1
|
Fabrizio G, Sivori F, Cavallo I, Truglio M, Toma L, Sperati F, Francalancia M, Obregon F, Pamparau L, Kovacs D, Pimpinelli F, Di Domenico EG. Efficacy of sodium hypochlorite in overcoming antimicrobial resistance and eradicating biofilms in clinical pathogens from pressure ulcers. Front Microbiol 2024; 15:1432883. [PMID: 39050624 PMCID: PMC11266179 DOI: 10.3389/fmicb.2024.1432883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Sodium hypochlorite (NaOCl) is widely recognized for its broad-spectrum antimicrobial efficacy in skin wound care. This study investigates the effectiveness of NaOCl against a range of bacterial and fungal isolates from pressure ulcer (PU) patients. We analyzed 20 bacterial isolates from PU patients, comprising carbapenem-resistant Klebsiella pneumoniae (CRKP), multidrug-resistant Acinetobacter baumannii (MDRAB), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible Staphylococcus aureus (MSSA), along with 5 Candida albicans isolates. Antibiotic resistance profiles were determined using standard susceptibility testing. Whole-genome sequencing (WGS) was employed to identify antimicrobial resistance genes (ARGs) and disinfectant resistance genes (DRGs). Genetic determinants of biofilm formation were also assessed. The antimicrobial activity of NaOCl was evaluated by determining the minimum inhibitory concentration (MIC) and the minimal biofilm eradication concentration (MBEC) for both planktonic and biofilm-associated cells. CRKP and MDRAB showed resistance to fluoroquinolones and carbapenems, while MRSA exhibited resistance to β-lactams and levofloxacin. MSSA displayed a comparatively lower resistance profile. WGS identified significant numbers of ARGs in CRKP and MDRAB, with fewer DRGs compared to MRSA and MSSA. All isolates possessed genes associated with fimbriae production and adhesion, correlating with pronounced biofilm biomass production. NaOCl demonstrated substantial antimicrobial activity against both planktonic cells and biofilms. The MIC90 for planktonic bacterial cells was 0.125 mg/mL, and the MBEC90 ranged from 0.225 to 0.5 mg/mL. For planktonic C. albicans, the MIC90 was 0.150 mg/mL, and the MBEC90 was 0.250 mg/mL. These results highlight the challenge in treating biofilm-associated infections and underscore the potential of NaOCl as a robust antimicrobial agent against difficult-to-treat biofilm infections at concentrations lower than those typically found in commercial disinfectants.
Collapse
Affiliation(s)
- Giorgia Fabrizio
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Luigi Toma
- Medical Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Sperati
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francisco Obregon
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Luisa Pamparau
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Gu GY, Chen M, Pan JC, Xiong XL. Risk of multi-drug-resistant organism acquisition from prior bed occupants in the intensive care unit: a meta-analysis. J Hosp Infect 2023; 139:44-55. [PMID: 37406860 DOI: 10.1016/j.jhin.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Multi-drug-resistant organisms (MDROs) have become a global threat to human health. Prior bed occupancy with MDRO infection/colonization is an exposure factor that is closely associated with the MDRO acquisition rates in subsequent bed patients in intensive care units (ICUs). A meta-analysis was conducted to investigate the risk of MDRO acquisition from prior bed occupants in the ICU. PubMed, Cochrane Library, Web of Science, and Embase databases and reference lists were searched for articles published up to December 2021. The Newcastle-Ottawa scale was used for quality assessment. The risk measure was calculated as the odds ratio (OR) and corresponding 95% confidence interval (CI), and the heterogeneity was tested using I2 method and Q test. Eight articles were analysed using a random-effects model. Of the 8147 patients exposed to prior bed occupants infected or colonized with MDROs, 421 had acquired MDROs. The control group consisted of 55,933 patients without exposure factors, of which 1768 had been infected/colonized with MDROs. The pooled acquisition OR for MDROs was 1.80 (95% CI: 1.42, 2.29), P<0.00001. Subgroup analysis based on multi-drug-resistant Gram-positive and Gram-negative organisms was conducted using a fixed-effects model. The results significantly varied between the groups. Heterogeneity was partially explained by the MDRO type. In conclusion, exposure of bed occupants to infected/colonized MDROs significantly increased the risk of MDRO acquisition in subsequent bed occupants.
Collapse
Affiliation(s)
- G Y Gu
- Neurosurgical Intensive Care Unit, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - M Chen
- Rehabilitation Medicine Department, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - J C Pan
- Neurosurgical Intensive Care Unit, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - X L Xiong
- The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Yan X, Xu Y, Shen C, Chen D. Inactivation of Staphylococcus aureus by Levulinic Acid Plus Sodium Dodecyl Sulfate and their Antibacterial Mechanisms on S. aureus Biofilms by Transcriptomic Analysis. J Food Prot 2023; 86:100050. [PMID: 36916557 DOI: 10.1016/j.jfp.2023.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
The combination of levulinic acid (LVA) and sodium dodecyl sulfate (SDS) in recent years has shown a considerable potential to use as an antimicrobial intervention. The objectives of this study were to evaluate the antimicrobial efficacy of the combination against Staphylococcus aureus in both planktonic and biofilm states and to investigate the transcriptional changes in S. aureus biofilms coincubated with sublethal concentrations of LVA and/or SDS. The minimum inhibitory concentrations (MICs) of LVA and SDS determined by the microdilution method were 3.125 and 0.039 mg/mL, respectively. An additive bacteriostatic interaction (fractional inhibitory concentration index = 1) between the two compounds was observed by the checkerboard assay, whereas a synergistic bactericidal activity was displayed by the time-kill assay. The biomass and viable cells in the biofilms were reduced by both antimicrobials either alone or in combination in a dose-dependent manner. Transcriptomics indicated that more differentially expressed (DE) genes were observed in the biofilm treated with SDS (103 up- and 205 downregulated DE genes) and LVA + SDS (187 up and 162 down) than that coincubated with LVA (34 up and 32 down). The SDS and LVA + SDS treatments mainly affected the expression of genes responsible for cell surface proteins, virulence factors, adhesins, and capsular polysaccharides. Both the antibiofilm assay and the transcriptomics indicated that SDS, not LVA, was the major chemical contributing to the antibacterial efficacy of the combination. This study reveals the behavioral responses and protective mechanisms of S. aureus to LVA and SDS applied individually or in combination.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Yiwei Xu
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China.
| |
Collapse
|
4
|
Yi Y, Wang H, Su L, Wang H, Zhang B, Su Y. A comparative investigation on the role and interaction of EsxA and EsxB in host immune response. Microb Pathog 2021; 154:104843. [PMID: 33691174 DOI: 10.1016/j.micpath.2021.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/01/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus (S. aureus) is a frequent and major cause of bovine mastitis; it poses a tremendous economic burden to dairy industries of numerous countries. Early-secretion antigen-6 secretion system (ESS) has been viewed as an essential virulence and pathogenic factor of S. aureus. EsxA and EsxB are small acidic proteins secreted by ESS and identified as potential T-cell antigens of S. aureus. Unlike those of Mycobacterium tuberculosis (M. tuberculosis), the EsxA and EsxB of S. aureus do not form a dimer. Instead, EsxA dimerizes with itself or EsaC. Therefore, the interaction of EsxA and EsxB remains incompletely understood. In this study, to explore their interactions, EsxA and EsxB were expressed and used for immunization, alone or in combination, of murine infection models. Both components can interact with each other. Through the analysis of the immune response by immunological method, EsxB could significantly enhance the EsxA-specific IgG2a antibody level and increase the proliferation proportion of CD8+ T cells. These results indicate that when vaccinated with EsxA, EsxB can play a critical role in stimulating T helper 1 immunity by activating IgG2a and CD8+ T cells. We further show that vaccination with the combination of EsxA and EsxB resulted in enhanced stimulation of TLR-4 and improved protection against S. aureus. The findings may help us better understand the role of EsxB in the virulence and pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Yuanyang Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hanqing Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lingling Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Baojiang Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Abstract
Biofilm formation on indwelling medical devices represents an exclusive evasion mechanism for many pathogenic bacteria to establish chronic infections. Staphylococcus aureus is one of the major bacterial pathogens that are able to induce both animal and human infections. The continued emergence of multiple drug-resistant S. aureus, especially methicillin-resistant S. aureus, is problematic due to limited treatment options. Biofilm formation by S. aureus complicates the treatment of methicillin-resistant S. aureus infections. Therefore, elucidating the mechanisms of biofilm formation in this pathogen is important for the development of alternative therapeutic strategies. Various environmental and genetic factors contribute to biofilm formation. In this review, we address the environmental factors and discuss how they affect biofilm formation by S. aureus.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
- Department of Veterinary Biomedical Science, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jiang Zhang
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
| | - Yinduo Ji
- Department of Veterinary Biomedical Science, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
6
|
Kriswandini IL, Rahardjo MB, Budi HS, Amalia R. The difference in biofilm molecular weight in Streptococcus mutans and Aggregatibacter actinomycetemcomitans induced by sucrose and soy protein (glycine soja). Indian J Dent Res 2019; 30:273-276. [PMID: 31169162 DOI: 10.4103/ijdr.ijdr_183_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context Biofilms consist of microbial cells and extracellular polymeric substance (EPS). Streptococcus mutans and Aggregatibacter actinomycetemcomtans are bacteria that can form biofilms and generate EPS. Biofilm formation can be induced by specific substances such as sucrose and protein. Aims To identify the molecular weight that determines biofilm protein profile expression of S. mutans and A. actinomycetemcomitans induced by sucrose (carbohydrate) and soy protein (glycine soja). Settings and Design Experimental laboratory study. Materials and Methods Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine the molecular weight. Statistical Analysis Used Nil. Results The results of analysis of protein SDS-PAGE showed the presence of 28 protein bands on A. actinomycetemcomitans biofilm in the media trypticase soy broth (TSB), 20 protein bands on biofilms of S. mutans in the media TSB, 29 protein bands on biofilm A. actinomycetemcomitans in the media brain heart infusion (BHI) + sucrose 2%, and 13 protein bands on biofilms of S. mutans in the media BHI + sucrose 2%. Conclusion There are differences in biofilm protein profile expression that determine the molecular weight of S. mutans biofilm and A. actinomycetemcomitans induced by sucrose (carbohydrate) and soy protein (glycine soja).
Collapse
Affiliation(s)
| | - Markus Budi Rahardjo
- Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hendrik Setia Budi
- Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Risma Amalia
- Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Biofilm Formation in Acinetobacter Baumannii: Genotype-Phenotype Correlation. Molecules 2019; 24:molecules24101849. [PMID: 31091746 PMCID: PMC6572253 DOI: 10.3390/molecules24101849] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023] Open
Abstract
Strains of Acinetobacter baumannii are commensal and opportunistic pathogens that have emerged as problematic hospital pathogens due to its biofilm formation ability and multiple antibiotic resistances. The biofilm-associated pathogens usually exhibit dramatically decreased susceptibility to antibiotics. This study was aimed to investigate the correlation of biofilm-forming ability, antibiotic resistance and biofilm-related genes of 154 A. baumannii isolates which were collected from a teaching hospital in Taiwan. Biofilm-forming ability of the isolates was evaluated by crystal violet staining and observed by scanning electron microscopy. Antibiotic susceptibility was determined by disc diffusion method and minimum inhibitory concentration; the biofilm-related genes were screened by polymerase chain reaction. Results showed that among the 154 tested isolates, 15.6% of the clinical isolates were weak biofilm producers, while 32.5% and 45.4% of them possessed moderate and strong biofilm formation ability, respectively. The experimental results revealed that the multiple drug resistant isolates usually provided a higher biofilm formation. The prevalence of biofilm related genes including bap, blaPER-1, csuE and ompA among the isolated strains was 79.2%, 38.3%, 91.6%, and 68.8%, respectively. The results indicated that the antibiotic resistance, the formation of biofilm and the related genes were significantly correlated. The results of this study can effectively help to understand the antibiotic resistant mechanism and provides the valuable information to the screening, identification, diagnosis, treatment and control of clinical antibiotic-resistant pathogens.
Collapse
|
8
|
Lineback CB, Nkemngong CA, Wu ST, Li X, Teska PJ, Oliver HF. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob Resist Infect Control 2018; 7:154. [PMID: 30568790 PMCID: PMC6298007 DOI: 10.1186/s13756-018-0447-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/05/2018] [Indexed: 01/18/2023] Open
Abstract
Background Antimicrobial disinfectants are used as primary treatment options against pathogens on surfaces in healthcare facilities to help prevent healthcare associated infections (HAIs). On many surfaces, pathogenic microorganisms exist as biofilms and form an extracellular matrix that protects them from the antimicrobial effects of disinfectants. Disinfectants are used as all-purpose antimicrobials though very few specifically make biofilm efficacy claims. The objective of this study was to evaluate the efficacy of eight registered disinfectants (six registered by the Environmental Protection Agency and two products registered in by the European Chemical Agency) with general bactericidal claims, but currently no biofilm efficacy claims, against Staphylococcus aureus ATTC-6538 and Pseudomonas aeruginosa ATCC-15442 biofilms. We hypothesized that hydrogen peroxide and sodium hypochlorite disinfectant products would be more effective than quaternary ammonium chlorides. Methods This study tested the bactericidal efficacy of eight registered disinfectant products against S. aureus ATCC-6538 and P. aeruginosa ATCC-15442 grown on glass coupons using a Center for Disease Control (CDC) biofilm reactor and EPA MLB SOP MB-19. Bactericidal efficacy was determined after treating coupons with disinfectants following standard EPA MLB SOP MB-20. Results Overall, sodium hypochlorite and hydrogen peroxide disinfectants had significantly higher bactericidal efficacies than quaternary ammonium chloride disinfectants. We also found that all tested disinfectants except for quaternary ammonium chloride disinfectants met and exceeded the EPA standard for bactericidal efficacy against biofilms. Conclusion In general, bactericidal efficacy against biofilms differed by active ingredient. The efficacies of sodium hypochlorite and hydrogen peroxide disinfectants did not vary between strains, but there were significant differences between strains treated with quaternary ammonium chloride disinfectants.
Collapse
Affiliation(s)
- Caitlinn B Lineback
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| | - Carine A Nkemngong
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| | - Sophie Tongyu Wu
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| | | | | | - Haley F Oliver
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
9
|
Ünal CM, Berges M, Smit N, Schiene-Fischer C, Priebe C, Strowig T, Jahn D, Steinert M. PrsA2 (CD630_35000) of Clostridioides difficile Is an Active Parvulin-Type PPIase and a Virulence Modulator. Front Microbiol 2018; 9:2913. [PMID: 30564207 PMCID: PMC6288519 DOI: 10.3389/fmicb.2018.02913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is the main cause for nosocomial antibiotic associated diarrhea and has become a major burden for the health care systems of industrial countries. Its main virulence factors, the small GTPase glycosylating toxins TcdA and TcdB, are extensively studied. In contrast, the contribution of other factors to development and progression of C. difficile infection (CDI) are only insufficiently understood. Many bacterial peptidyl-prolyl-cis/trans-isomerases (PPIases) have been described in the context of virulence. Among them are the parvulin-type PrsA-like PPIases of Gram-positive bacteria. On this basis, we identified CD630_35000 as the PrsA2 homolog in C. difficile and conducted its enzymatic and phenotypic characterization in order to assess its involvement during C. difficile infection. For this purpose, wild type CdPrsA2 and mutant variants carrying amino acid exchanges mainly in the PPIase domain were recombinantly produced. Recombinant CdPrsA2 showed PPIase activity toward the substrate peptide Ala-Xaa-Pro-Phe with a preference for positively charged amino acids preceding the proline residue. Mutation of conserved residues in its active site pocket impaired the enzymatic activity. A PrsA2 deficient mutant was generated in the C. difficile 630Δerm background using the ClosTron technology. Inactivation of prsA2 resulted in a reduced germination rate in response to taurocholic acid, and in a slight increase in resistance to the secondary bile acids LCA and DCA. Interestingly, in the absence of PrsA2 colonization of mice by C. difficile 630 was significantly reduced. We concluded that CdPrsA2 is an active PPIase that acts as a virulence modulator by influencing crucial processes like sporulation, germination and bile acid resistance resulting in attenuated mice colonization.
Collapse
Affiliation(s)
- Can Murat Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Türk-Alman Üniversitesi, Moleküler Biyoteknoloji Bölümü, Istanbul, Turkey
| | - Mareike Berges
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nathiana Smit
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Cordelia Schiene-Fischer
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Christina Priebe
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Till Strowig
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| |
Collapse
|
10
|
Fernández-Pérez R, Sáenz Y, Rojo-Bezares B, Zarazaga M, Rodríguez JM, Torres C, Tenorio C, Ruiz-Larrea F. Production and Antimicrobial Activity of Nisin Under Enological Conditions. Front Microbiol 2018; 9:1918. [PMID: 30233504 PMCID: PMC6134021 DOI: 10.3389/fmicb.2018.01918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023] Open
Abstract
Lactic acid bacteria (LAB) are responsible for the malolactic fermentation of wines, and, therefore, controlling the growth of these bacteria is a key factor for elaborating premium wines. Sulfur dioxide has been traditionally used as an efficient antimicrobial and antioxidant agent, however, nowadays consumers' demand tends toward a reduction of sulfur dioxide levels in wine and other fermented foods. A previous study of our research group had demonstrated the effectiveness of the bacteriocin nisin to inhibit the growth of enological LAB, and its activity had been tested in culture broths. The aim of this study was to investigate the possibility of controlling the growth of bacteria in wine by the use of nisin in combination with sulfur dioxide, and to study nisin production by the natural producer Lactococcus lactis LM29 under enological conditions. Our results showed that L. lactis LM29 produced nisin in the presence of 2 and 4% ethanol (v/v), while higher concentrations of ethanol fully inhibited the production of nisin. We obtained a nisin enriched active extract (NAE) from the cell-free supernatant of a culture of L. lactis LM29 in MRS broth containing 60% (v/v) sterile grape juice, and the extract was fully active in inhibiting the growth of the enological LAB tested by the microtiter method. Moreover, the nisin concentration of the obtained NAE could actually prevent the formation of an undesirable biofilm of LAB strains. Finally, our results of wine ageing under winery conditions showed that the use of 50 mg/L nisin decreased fourfold the concentration of sulfur dioxide required to prevent LAB growth in the wines.
Collapse
Affiliation(s)
- Rocío Fernández-Pérez
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain
| | - Yolanda Sáenz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Beatriz Rojo-Bezares
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Carmen Tenorio
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain
| | - Fernanda Ruiz-Larrea
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain
| |
Collapse
|
11
|
Tiwari S, Rajak S, Mondal DP, Biswas D. Sodium hypochlorite is more effective than 70% ethanol against biofilms of clinical isolates of Staphylococcus aureus. Am J Infect Control 2018; 46:e37-e42. [PMID: 29398071 DOI: 10.1016/j.ajic.2017.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/17/2017] [Accepted: 12/17/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Although disinfectants are used for eradication of bacteria from environmental surfaces, their antibiofilm efficacy is often not considered in determining the choice of disinfectant. AIM This study aimed to compare the effectiveness of 2 commonly used disinfectants, sodium hypochlorite and ethanol, against the planktonic and biofilm state of Staphylococcus aureus clinical isolates. MATERIALS AND METHODS Effect of 0.6% sodium hypochlorite and 70% ethanol was determined on the planktonic and biofilm states of 10 strong and weak biofilm formers through estimation of changes in colony forming unit counts and absorbance values. The morphologic changes were observed by scanning electron microscopy. RESULTS Significant difference in the efficacy of sodium hypochlorite and ethanol was observed against the biofilm (P = .004) as well as planktonic (P = .000) states of S aureus. However, no significant difference was observed in their activity against strong and weak biofilm formers. On electron microscopy, sodium hypochlorite was found to induce significant formation of craters and irregular depressions on the surface of strong biofilm formers. CONCLUSIONS Sodium hypochlorite demonstrated superior efficacy in controlling both planktonic and biofilm states of growth in S aureus. Furthermore, the characteristic morphologic changes observed in strong biofilm formers hint at its biofilm-specific activity.
Collapse
|
12
|
Misra N, Pu X, Holt DN, McGuire MA, Tinker JK. Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 2018; 101:6296-6309. [PMID: 29729920 DOI: 10.3168/jds.2017-14040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/18/2018] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen affecting both human and animal species. An effective vaccine to prevent S. aureus bovine disease and transmission would have positive effects on animal well-being, food production, and human health. The objective of this study was to identify multiple antigens that are immunoreactive during udder colonization and disease for exploration as vaccine antigens to prevent bovine mastitis. Staphylococcus aureus produces several cell wall-anchored and surface-associated virulence factors that play key roles in the pathogenesis of mastitis. Many of these proteins are conserved between different strains of S. aureus and represent promising vaccine candidates. We used an immunoproteomics approach to identify antigenic proteins from the surface of S. aureus. The expression of cell wall and surface proteins from S. aureus was induced under low iron conditions, followed by trypsin extraction and separation by 2-dimensional electrophoresis. The separated proteins were blotted with antibodies from mastitic bovine milk and identified by liquid chromatography-mass spectrometry. Thirty-eight unique proteins were identified, of which 8 were predicted to be surface exposed and involved in S. aureus virulence. Two surface proteins, iron-regulated surface determinant protein C (IsdC) and ESAT-6 secretion system extracellular protein (EsxA), were cloned, expressed, and purified from Escherichia coli for confirmation of immune reactivity by ELISA. A PCR of 37 bovine S. aureus isolates indicated that the presence of esxA and isdC is conserved, and amino acid alignments revealed that IsdC and EsxA sequences are highly conserved. The immunoproteomics technique used in this study generated reproducible results and identified surface exposed and reactive antigens for further characterization.
Collapse
Affiliation(s)
- N Misra
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - X Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725
| | - D N Holt
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - J K Tinker
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725; Department of Biological Sciences, Boise State University, Boise, ID 83725.
| |
Collapse
|
13
|
Alonso B, Pérez-Granda MJ, Rodríguez-Huerta A, Rodríguez C, Bouza E, Guembe M. The optimal ethanol lock therapy regimen for treatment of biofilm-associated catheter infections: an in-vitro study. J Hosp Infect 2018; 100:e187-e195. [PMID: 29653134 DOI: 10.1016/j.jhin.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ethanol-based lock therapy (LT) solutions are used as an alternative to antibiotics for the conservative management of catheter-related bloodstream infection. However, no clear consensus on regimen or dose has been reached. AIM To find the ethanol-based lock solution containing a sufficiently low concentration of ethanol for reduction of the metabolic activity of bacterial and fungal biofilms. METHODS Using an in-vitro model, three concentrations of ethanol (25%, 40%, 70%) were tested, with and without 60 IU of heparin, at six different time-points and against 24 h preformed biofilms of Staphylococcus aureus ATCC29213, Staphylococcus epidermidis (clinical isolate), Enterococcus faecalis ATCC33186, Candida albicans ATCC14058, and Escherichia coli ATCC25922. The reduction in the metabolic activity of the biofilm was measured using the tetrazolium salt assay and LT was considered to be successful when metabolic activity fell by >90%. Regrowth inhibition was then tested within 24 h and seven days after each LT regimen only at the ethanol concentration of the most successful LT regimen. FINDINGS The most successful LT was achieved with 40% ethanol + 60 IU of heparin only at 24, 72, and 24 h for seven-day regimens (P < 0.05). However, none of the regimens reached 45% RI within seven days of therapy. CONCLUSION According to our in-vitro data, an ethanol-based lock solution with 40% ethanol + 60 IU heparin administered daily for 72 h is sufficient to almost eradicate the metabolic activity of bacterial and fungal biofilms. Future studies are needed to study cell regrowth after LT.
Collapse
Affiliation(s)
- B Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M J Pérez-Granda
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain
| | - A Rodríguez-Huerta
- Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - C Rodríguez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - E Bouza
- Microbiology Department, Faculty of Medicine, Universidad Complutense de Madrid, Spain
| | - M Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
14
|
Formation of Staphylococcus aureus Biofilm in the Presence of Sublethal Concentrations of Disinfectants Studied via a Transcriptomic Analysis Using Transcriptome Sequencing (RNA-seq). Appl Environ Microbiol 2017; 83:AEM.01643-17. [PMID: 29030437 DOI: 10.1128/aem.01643-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them.IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species.
Collapse
|