
31
|
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L, Sopena JJ. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int J Mol Sci 2019; 20:ijms20123105. [PMID: 31242644 PMCID: PMC6627452 DOI: 10.3390/ijms20123105] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
32
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
33
|
Stephen JM, Sopher R, Tullie S, Amis AA, Ball S, Williams A. The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella. Knee Surg Sports Traumatol Arthrosc 2018; 26:3515-3524. [PMID: 29679117 DOI: 10.1007/s00167-018-4943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE The infrapatellar fat pad (IFP) is a common cause of knee pain and loss of knee flexion and extension. However, its anatomy and behavior are not consistently defined. METHODS Thirty-six unpaired fresh frozen knees (median age 34 years, range 21-68) were dissected, and IFP attachments and volume measured. The rectus femoris was elevated, suprapatellar pouch opened and videos recorded looking inferiorly along the femoral shaft at the IFP as the knee was flexed. The patellar retinacula were incised and the patella reflected distally. The attachment of the ligamentum mucosum (LMuc) to the intercondylar notch was released from the anterior cruciate ligament (ACL), both menisci and to the tibia via meniscotibial ligaments. IFP strands projecting along both sides of the patella were elevated and the IFP dissected from the inferior patellar pole. Magnetic resonance imaging (MRI) of one knee at ten flexion angles was performed and the IFP, patella, tibia and femur segmented. RESULTS In all specimens the IFP attached to the inferior patellar pole, femoral intercondylar notch (via the LMuc), proximal patellar tendon, intermeniscal ligament, both menisci and the anterior tibia via the meniscotibial ligaments. In 30 specimens the IFP attached to the anterior ACL fibers via the LMuc, and in 29 specimens it attached directly to the central anterior tibia. Proximal IFP extensions were identified alongside the patella in all specimens and visible on MRI [medially (100% of specimens), mean length 56.2 ± 8.9 mm, laterally (83%), mean length 23.9 ± 6.2 mm]. Mean IFP volume was 29.2 ± 6.1 ml. The LMuc, attached near the base of the middle IFP lobe, acting as a 'tether' drawing it superiorly during knee extension. The medial lobe consistently had a pedicle superomedially, positioned between the patella and medial trochlea. MRI scans demonstrated how the space between the anterior tibia and patellar tendon ('the anterior interval') narrowed during knee flexion, displacing the IFP superiorly and posteriorly as it conformed to the trochlear and intercondylar notch surfaces. CONCLUSION Proximal IFP extensions are a novel description. The IFP is a dynamic structure, displacing significantly during knee motion, which is, therefore, vulnerable to interference from trauma or repetitive overload. Given that this trauma is often surgical, it may be appropriate that surgeons learn to minimize injury to the fat pad at surgery.
Collapse
Affiliation(s)
- Joanna M Stephen
- Fortius Clinic, 17 Fitzhardinge St, London, W1H 6EQ, UK. .,Department of Mechanical Engineering, Imperial College London, London, UK.
| | - Ran Sopher
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Sebastian Tullie
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Andrew A Amis
- Department of Mechanical Engineering, Imperial College London, London, UK.,Musculoskeletal Surgery Group, Department of Surgery and Cancer, School of Medicine, Imperial College London, Charing Cross Hospital, London, UK
| | - Simon Ball
- Fortius Clinic, 17 Fitzhardinge St, London, W1H 6EQ, UK.,Department of Mechanical Engineering, Imperial College London, London, UK
| | - Andy Williams
- Fortius Clinic, 17 Fitzhardinge St, London, W1H 6EQ, UK. .,Department of Mechanical Engineering, Imperial College London, London, UK.
| |
Collapse
|
34
|
Huri PY, Hamsici S, Ergene E, Huri G, Doral MN. Infrapatellar Fat Pad-Derived Stem Cell-Based Regenerative Strategies in Orthopedic Surgery. Knee Surg Relat Res 2018; 30:179-186. [PMID: 29554720 PMCID: PMC6122943 DOI: 10.5792/ksrr.17.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
Infrapatellar fat pad is a densely vascularized and innervated extrasynovial tissue that fills the anterior knee compartment. It plays a role in knee biomechanics as well as constitutes a source of stem cells for regeneration after knee injury. Infrapatellar fat pad-derived stem cells (IPFP-ASCs) possess enhanced and age-independent differentiation capacity as compared to other stem cells, which makes them a very promising candidate in stem cell-based regenerative therapy. The aims of this review are to outline the latest advances and potential trends in using IPFP-ASCs and to emphasize the advantages over other sources of stem cells for applications in orthopedic surgery.
Collapse
Affiliation(s)
- Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Seren Hamsici
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey.,Ankara University Biotechnology Institute, Ankara, Turkey
| | - Gazi Huri
- Department of Orthopedics and Traumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mahmut Nedim Doral
- Department of Orthopedics and Traumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
35
|
Damia E, Chicharro D, Lopez S, Cuervo B, Rubio M, Sopena JJ, Vilar JM, Carrillo JM. Adipose-Derived Mesenchymal Stem Cells: Are They a Good Therapeutic Strategy for Osteoarthritis? Int J Mol Sci 2018; 19:ijms19071926. [PMID: 29966351 PMCID: PMC6073660 DOI: 10.3390/ijms19071926] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of disability in elderly population around the world. More than one-third of people over 65 years old shows either clinical or radiological evidence of OA. There is no effective treatment for this degenerative disease, due to the limited capacity for spontaneous cartilage regeneration. Regarding the use of regenerative therapies, it has been reported that one option to restore degenerated cartilage are adipose-derived mesenchymal stem cells (ASCs). The purpose of this review is to describe and compare the efficacy of ASCs versus other therapies in OA. Methods: Recent studies have shown that ASCs exert paracrine effects protecting against degenerative changes in chondrocytes. According to the above, we have carried out a review of the literature using a combination of osteoarthritis, stem cells, and regenerative therapies as keywords. Results: Conventional pharmacological therapies for OA treatment are considered before the surgical option, however, they do not stop the progression of the disease. Moreover, total joint replacement is not recommended for patients under 55 years, and high tibia osteotomy (HTO) is a viable solution to address lower limb malalignment with concomitant OA, but some complications have been described. In recent years, the use of mesenchymal stem cells (MSCs) as a treatment strategy for OA is increasing considerably, thanks to their capacity to improve symptoms together with joint functionality and, therefore, the patients’ quality of life. Conclusions: ASC therapy has a positive effect on patients with OA, although there is limited evidence and little long-term follow-up.
Collapse
Affiliation(s)
- Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Sergio Lopez
- Department of Animal Pathology. Instituto Universitario de Investigaciones Biomédicas y Sanitarias. University of Las Palmas de Gran Canaria, 35416 Las Palmas de Gran Canaria, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Jose Manuel Vilar
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
- Department of Animal Pathology. Instituto Universitario de Investigaciones Biomédicas y Sanitarias. University of Las Palmas de Gran Canaria, 35416 Las Palmas de Gran Canaria, Spain.
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| |
Collapse
|
36
|
Adipose-Derived Mesenchymal Stem Cells in the Use of Cartilage Tissue Engineering: The Need for a Rapid Isolation Procedure. Stem Cells Int 2018; 2018:8947548. [PMID: 29765427 PMCID: PMC5903192 DOI: 10.1155/2018/8947548] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have shown much promise with respect to their use in cartilage tissue engineering. MSCs can be obtained from many different tissue sources. Among these, adipose tissue can provide an abundant source of adipose-derived mesenchymal stem cells (ADMSCs). The infrapatellar fat pad (IFP) is a promising source of ADMSCs with respect to producing a cartilage lineage. Cell isolation protocols to date are time-consuming and follow conservative approaches that rely on a long incubation period of 24–48 hours. The different types of ADMSC isolation techniques used for cartilage repair will be reviewed and compared with the view of developing a rapid one-step isolation protocol that can be applied in the context of a surgical procedure.
Collapse
|
37
|
The Use of Vibrational Energy to Isolate Adipose-Derived Stem Cells. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1620. [PMID: 29464159 PMCID: PMC5811289 DOI: 10.1097/gox.0000000000001620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Background: Adipose-derived stem cell (ADSC)–based treatments have the potential to treat numerous soft-tissue pathologies. It would be beneficial to develop an efficient and reliable intraoperative, nonenzymatic method of isolating ADSCs for clinical use. This study aims to determine the (1) viability and proliferative capacity of ADSCs after exposure to vibrational energies and (2) efficacy of vibrational energy as a method of ADSC isolation from surgically harvested infrapatellar fat pad (IFP). Methods: Cultured ADSCs were exposed to 15 minutes of vibration (60 Hz) with displacements ranging from 0 to 2.5 mm to assess cell viability and proliferation. Then, arthroscopically harvested adipose tissue (IFP; n = 5 patients) was filtered and centrifuged to separate the stromal vascular fraction, which was exposed to 15 minutes of vibration (60 Hz; 1.3 mm or 2.5 mm displacement). A viability analysis was then performed along with proliferation and apoptosis assays. Results: Vibration treatment at all displacements had no effect on the viability or proliferation of the cultured ADSCs compared with controls. There was an increased apoptosis rate between the 2.5 mm displacement group (7.53%) and controls (5.17%; P < 0.05) at day 1, but no difference at days 2, 3, and 14. ADSCs were not isolated from the IFP tissue after vibration treatment. Conclusions: ADSCs maintained viability and proliferative capacity after 15 minutes of vibration at 60 Hz and 2.5 mm displacement. ADSCs were not isolated harvested IFP tissue after the application of vibrational energy.
Collapse
|
38
|
von Drygalski A, Rappazzo KC, Barnes RFW, Chang EY. Knee Fat Pad Volumes in Patients with Hemophilia and Their Relationship with Osteoarthritis. ARTHRITIS 2017; 2017:1578623. [PMID: 29359047 PMCID: PMC5735625 DOI: 10.1155/2017/1578623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 12/14/2022]
Abstract
Hemophilic arthropathy is a progressive, disabling condition with poorly understood pathobiology. Since there is an emerging interest to study the role of intra-articular fat pad size and biology in arthritic conditions, we explored fat pad volume changes in hemophilic arthropathy and to what extent they differed from osteoarthritis. We matched a cohort of 13 adult patients with hemophilic arthropathy of the knee with age- and gender-matched cohorts without osteoarthritis ("control cohort") and with the same degree of radiographic osteoarthritis ("OA cohort") in 1 : 2 fashion. Infrapatellar fat pad (IPFP) and suprapatellar fat pad (SPFP) volumes were calculated based on magnetic resonance imaging and differences in fat pad volumes, demographics, height, weight, and osteoarthritis scores were evaluated. Fat pad volumes were positively associated with body size parameters in all three cohorts but were unaffected by the degree of osteoarthritis. While IPFP volumes did not differ between cohorts, SPFP volumes expanded disproportionally with weight in hemophilia patients. Our observations indicate that IPFPs and SPFPs behave biologically differently in response to different arthritic stimuli. The exaggerated expansion of the SPFP in hemophilia patients highlights the importance of further studying the implications of fat pad biology for progression of hemophilic arthropathy.
Collapse
Affiliation(s)
- Annette von Drygalski
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Richard F. W. Barnes
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Eric Y. Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
39
|
Dragoo JL, Chang W. Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad. Am J Sports Med 2017; 45:3119-3127. [PMID: 28816507 DOI: 10.1177/0363546517719454] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The successful isolation of adipose-derived mesenchymal stem cells (ADSCs) from the arthroscopically harvested infrapatellar fat pad (IFP) would provide orthopaedic surgeons with an autologous solution for regenerative procedures. PURPOSE To demonstrate the quantity and viability of the mesenchymal stem cell population arthroscopically harvested from the IFP as well as the surrounding synovium. STUDY DESIGN Descriptive laboratory study. METHODS The posterior border of the IFP, including the surrounding synovial tissue, was harvested arthroscopically from patients undergoing anterior cruciate ligament reconstruction. Tissue was then collected in an AquaVage adipose canister, followed by fat fractionization using syringe emulsification and concentration with an AdiPrep device. In the laboratory, the layers of tissue were separated and then digested with 0.3% type I collagenase. The pelleted stromal vascular fraction (SVF) cells were then immediately analyzed for viability, mesenchymal cell surface markers by fluorescence-activated cell sorting, and clonogenic capacity. After culture expansion, the metabolic activity of the ADSCs was assessed by an AlamarBlue assay, and the multilineage differentiation capability was tested. The transition of surface antigens from the SVF toward expanded ADSCs at passage 2 was further evaluated. RESULTS SVF cells were successfully harvested with a mean yield of 4.86 ± 2.64 × 105 cells/g of tissue and a mean viability of 69.03% ± 10.75%, with ages ranging from 17 to 52 years (mean, 35.14 ± 13.70 years; n = 7). The cultured ADSCs composed a mean 5.85% ± 5.89% of SVF cells with a mean yield of 0.33 ± 0.42 × 105 cells/g of tissue. The nonhematopoietic cells (CD45-) displayed the following surface antigens as a percentage of the viable population: CD44+ (52.21% ± 4.50%), CD73+CD90+CD105+ (19.20% ± 17.04%), and CD44+CD73+CD90+CD105+ (15.32% ± 15.23%). There was also a significant increase in the expression of ADSC markers CD73 (96.97% ± 1.72%; P < .01), CD10 (84.47% ± 15.46%; P < .05), and CD166 (11.63% ± 7.84%; P < .005) starting at passage 2 compared with freshly harvested SVF cells. The clonogenic efficiency of SVF cells was determined at a mean 3.21% ± 1.52% for layer 1 and 1.51% ± 0.55% for layer 2. Differentiation into cartilage, fat, and bone tissue was demonstrated by tissue-specific staining and quantitative polymerase chain reaction. CONCLUSION SVF cells from the IFP and adjacent synovial tissue were successfully harvested using an arthroscopic technique and produced ADSCs with surface markers that meet criteria for defined mesenchymal stem cells. CLINICAL RELEVANCE An autologous source of stem cells can now be harvested using a simple arthroscopic technique that will allow orthopaedic surgeons easier access to progenitor cells for regenerative procedures.
Collapse
Affiliation(s)
- Jason L Dragoo
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Wenteh Chang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
40
|
Muttigi MS, Kim BJ, Choi B, Yoshie A, Kumar H, Han I, Park H, Lee SH. Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model. J Tissue Eng Regen Med 2017; 12:667-675. [PMID: 28556569 DOI: 10.1002/term.2485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
Matrilin-3 is an essential extracellular matrix component present only in cartilaginous tissues. Matrilin-3 exerts chondroprotective effects by regulating an anti-inflammatory function and extracellular matrix components. We hypothesized that the codelivery of matrilin-3 with infrapatellar adipose-tissue-derived mesenchymal stem cells (Ad-MSCs) may enhance articular cartilage regeneration. Matrilin-3 treatment of Ad-MSCs in serum-free media induced collagen II and aggrecan expression, and matrilin-3 in chondrogenic media also enhanced in vitro chondrogenic differentiation. Next, the in vivo effect of matrilin-3 codelivery with Ad-MSCs on cartilage regeneration was assessed in an osteochondral defect model in Sprague Dawley rats: Ad-MSCs and hyaluronic acid were implanted at the defect site with or without matrilin-3 (140, 280, and 700 ng). Safranin O staining revealed that matrilin-3 (140 and 280 ng) treatment significantly improved cartilage regeneration and glycosaminoglycan accumulation. In the animals treated with 140-ng matrilin-3, in particular, the defect site exhibited complete integration with surrounding tissue and a smooth glistening surface. The International Cartilage Repair Society macroscopic and O'Driscoll microscopic scores for regenerated cartilage were furthermore shown to be considerably higher for this group (matrilin-3; 140 ng) compared with the other groups. Furthermore, the defects treated with 140-ng matrilin-3 revealed significant hyaline-like cartilage regeneration in the osteochondral defect model; in contrast, the defects treated with 700-ng matrilin-3 exhibited drastically reduced cartilage regeneration with mixed hyaline-fibrocartilage morphology. Codelivery of matrilin-3 with Ad-MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue-specific protein for a cartilage-targeted stem cell therapy.
Collapse
Affiliation(s)
- Manjunatha S Muttigi
- Department of Biomedical Science, CHA University, Seongnam, South Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Byoung Ju Kim
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| | - Arai Yoshie
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| | - Hemant Kumar
- Department of Biomedical Science, CHA University, Seongnam, South Korea.,Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| |
Collapse
|
41
|
do Amaral RJFC, Almeida HV, Kelly DJ, O'Brien FJ, Kearney CJ. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy. Stem Cells Int 2017; 2017:6843727. [PMID: 29018484 PMCID: PMC5606137 DOI: 10.1155/2017/6843727] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Henrique V. Almeida
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal J. Kearney
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
42
|
Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med 2017; 6:1940-1948. [PMID: 28836738 PMCID: PMC6430045 DOI: 10.1002/sctm.17-0148] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Bioprinting is a quickly progressing technology, which holds the potential to generate replacement tissues and organs. Stem cells offer several advantages over differentiated cells for use as starting materials, including the potential for autologous tissue and differentiation into multiple cell lines. The three most commonly used stem cells are embryonic, induced pluripotent, and adult stem cells. Cells are combined with various natural and synthetic materials to form bioinks, which are used to fabricate scaffold‐based or scaffold‐free constructs. Computer aided design technology is combined with various bioprinting modalities including droplet‐, extrusion‐, or laser‐based bioprinting to create tissue constructs. Each bioink and modality has its own advantages and disadvantages. Various materials and techniques are combined to maximize the benefits. Researchers have been successful in bioprinting cartilage, bone, cardiac, nervous, liver, and vascular tissues. However, a major limitation to clinical translation is building large‐scale vascularized constructs. Many challenges must be overcome before this technology is used routinely in a clinical setting. Stem Cells Translational Medicine2017;6:1940–1948
Collapse
Affiliation(s)
| | | | - Aman Dhawan
- Department of Orthopedic Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics, Pennsylvania, USA.,Department of Biomedical Engineering, Pennsylvania, USA.,Huck Institutes of the Life Sciences, Pennsylvania, USA.,Materials Research Institute, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
43
|
Human Suprapatellar Fat Pad-Derived Mesenchymal Stem Cells Induce Chondrogenesis and Cartilage Repair in a Model of Severe Osteoarthritis. Stem Cells Int 2017; 2017:4758930. [PMID: 28769981 PMCID: PMC5523339 DOI: 10.1155/2017/4758930] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Cartilage degeneration is associated with degenerative bone and joint processes in severe osteoarthritis (OA). Spontaneous cartilage regeneration is extremely limited. Often the treatment consists of a partial or complete joint implant. Adipose-derived stem cell (ASC) transplantation has been shown to restore degenerated cartilage; however, regenerative differences of ASC would depend on the source of adipose tissue. The infra- and suprapatellar fat pads surrounding the knee offer a potential autologous source of ASC for patients after complete joint substitution. When infrapatellar- and suprapatellar-derived stromal vascular fractions (SVF) were compared, a significantly higher CD105 (+) population was found in the suprapatellar fat. In addition, the suprapatellar SVF exhibited increased numbers of colony formation units and a higher population doubling in culture compared to the infrapatellar fraction. Both the suprapatellar- and infrapatellar-derived ASC were differentiated in vitro into mature adipocytes, osteocytes, and chondrocytes. However, the suprapatellar-derived ASC showed higher osteogenic and chondrogenic efficiency. Suprapatellar-derived ASC transplantation in a severe OA mouse model significantly diminished the OA-associated knee inflammation and cartilage degenerative grade, significantly increasing the production of glycosaminoglycan and inducing endogenous chondrogenesis in comparison with the control group. Overall, suprapatellar-derived ASC offer a potential autologous regenerative treatment for patients with multiple degenerative OA.
Collapse
|