1
|
Lee Y, Ju Y, Gee MS, Jeon SH, Kim N, Koo T, Lee JK. Survivin enhances hippocampal neurogenesis and cognitive function in Alzheimer's disease mouse model. CNS Neurosci Ther 2024; 30:e14509. [PMID: 37904343 PMCID: PMC11017468 DOI: 10.1111/cns.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
AIMS Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Yeongae Lee
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Yeon‐Joo Ju
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Min Sung Gee
- College of PharmacyKyung Hee UniversitySeoulKorea
| | | | - Namkwon Kim
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Taeyoung Koo
- College of PharmacyKyung Hee UniversitySeoulKorea
| | - Jong Kil Lee
- College of PharmacyKyung Hee UniversitySeoulKorea
| |
Collapse
|
2
|
RYBP regulates Pax6 during in vitro neural differentiation of mouse embryonic stem cells. Sci Rep 2022; 12:2364. [PMID: 35149723 PMCID: PMC8837790 DOI: 10.1038/s41598-022-06228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 12/05/2022] Open
Abstract
We have previously reported that RING1 and YY1 binding protein (RYBP) is important for central nervous system development in mice and that Rybp null mutant (Rybp−/−) mouse embryonic stem (ES) cells form more progenitors and less terminally differentiated neural cells than the wild type cells in vitro. Accelerated progenitor formation coincided with a high level of Pax6 expression in the Rybp−/− neural cultures. Since Pax6 is a retinoic acid (RA) inducible gene, we have analyzed whether altered RA signaling contributes to the accelerated progenitor formation and impaired differentiation ability of the Rybp−/− cells. Results suggested that elevated Pax6 expression was driven by the increased activity of the RA signaling pathway in the Rybp−/− neural cultures. RYBP was able to repress Pax6 through its P1 promoter. The repression was further attenuated when RING1, a core member of ncPRC1s was also present. According to this, RYBP and PAX6 were rarely localized in the same wild type cells during in vitro neural differentiation. These results suggest polycomb dependent regulation of Pax6 by RYBP during in vitro neural differentiation. Our results thus provide novel insights on the dynamic regulation of Pax6 and RA signaling by RYBP during mouse neural development.
Collapse
|
3
|
Laighneach A, Desbonnet L, Kelly JP, Donohoe G, Morris DW. Meta-Analysis of Brain Gene Expression Data from Mouse Model Studies of Maternal Immune Activation Using Poly(I:C). Genes (Basel) 2021; 12:genes12091363. [PMID: 34573345 PMCID: PMC8471627 DOI: 10.3390/genes12091363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal immune activation (MIA) is a known risk factor for schizophrenia (SCZ) and autism spectrum disorder (ASD) and is often modelled in animal studies in order to study the effect of prenatal infection on brain function including behaviour and gene expression. Although the effect of MIA on gene expression are highly heterogeneous, combining data from multiple gene expression studies in a robust method may shed light on the true underlying biological effects caused by MIA and this could inform studies of SCZ and ASD. This study combined four RNA-seq and microarray datasets in an overlap analysis and ranked meta-analysis in order to investigate genes, pathways and cell types dysregulated in the MIA mouse models. Genes linked to SCZ and ASD and crucial in neurodevelopmental processes including neural tube folding, regulation of cellular stress and neuronal/glial cell differentiation were among the most consistently dysregulated in these ranked analyses. Gene ontologies including K+ ion channel function, neuron and glial cell differentiation, synaptic structure, axonal outgrowth, cilia function and lipid metabolism were also strongly implicated. Single-cell analysis identified excitatory and inhibitory cell types in the cortex, hippocampus and striatum that may be affected by MIA and are also enriched for genes associated with SCZ, ASD and cognitive phenotypes. This points to the cellular location of molecular mechanisms that may be consistent between the MIA model and neurodevelopmental disease, improving our understanding of its utility to study prenatal infection as an environmental stressor.
Collapse
Affiliation(s)
- Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
| | - Lieve Desbonnet
- Discipline of Pharmacology and Therapeutics, National University of Ireland Galway, H91 TK33 Galway, Ireland; (L.D.); (J.P.K.)
| | - John P. Kelly
- Discipline of Pharmacology and Therapeutics, National University of Ireland Galway, H91 TK33 Galway, Ireland; (L.D.); (J.P.K.)
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
- Correspondence:
| |
Collapse
|
4
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Ring 1 and YY1 Binding Protein Expressed in Murine Spermatocytes but Dispensable for Spermatogenesis. Genes (Basel) 2020; 11:genes11010084. [PMID: 31940753 PMCID: PMC7016996 DOI: 10.3390/genes11010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Spermatogenesis is a complex cellular-differentiation process that relies on the precise regulation of gene expression in spermatogonia, meiotic, and postmeiotic germ cells. The Ring 1 and YY1 binding protein (Rybp) is a member of the mammalian polycomb-group (PcG) protein family that plays multifunctional roles in development. Previous findings indicate that Rybp may function as an important regulator of meiosis. However, its expression in the testes and function in spermatogenesis have not been examined. In this study, we investigated Rybp expression in postnatal mouse testes using qRT-PCR and immunohistochemistry. We also examined the function of Rybp in spermatogenesis by using a conditional-knockout approach. Results showed that the relative expression of Rybp mRNA was significantly upregulated in the testes of postnatal day (PD) 6 mice. Immunofluorescent staining revealed that Rybp was enriched in the spermatocytes. Surprisingly, a conditional deletion of Rybp in fetal germ cells did not affect the fertility or normal development of spermatogenic cells. Further analysis revealed that Rybp deletion resulted in a decreased expression of meiosis-related genes, but that meiosis progression was normal. Together, these findings suggest that Rybp expression was enriched in spermatocytes, but that it was not required for spermatogenesis.
Collapse
|
6
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
7
|
Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018; 7:cells7120268. [PMID: 30545089 PMCID: PMC6315602 DOI: 10.3390/cells7120268] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Skin undergoes continuous renewal throughout an individual’s lifetime relying on stem cell functionality. However, a decline of the skin regenerative potential occurs with age. The accumulation of senescent cells over time probably reduces tissue regeneration and contributes to skin aging. Keratinocytes and dermal fibroblasts undergo senescence in response to several intrinsic or extrinsic stresses, including telomere shortening, overproduction of reactive oxygen species, diet, and sunlight exposure. Epigenetic mechanisms directly regulate skin homeostasis and regeneration, but they also mark cell senescence and the natural and pathological aging processes. Progeroid syndromes represent a group of clinical and genetically heterogeneous pathologies characterized by the accelerated aging of various tissues and organs, including skin. Skin cells from progeroid patients display molecular hallmarks that mimic those associated with naturally occurring aging. Thus, investigations on progeroid syndromes strongly contribute to disclose the causal mechanisms that underlie the aging process. In the present review, we discuss the role of epigenetic pathways in skin cell regulation during physiologic and premature aging.
Collapse
|
8
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Zhan S, Wang T, Ge W, Li J. Multiple roles of Ring 1 and YY1 binding protein in physiology and disease. J Cell Mol Med 2018; 22:2046-2054. [PMID: 29383875 PMCID: PMC5867070 DOI: 10.1111/jcmm.13503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Ring 1 and YY1 binding protein (RYBP) was first identified in 1999, and its structure includes a conserved Npl4 Zinc finger motif at the N‐terminus, a central region that is characteristically enriched with arginine and lysine residues and a C‐terminal region enriched with serine and threonine amino acids. Over nearly 20 years, multiple studies have found that RYBP functions as an organ developmental adaptor. There is also evidence that RYBP regulates the expression of different genes involved in various aspects of biological processes, via a mechanism that is dependent on interactions with components of PcG complexes and/or through binding to different transcriptional factors. In addition, RYBP interacts directly or indirectly with apoptosis‐associated proteins to mediate anti‐apoptotic or pro‐apoptotic activity in both the cytoplasm and nucleus of various cell types. Furthermore, RYBP has also been shown to act as tumour suppressor gene in different solid tumours, but as an oncogene in lymphoma and melanoma. In this review, we summarize our current understanding of the functions of this multifaceted RYBP in physiological and pathological conditions, including embryonic development, apoptosis and cancer, as well as its role as a component of polycomb repressive complex 1.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianxiao Wang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
10
|
Li K, Zhong X, Yang S, Luo Z, Li K, Liu Y, Cai S, Gu H, Lu S, Zhang H, Wei Y, Zhuang J, Zhuo Y, Fan Z, Ge J. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold. Acta Biomater 2017; 54:117-127. [PMID: 28216299 DOI: 10.1016/j.actbio.2017.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
Numerous therapeutic procedures in modern medical research rely on the use of tissue engineering for the treatment of retinal diseases. However, the cell source and the transplantation method are still a limitation. Previously, it was reported that a self-organizing three-dimensional neural retina can be induced from human-induced pluripotent stem cells (hiPSCs). In this study, we disclose the generation of retinal ganglion cells (RGCs) from the neural retina and their seeding on a biodegradable poly (lactic-co-glycolic acid) (PLGA) scaffold to create an engineered RGC-scaffold biomaterial. Moreover, we explored the dendritic arbor, branching point, functional axon and action potential of the biomaterial. Finally, the cell-scaffold was transplanted into the intraocular environment of rabbits and rhesus monkeys. STATEMENT OF SIGNIFICANCE As a part of the mammalian central nervous system (CNS), the retinal ganglion cell (RGC) shows little regenerative capacity. With the use of medical biomaterial for cells seeding and deliver, a new domain is now emerging that uses tissue engineering therapy for retinal disease. However, previous studies utilized RGCs from rodent model, which has limitations for human disease treatment. In the present study, we generated RGCs from hiPSCs-3D neural retina and then seeded these RGCs on PLGA scaffold to create an engineered RGC-scaffold biomaterial. Moreover, we assessed the transplantation method for biomaterial in vivo. Our study provides a technique to produce the engineered human RGC-scaffold biomaterial.
Collapse
Affiliation(s)
- Kangjun Li
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Sijing Yang
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Ziming Luo
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Song Cai
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Yet-Sen University, Guangzhou, Guangdong, China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Yet-Sen University, Guangzhou, Guangdong, China
| | - Shoutao Lu
- Bai Duoan Medical Equipment Company, Qihe, Shandong, China
| | - Haijun Zhang
- Bai Duoan Medical Equipment Company, Qihe, Shandong, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Zhigang Fan
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yet-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type. Cell Signal 2016; 29:127-137. [PMID: 27989698 DOI: 10.1016/j.cellsig.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022]
Abstract
Ectopically expressed Ring1 and YY1 binding protein (RYBP) induces tumor cell apoptosis through promoting the formation of the death-inducing signaling complex (DISC) in the cytoplasm. However, transiently overexpressed as well as endogenous RYBP in tumor tissues were observed to be mainly located in the nucleus while that in adjacent non-tumor tissues distributed majorly in the cytoplasm. Currently, we do not know the nuclear localization signals and biological function of different subcellular location of RYBP. In this study, we employed bioinformatic analysis, deletion, point mutation, enhanced green fluorescence protein (EGFP) fusion and others, to investigate the elements responsible for RYBP nuclear import and to explore the anti-tumor activities of cytoplasm- and nuclear-located RYBP. Herein, we identified three functional monopartite nuclear localization signals (NLSs), all of which located at the N-terminus of RYBP. Through four basic amino acid replacements within the NLSs, we obtained a cytoplasm-located RYBP mutant (RYBPmut). Compared with wild-type counterpart, RYBPmut exhibited more potent abilities to bind to caspase 8, to prevent MDM2-mediated polyubiquitination and degradation of p53, thereby leading to its stabilization. Further investigation revealed that, in contrast to its wild type, RYBPmut showed more potentials to inhibit tumor cell proliferation and to induce apoptosis, in both p53-dependent and -independent manner. Collectively, our current study revealed the molecular mechanism responsible for RYBP nuclear translocation, and provided evidences to support that RYBPmut could be a more promising candidate agent for cancer treatment.
Collapse
|