1
|
Dell'Eva F, Oliveri V, Sironi R, Perego P, Andreoni G, Ferrante S, Pedrocchi A, Ambrosini E. Ink-based textile electrodes for wearable functional electrical stimulation: A proof-of-concept study to evaluate comfort and efficacy. Artif Organs 2024; 48:1138-1149. [PMID: 38825886 DOI: 10.1111/aor.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Functional Electrical Stimulation (FES) represents a promising technique for promoting functional recovery in individuals with neuromuscular diseases. Traditionally, current pulses are delivered through self-adhesive hydrogel Ag/AgCl electrodes, which allow a good contact with the skin, are easy-to-use and have a moderate cost. However, skin adherence decreases after a few uses and skin irritations can originate. Recently, textile electrodes have become an attractive alternative as they assure increased durability, easy integration into clothes and can be conveniently cleaned, improving the wearability of FES. However, as various manufacture processes were attempted, their clear validation is lacking. This proof-of-concept study proposes a novel set of ink-based printed textile electrodes and compares them to adhesive hydrogel electrodes in terms of impedance, stimulation performance and perceived comfort. METHODS The skin-electrode impedance was evaluated for both types of electrodes under different conditions. These electrodes were then used to deliver FES to the Rectus Femoris of 14 healthy subjects to induce its contraction in both isometric and dynamic conditions. This allowed to compare the two types of electrodes in terms of sensory, motor, maximum and pain thresholds, FES-induced range of motion during dynamic tests, FES-induced torque during isometric tests and perceived stimulation comfort. RESULTS No statistically significant differences were found both in terms of stimulation performance (Wilcoxon test) and comfort (Generalized Linear Mixed Model). CONCLUSION The results showed that the proposed ink-based printed textile electrodes can be effectively used as alternative to hydrogel ones. Further experiments are needed to evaluate their durability and their response to sterilizability and stretching tests.
Collapse
Affiliation(s)
- F Dell'Eva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Milan, Italy
| | - V Oliveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - R Sironi
- Department of Design, Politecnico di Milano, Milan, Italy
| | - P Perego
- Department of Design, Politecnico di Milano, Milan, Italy
| | - G Andreoni
- Department of Design, Politecnico di Milano, Milan, Italy
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - S Ferrante
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - A Pedrocchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Milan, Italy
| | - E Ambrosini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Nagai M, Matsui K, Atsuumi K, Taniguchi K, Hirai H, Nishikawa A. The effect of electrical muscle stimulation on intentional binding and explicit sense of agency. PeerJ 2024; 12:e17977. [PMID: 39308820 PMCID: PMC11416759 DOI: 10.7717/peerj.17977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
The motivating question for this study is determining whether electrical muscle stimulation (EMS)-induced movements can extend the user's ability without reducing the sense of agency. Moreover, it is crucial to find the timing of the EMS application that is robust against individual differences and environmental changes. Previous studies have reported that the user-specific EMS-application timings, determined through explicit measures of sense of agency, would effectively shorten their reaction time in a push task while maintaining their sense of agency. However, no study has investigated EMS-application timings in relation to implicit measures of sense of agency. Intentional binding, an example of an implicit measure, refers to the phenomenon whereby the interval between an intentional action and the subsequent perceptual outcome is typically perceived to be shorter than the actual interval. By measuring this perceptual shift using a Libet clock, we have identified an EMS-application timing that accelerates the users' push action while maintaining their sense of agency. First, to conduct the EMS-application experiment while appropriately maintaining the intentional binding effect, we designed a new push task such that a pre-action, as the base timing of the EMS-application trigger, always occurs just before the push movement. (1) We showed the difference between the action-binding effect of EMS-induced involuntary movements and voluntary push movements. Subsequently, (2) we identified the EMS application timing that significantly shifted judgments of action tasks while accelerating voluntary movements. Additionally, (3) we demonstrated that the EMS application could accelerate user pushing movement while maintaining the sense of agency at this specific application time. The proposed EMS in the novel pushing setup was found to be robustly effective against individual and environmental changes.
Collapse
Affiliation(s)
- Miwa Nagai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Kazuhiro Matsui
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Keita Atsuumi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Kazuhiro Taniguchi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Faculty of Human Ecology, Yasuda Women’s University, Hiroshima, Japan
| | - Hiroaki Hirai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Atsushi Nishikawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
3
|
Dantas MTAP, Fernani DCGL, Silva TDD, Assis ISAD, Carvalho ACD, Silva SB, Abreu LCD, Barbieri FA, Monteiro CBDM. Gait Training with Functional Electrical Stimulation Improves Mobility in People Post-Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095728. [PMID: 37174247 PMCID: PMC10178257 DOI: 10.3390/ijerph20095728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
(1) Background: Stroke is one of the leading causes of disability. To identify the best treatment strategies for people with stroke (PwS), the aim of the current study was to compare the effects of training on a treadmill with functional electrical stimulation (TT-FES) with training on a treadmill (TT), and to analyze the effects of sequence of training on mobility and the parameters of walking ability. (2) Methods: Prospective, longitudinal, randomized and crossover study, in which 28 PwS were distributed into groups, namely the A-B Group (TT-FES followed by TT) and B-A Group (TT followed by TT-FES), using the foot drop stimulator, and were measured with functional tests. (3) Results: We found improved mobility, balance, non-paretic limb coordination, and endurance only in the group that started with TT-FES. However, sensorimotor function improved regardless of the order of training, and paretic limb coordination only improved in the B-A Group, but after TT-FES. These data indicate that the order of the protocols changed the results. (4) Conclusions: Although biomechanical evaluation methods were not used, which can be considered a limitation, our results showed that TT-FES was superior to isolated training on a treadmill with regard to balance, endurance capacity, and coordination of the non-paretic limb.
Collapse
Affiliation(s)
- Maria Tereza Artero Prado Dantas
- Laboratory Design and Scientific Writing, Department of Basic Sciences, ABC Faculty of Medicine, Santo André 09060-650, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo (EACH/USP), São Paulo 03828-000, Brazil
- Course of Physiotherapy, University of West Paulista (UNOESTE), Presidente Prudente 19050-920, Brazil
| | - Deborah Cristina Gonçalves Luiz Fernani
- Laboratory Design and Scientific Writing, Department of Basic Sciences, ABC Faculty of Medicine, Santo André 09060-650, Brazil
- Course of Physiotherapy, University of West Paulista (UNOESTE), Presidente Prudente 19050-920, Brazil
| | - Talita Dias da Silva
- Postgraduate Program in Medicine (Cardiology) at Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04024-002, Brazil
- Faculty of Medicine, University City of Sao Paulo (UNICID), São Paulo 03071-000, Brazil
| | - Iramaia Salomão Alexandre de Assis
- Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | | | - Sidney Benedito Silva
- Laboratory Design and Scientific Writing, Department of Basic Sciences, ABC Faculty of Medicine, Santo André 09060-650, Brazil
| | - Luiz Carlos de Abreu
- Laboratory Design and Scientific Writing, Department of Basic Sciences, ABC Faculty of Medicine, Santo André 09060-650, Brazil
- Department of Integrated Health Education, Federal University of Espírito Santo (UFES), Vitória 29040-090, Brazil
| | - Fabio Augusto Barbieri
- Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Carlos Bandeira de Mello Monteiro
- Laboratory Design and Scientific Writing, Department of Basic Sciences, ABC Faculty of Medicine, Santo André 09060-650, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo (EACH/USP), São Paulo 03828-000, Brazil
| |
Collapse
|
4
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
5
|
Mijic M, Schoser B, Young P. Efficacy of functional electrical stimulation in rehabilitating patients with foot drop symptoms after stroke and its correlation with somatosensory evoked potentials-a crossover randomised controlled trial. Neurol Sci 2023; 44:1301-1310. [PMID: 36544079 PMCID: PMC10023639 DOI: 10.1007/s10072-022-06561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The connectivity between somatosensory evoked potentials (SEPs) and cortical plasticity remains elusive due to a lack of supporting data. This study investigates changes in pathological latencies and amplitudes of SEPs caused by an acute stroke after 2 weeks of rehabilitation with functional electrical stimulation (FES). Furthermore, changes in SEPs and the efficacy of FES against foot drop (FD) stroke symptoms were correlated using the 10-m walk test and foot-ankle strength. METHODS A randomised controlled two-period crossover design plus a control group (group C) was designed. Group A (n = 16) was directly treated with FES, while group B (n = 16) was treated after 2 weeks. The untreated control group of 20 healthy adults underwent repeated SEP measurements for evaluation only. RESULTS The repeated-measures ANOVA showed a decrease in tibial nerve (TN) P40 and N50 latencies in group A after the intervention, followed by a decline in non-paretic TN SEP in latency N50 (p < 0.05). Moreover, compared to groups B and C from baseline to 4 weeks, group A showed a decrease in paretic TN latency P40 and N50 (p < 0.05). An increase in FD strength and a reduction in step cadence in group B (p < 0.05) and a positive tendency in FD strength (p = 0.12) and step cadence (p = 0.08) in group A were observed after the treatment time. The data showed a moderate (r = 0.50-0.70) correlation between non-paretic TN latency N50 and step cadence in groups A and B after the intervention time. CONCLUSION The FES intervention modified the pathological gait in association with improved SEP afferent feedback. Registered on 25 February 2021 on ClinicalTrials.gov under identifier number: NCT04767360.
Collapse
Affiliation(s)
- Marko Mijic
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany.
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Young
- Clinic for Neurology, Medical Park, Reithof 1, 83075, Bad Feilnbach, Germany
| |
Collapse
|
6
|
Yamaguchi A, Sasaki A, Popovic MR, Milosevic M, Nakazawa K. Low-level voluntary input enhances corticospinal excitability during ankle dorsiflexion neuromuscular electrical stimulation in healthy young adults. PLoS One 2023; 18:e0282671. [PMID: 36888637 PMCID: PMC10045604 DOI: 10.1371/journal.pone.0282671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Previous evidence indicated that interventions with combined neuromuscular electrical stimulation (NMES) and voluntary muscle contractions could have superior effects on corticospinal excitability when the produced total force is larger than each single intervention. However, it is unclear whether the superior effects exist when the produced force is matched between the interventions. Ten able-bodied individuals performed three intervention sessions on separate days: (i) NMES-tibialis anterior (TA) stimulation; (ii) NMES+VOL-TA stimulation combined with voluntary ankle dorsiflexion; (iii) VOL-voluntary ankle dorsiflexion. Each intervention was exerted at the same total output of 20% of maximal force and applied intermittently (5 s ON / 19 s OFF) for 16 min. Motor evoked potentials (MEP) of the right TA and soleus muscles and maximum motor response (Mmax) of the common peroneal nerve were assessed: before, during, and for 30 min after each intervention. Additionally, the ankle dorsiflexion force-matching task was evaluated before and after each intervention. Consequently, the TA MEP/Mmax during NMES+VOL and VOL sessions were significantly facilitated immediately after the interventions started until the interventions were over. Compared to NMES, larger facilitation was observed during NMES+VOL and VOL sessions, but no difference was found between them. Motor control was not affected by any interventions. Although superior combined effects were not shown compared to voluntary contractions alone, low-level voluntary contractions combined with NMES resulted in facilitated corticospinal excitability compared to NMES alone. This suggests that the voluntary drive could improve the effects of NMES even during low-level contractions, even if motor control is not affected.
Collapse
Affiliation(s)
- Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyodaku, Tokyo, Japan
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Milos R. Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, Ontario, Canada
- CRANIA, University Health Network & University of Toronto, Toronto, Ontario, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Mijic M, Jung A, Schoser B, Young P. Use of peripheral electrical stimulation on healthy individual and patients after stroke and its effects on the somatosensory evoked potentials. A systematic review. Front Neurol 2022; 13:1036891. [PMID: 36468059 PMCID: PMC9716063 DOI: 10.3389/fneur.2022.1036891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 10/17/2023] Open
Abstract
INTRODUCTION To date, a few studies have used somatosensory evoked potentials (SEP) to demonstrate cortical sensory changes among healthy subjects or to estimate cortical plasticity and rehabilitation prognosis in stroke patients after peripheral electrical stimulation (PES) intervention. The primary aim was to systematically review whether PES has a role in changing latencies and amplitudes of SEPs in healthy subjects and stroke patients. Moreover, we searched for a correlation between sensory and motor function assessments and changes in SEP components of included studies. METHODS The following databases were searched: Pubmed/MEDLINE, Scopus/ScienceDirect, Web of Science/Clarivate, Cochrane Library, The Physiotherapy Evidence Database (PEDro), and ClinicalTrials.gov. Titles and abstracts, as well as full-text reports, were screened for eligibility by two independent reviewers according to a priori defined eligibility criteria. There were no study limitations concerning the treatment of the upper limb, lower limb, or torso with PES. RESULTS The final systematic search resulted in 11,344 records, however only 10 were evaluated. We could not find enough evidence to confirm use of SEP as a predictor to estimate the rehabilitation prognosis after stroke. However, we found a correlation between different sensory and motor function assessments and changes in SEP components. The stroke studies involving PES that initiate a voluntary contraction used for a specific movement or task indicate a positive relationship and correlation to assessments of motor function. It could be indicated that PES have a predictive impact of sensory reorganization, as mirrored by the change in SEP amplitude and latency. However, it is not possible to verify the degree of connectivity between SEP and cortical plasticity. To confirm this hypothesis, we propose the conduction of randomized controlled trials in healthy volunteers and stroke patients. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/OSF.IO/U7PSY.
Collapse
Affiliation(s)
- Marko Mijic
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Andres Jung
- Institute of Health Sciences, Universität zu Lübeck, Luebeck, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Young
- Clinic for Neurology, Medical Park, Bad Feilnbach, Germany
| |
Collapse
|
8
|
de Miguel-Rubio A, Rascón-Maíz J, Alba-Rueda Á, Rodrigues-de-Souza DP. [Driving improvement in spinal cord injury patients using virtual reality. Systematic review]. Rev Neurol 2022; 75:31-40. [PMID: 35822569 PMCID: PMC10186724 DOI: 10.33588/rn.7502.2022091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Spinal cord injury is a pathology which causes motor and sensory impairment under the region damaged by the lesion. This results in limitations in daily activities such as driving. In recent years, improvement in this task has been achieved by means of virtual reality treatment in the rehabilitation of patients with spinal cord injury. The aim of the present study was to analyze, through a systematic review, the effectiveness of using virtual reality on driving skills in patients with spinal cord injury. MATERIALS AND METHODS The literature search was carried out using the following databases: PubMed, Web of Science, PEDro, Cochrane Central Register of Controlled Trials, Medline, Scopus and CINAHL, including articles published from January 2000 to May 2021. RESULTS After the research process, out of a total of 51 articles, 7 were included: 2 applied immersive VR and 5 semi-immersive VR. Road driving simulation was addressed by 4 of them: 1 on sailing, 1 on motorbike and 1 on bicycle. CONCLUSIONS The use of virtual reality in driving skills training has led to improvements in quality of life, driving skills and reduction of fear of driving. Despite these findings, more research, patients, sessions and improvements are needed for a clearer understanding of this topic and its usefulness.
Collapse
Affiliation(s)
- Amaranta de Miguel-Rubio
- Departamento de Enfermería, Farmacología y Fisioterapia. Facultad de Medicina y Enfermería. Universidad de Córdoba. Córdoba, EspañaUniversidad de CórdobaUniversidad de CórdobaCórdobaEspaña
| | - Javier Rascón-Maíz
- Departamento de Enfermería, Farmacología y Fisioterapia. Facultad de Medicina y Enfermería. Universidad de Córdoba. Córdoba, EspañaUniversidad de CórdobaUniversidad de CórdobaCórdobaEspaña
| | - Álvaro Alba-Rueda
- Departamento de Enfermería, Farmacología y Fisioterapia. Facultad de Medicina y Enfermería. Universidad de Córdoba. Córdoba, EspañaUniversidad de CórdobaUniversidad de CórdobaCórdobaEspaña
| | - Daiana P. Rodrigues-de-Souza
- Departamento de Enfermería, Farmacología y Fisioterapia. Facultad de Medicina y Enfermería. Universidad de Córdoba. Córdoba, EspañaUniversidad de CórdobaUniversidad de CórdobaCórdobaEspaña
| |
Collapse
|
9
|
Mao YR, Zhao JL, Bian MJ, Lo WLA, Leng Y, Bian RH, Huang DF. Spatiotemporal, kinematic and kinetic assessment of the effects of a foot drop stimulator for home-based rehabilitation of patients with chronic stroke: a randomized clinical trial. J Neuroeng Rehabil 2022; 19:56. [PMID: 35672756 PMCID: PMC9172181 DOI: 10.1186/s12984-022-01036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Gait disability affects the daily lives of patients with stroke in both home and community settings. An abnormal foot–ankle position can cause instability on the supporting surface and negatively affect gait. Our research team explored the ability of a portable peroneal nerve-targeting electrical stimulator to improve gait ability by adjusting the foot–ankle position during walking in patients with chronic stroke undergoing home-based rehabilitation.
Methods
This was a double-blinded, parallel-group randomized controlled trial. Thirty-one patients with chronic stroke and ankle–foot motor impairment were randomized to receive 3 weeks of gait training, which involved using the transcutaneous peroneal nerve stimulator while walking (tPNS group; n = 16, mean age: 52.25 years), or conventional home and/or community gait training therapy (CT group; n = 15, mean age: 54.8 years). Functional assessments were performed before and after the 3-week intervention. The outcome measures included spatiotemporal gait parameters, three-dimensional kinematic and kinetic data on the ankle–foot joint, and a clinical motor and balance function assessment based on the Fugl–Meyer Assessment of Lower Extremity (FMA-LE) and Berg Balance scales (BBS). Additionally, 16 age-matched healthy adults served as a baseline control of three-dimensional gait data for both trial groups.
Results
The FMA-LE and BBS scores improved in both the tPNS groups (p = 0.004 and 0.001, respectively) and CT groups (p = 0.034 and 0.028, respectively) from before to after training. Participants in the tPNS group exhibited significant differences in spatiotemporal gait parameters, including double feet support, stride length, and walking speed of affected side, and the unaffected foot off within a gait cycle after training (p = 0.043, 0.017, 0.001 and 0.010, respectively). Additionally, the tPNS group exhibited significant differences in kinematic parameters, such as the ankle angle at the transverse plane (p = 0.021) and foot progression angle at the frontal plane (p = 0.009) upon initial contact, and the peak ankle joint angle at the transverse plane (p = 0.023) and foot progression angle (FPA) at the frontal and transverse planes (p = 0.032 and 0.046, respectively) during gait cycles after 3 weeks of training.
Conclusions
Use of a portable tPNS device during walking tasks appeared to improve spatiotemporal gait parameters and ankle and foot angles more effectively than conventional home rehabilitation in patients with chronic stroke. Although guidelines for home-based rehabilitation training services and an increasing variety of market devices are available, no evidence for improvement of motor function and balance was superior to conventional rehabilitation.
Trial registration Chictr, ChiCTR2000040137. Registered 22 November 2020, https://www.chictr.org.cn/showproj.aspx?proj=64424
Collapse
|
10
|
Dalla Gasperina S, Roveda L, Pedrocchi A, Braghin F, Gandolla M. Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons. Front Robot AI 2021; 8:745018. [PMID: 34950707 PMCID: PMC8688994 DOI: 10.3389/frobt.2021.745018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Technology-supported rehabilitation therapy for neurological patients has gained increasing interest since the last decades. The literature agrees that the goal of robots should be to induce motor plasticity in subjects undergoing rehabilitation treatment by providing the patients with repetitive, intensive, and task-oriented treatment. As a key element, robot controllers should adapt to patients’ status and recovery stage. Thus, the design of effective training modalities and their hardware implementation play a crucial role in robot-assisted rehabilitation and strongly influence the treatment outcome. The objective of this paper is to provide a multi-disciplinary vision of patient-cooperative control strategies for upper-limb rehabilitation exoskeletons to help researchers bridge the gap between human motor control aspects, desired rehabilitation training modalities, and their hardware implementations. To this aim, we propose a three-level classification based on 1) “high-level” training modalities, 2) “low-level” control strategies, and 3) “hardware-level” implementation. Then, we provide examples of literature upper-limb exoskeletons to show how the three levels of implementation have been combined to obtain a given high-level behavior, which is specifically designed to promote motor relearning during the rehabilitation treatment. Finally, we emphasize the need for the development of compliant control strategies, based on the collaboration between the exoskeleton and the wearer, we report the key findings to promote the desired physical human-robot interaction for neurorehabilitation, and we provide insights and suggestions for future works.
Collapse
Affiliation(s)
- Stefano Dalla Gasperina
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | - Loris Roveda
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), USI-SUPSI, Lugano, Switzerland
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | - Francesco Braghin
- WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy.,Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Marta Gandolla
- WE-COBOT Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy.,Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
11
|
Longatelli V, Pedrocchi A, Guanziroli E, Molteni F, Gandolla M. Robotic Exoskeleton Gait Training in Stroke: An Electromyography-Based Evaluation. Front Neurorobot 2021; 15:733738. [PMID: 34899227 PMCID: PMC8663633 DOI: 10.3389/fnbot.2021.733738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
The recovery of symmetric and efficient walking is one of the key goals of a rehabilitation program in patients with stroke. The use of overground exoskeletons alongside conventional gait training might help foster rhythmic muscle activation in the gait cycle toward a more efficient gait. About twenty-nine patients with subacute stroke have been recruited and underwent either conventional gait training or experimental training, including overground gait training using a wearable powered exoskeleton alongside conventional therapy. Before and after the rehabilitation treatment, we assessed: (i) gait functionality by means of clinical scales combined to obtain a Capacity Score, and (ii) gait neuromuscular lower limbs pattern using superficial EMG signals. Both groups improved their ability to walk in terms of functional gait, as detected by the Capacity Score. However, only the group treated with the robotic exoskeleton regained a controlled rhythmic neuromuscular pattern in the proximal lower limb muscles, as observed by the muscular activation analysis. Coherence analysis suggested that the control group (CG) improvement was mediated mainly by spinal cord control, while experimental group improvements were mediated by cortical-driven control. In subacute stroke patients, we hypothesize that exoskeleton multijoint powered fine control overground gait training, alongside conventional care, may lead to a more fine-tuned and efficient gait pattern.
Collapse
Affiliation(s)
- Valeria Longatelli
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy
| | - Marta Gandolla
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
12
|
Milosevic M, Nakanishi T, Sasaki A, Yamaguchi A, Nomura T, Popovic MR, Nakazawa K. Cortical Re-organization After Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report. Front Neurosci 2021; 15:693861. [PMID: 34489624 PMCID: PMC8417438 DOI: 10.3389/fnins.2021.693861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Functional electrical stimulation therapy (FEST) can improve motor function after neurological injuries. However, little is known about cortical changes after FEST and weather it can improve motor function after traumatic brain injury (TBI). Our study examined cortical changes and motor improvements in one male participant with chronic TBI suffering from mild motor impairment affecting the right upper-limb during 3-months of FEST and during 3-months follow-up. In total, 36 sessions of FEST were applied to enable upper-limb grasping and reaching movements. Short-term assessments carried out using transcranial magnetic stimulation (TMS) showed reduced cortical silent period (CSP), indicating cortical and/or subcortical inhibition after each intervention. At the same time, no changes in motor evoked potentials (MEPs) were observed. Long-term assessments showed increased MEP corticospinal excitability after 12-weeks of FEST, which seemed to remain during both follow-ups, while no changes in CSP were observed. Similarly, long-term assessments using TMS mapping showed larger hand MEP area in the primary motor cortex (M1) after 12-weeks of FEST as well as during both follow-ups. Corroborating TMS results, functional magnetic resonance imaging (fMRI) data showed M1 activations increased during hand grip and finger pinch tasks after 12-weeks of FEST, while gradual reduction of activity compared to after the intervention was seen during follow-ups. Widespread changes were seen not only in the M1, but also sensory, parietal rostroventral, supplementary motor, and premotor areas in both contralateral and ipsilateral hemispheres, especially during the finger pinch task. Drawing test performance showed improvements after the intervention and during follow-ups. Our findings suggest that task-specific and repetitive FEST can effectively increase cortical activations by integrating voluntary motor commands and sensorimotor network through functional electrical stimulation (FES). Overall, our results demonstrated cortical re-organization in an individual with chronic TBI after FEST.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Tomoya Nakanishi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Gandolla M, Niero L, Molteni F, Guanziroli E, Ward NS, Pedrocchi A. Brain Plasticity Mechanisms Underlying Motor Control Reorganization: Pilot Longitudinal Study on Post-Stroke Subjects. Brain Sci 2021; 11:329. [PMID: 33807679 PMCID: PMC8002039 DOI: 10.3390/brainsci11030329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Functional Electrical Stimulation (FES) has demonstrated to improve walking ability and to induce the carryover effect, long-lasting persisting improvement. Functional magnetic resonance imaging has been used to investigate effective connectivity differences and longitudinal changes in a group of chronic stroke patients that attended a FES-based rehabilitation program for foot-drop correction, distinguishing between carryover effect responders and non-responders, and in comparison with a healthy control group. Bayesian hierarchical procedures were employed, involving nonlinear models at within-subject level-dynamic causal models-and linear models at between-subjects level. Selected regions of interest were primary sensorimotor cortices (M1, S1), supplementary motor area (SMA), and angular gyrus. Our results suggest the following: (i) The ability to correctly plan the movement and integrate proprioception information might be the features to update the motor control loop, towards the carryover effect, as indicated by the reduced sensitivity to proprioception input to S1 of FES non-responders; (ii) FES-related neural plasticity supports the active inference account for motor control, as indicated by the modulation of SMA and M1 connections to S1 area; (iii) SMA has a dual role of higher order motor processing unit responsible for complex movements, and a superintendence role in suppressing standard motor plans as external conditions changes.
Collapse
Affiliation(s)
- Marta Gandolla
- NearLab@Lecco, Polo Territoriale di Lecco, Politecnico di Milano, Via Gaetano Previati, 1/c, 23900 Lecco, Italy; (L.N.); (A.P.)
- Department of Mechanical Engineering, Politecnico di Milano, Via Privata Giuseppe La Masa, 1, 20156 Milano, Italy
| | - Lorenzo Niero
- NearLab@Lecco, Polo Territoriale di Lecco, Politecnico di Milano, Via Gaetano Previati, 1/c, 23900 Lecco, Italy; (L.N.); (A.P.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro, 17, 23845 Costa Masnaga, Italy; (F.M.); (E.G.)
| | - Elenora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro, 17, 23845 Costa Masnaga, Italy; (F.M.); (E.G.)
| | - Nick S. Ward
- Department of Movement and Clinical Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
- The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Alessandra Pedrocchi
- NearLab@Lecco, Polo Territoriale di Lecco, Politecnico di Milano, Via Gaetano Previati, 1/c, 23900 Lecco, Italy; (L.N.); (A.P.)
- NearLab, Department of Electronic Information and Bioengineering, Politecnico di Milano, Via Giuseppe Ponzio, 34/5, 20133 Milano, Italy
| |
Collapse
|
14
|
Ambrosini E, Gasperini G, Zajc J, Immick N, Augsten A, Rossini M, Ballarati R, Russold M, Ferrante S, Ferrigno G, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Gfoehler M, Puchinger M, Weber M, Weber S, Pedrocchi A, Molteni F, Krakow K. A Robotic System with EMG-Triggered Functional Eletrical Stimulation for Restoring Arm Functions in Stroke Survivors. Neurorehabil Neural Repair 2021; 35:334-345. [PMID: 33655789 DOI: 10.1177/1545968321997769] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. OBJECTIVE To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. METHODS A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. RESULTS All outcomes but SSQoL significantly improved over time in both groups (P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points (P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). CONCLUSIONS Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
Collapse
Affiliation(s)
| | | | | | - Nancy Immick
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Andreas Augsten
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Mauro Rossini
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | - Karsten Krakow
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| |
Collapse
|
15
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
16
|
Micera S, Caleo M, Chisari C, Hummel FC, Pedrocchi A. Advanced Neurotechnologies for the Restoration of Motor Function. Neuron 2020; 105:604-620. [PMID: 32078796 DOI: 10.1016/j.neuron.2020.01.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
Stroke is one of the leading causes of long-term disability. Advanced technological solutions ("neurotechnologies") exploiting robotic systems and electrodes that stimulate the nervous system can increase the efficacy of stroke rehabilitation. Recent studies on these approaches have shown promising results. However, a paradigm shift in the development of new approaches must be made to significantly improve the clinical outcomes of neurotechnologies compared with those of traditional therapies. An "evolutionary" change can occur only by understanding in great detail the basic mechanisms of natural stroke recovery and technology-assisted neurorehabilitation. In this review, we first describe the results achieved by existing neurotechnologies and highlight their current limitations. In parallel, we summarize the data available on the mechanisms of recovery from electrophysiological, behavioral, and anatomical studies in humans and rodent models. Finally, we propose new approaches for the effective use of neurotechnologies in stroke survivors, as well as in people with other neurological disorders.
Collapse
Affiliation(s)
- Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Carmelo Chisari
- Neurorehabilitation Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
17
|
The effects of electromyography-triggered neuromuscular electrical stimulation plus tilt sensor functional electrical stimulation training on gait performance in patients with subacute stroke: a randomized controlled pilot trial. Int J Rehabil Res 2019; 42:358-364. [DOI: 10.1097/mrr.0000000000000371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ambrosini E, Zajc J, Ferrante S, Ferrigno G, Dalla Gasperina S, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Russold M, Gfoehler M, Puchinger M, Weber M, Becker S, Krakow K, Immick N, Augsten A, Rossini M, Proserpio D, Gasperini G, Molteni F, Pedrocchi A. A Hybrid Robotic System for Arm Training of Stroke Survivors: Concept and First Evaluation. IEEE Trans Biomed Eng 2019; 66:3290-3300. [DOI: 10.1109/tbme.2019.2900525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Duffell LD, Paddison S, Alahmary AF, Donaldson N, Burridge J. The effects of FES cycling combined with virtual reality racing biofeedback on voluntary function after incomplete SCI: a pilot study. J Neuroeng Rehabil 2019; 16:149. [PMID: 31771600 PMCID: PMC6880599 DOI: 10.1186/s12984-019-0619-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background Functional Electrical Stimulation (FES) cycling can benefit health and may lead to neuroplastic changes following incomplete spinal cord injury (SCI). Our theory is that greater neurological recovery occurs when electrical stimulation of peripheral nerves is combined with voluntary effort. In this pilot study, we investigated the effects of a one-month training programme using a novel device, the iCycle, in which voluntary effort is encouraged by virtual reality biofeedback during FES cycling. Methods Eleven participants (C1-T12) with incomplete SCI (5 sub-acute; 6 chronic) were recruited and completed 12-sessions of iCycle training. Function was assessed before and after training using the bilateral International Standards for Neurological Classification of SCI (ISNC-SCI) motor score, Oxford power grading, Modified Ashworth Score, Spinal Cord Independence Measure, the Walking Index for Spinal Cord Injury and 10 m-walk test. Power output (PO) was measured during all training sessions. Results Two of the 6 participants with chronic injuries, and 4 of the 5 participants with sub-acute injuries, showed improvements in ISNC-SCI motor score > 8 points. Median (IQR) improvements were 3.5 (6.8) points for participants with a chronic SCI, and 8.0 (6.0) points for those with sub-acute SCI. Improvements were unrelated to other measured variables (age, time since injury, baseline ISNC-SCI motor score, baseline voluntary PO, time spent training and stimulation amplitude; p > 0.05 for all variables). Five out of 11 participants showed moderate improvements in voluntary cycling PO, which did not correlate with changes in ISNC-SCI motor score. Improvement in PO during cycling was positively correlated with baseline voluntary PO (R2 = 0.50; p < 0.05), but was unrelated to all other variables (p > 0.05). The iCycle was not suitable for participants who were too weak to generate a detectable voluntary torque or whose effort resulted in a negative torque. Conclusions Improved ISNC-SCI motor scores in chronic participants may be attributable to the iCycle training. In sub-acute participants, early spontaneous recovery and changes due to iCycle training could not be distinguished. The iCycle is an innovative progression from existing FES cycling systems, and positive results should be verified in an adequately powered controlled trial. Trial registration ClinicalTrials.gov, NCT03834324. Registered 06 February 2019 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03834324. Protocol V03, dated 06.08.2015.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK.
| | - Sue Paddison
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ahmad F Alahmary
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Nick Donaldson
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Jane Burridge
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Ambrosini E, Peri E, Nava C, Longoni L, Monticone M, Pedrocchi A, Ferriero G, Ferrante S. A multimodal training with visual biofeedback in subacute stroke survivors: a randomized controlled trial. Eur J Phys Rehabil Med 2019; 56:24-33. [PMID: 31556542 DOI: 10.23736/s1973-9087.19.05847-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Early interventions maximizing patient's involvement are essential to promote gait restoration and motor recovery after stroke. AIM The aim of this study is to evaluate the effects of a multimodal biofeedback training involving cycling augmented by functional electrical stimulation (FES) and balance exercises on walking ability and motor recovery. DESIGN Randomized controlled trial (NCT02439515). SETTING Inpatient rehabilitation facility. POPULATION Subacute stroke survivors (less than 6 months from the first event) aged up to 90 years old. METHODS Sixty-eight participants were randomly allocated to an experimental group, performing 15 sessions of biofeedback FES-cycling training followed by 15 sessions of biofeedback balance training (20 minutes each) in addition to usual care (70 minutes), and a control group performing 30 sessions (90 minutes) of usual care. Participants were evaluated before training, after 15 sessions, after 30 sessions, and at 6-month follow-up through: gait speed (primary outcome), spatiotemporal gait parameters, Six-Minute Walking Test, Functional Independence Measure, Motricity Index, Trunk Control Test, Berg Balance Scale, and Fall Efficacy Scale. RESULTS Both groups significantly improved over time, but no group and interaction effects were found for any outcomes. The 73% of the experimental group achieved a clinically meaningful change in gait speed compared to the 38% of the control group (P=0.048). These percentages were even more unbalanced for patients with a moderate to severe gait impairment at baseline (91% versus 36%; P=0.008). CONCLUSIONS The multimodal biofeedback training was not statistically superior to usual care, showing only a positive trend in favor of the experimental group on locomotion recovery. Patients initially not able to walk might be the best candidates for such a training. CLINICAL REHABILITATION IMPACT The multimodal biofeedback training is a task-specific, repetitive and intensive training requiring a minimal supervision, which might result in a lower staff to patient ratio if organized in group sessions. Therefore, it can represent a good alternative for early stroke rehabilitation.
Collapse
Affiliation(s)
- Emilia Ambrosini
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information Technology, and Bioengineering, Politecnico di Milano, Milan, Italy -
| | - Elisabetta Peri
- Rehabilitation Unit of Lissone Institute, Istituti Clinici Scientifici Maugeri IRCCS, Lissone, Monza e Brianza, Italy
| | - Claudia Nava
- Rehabilitation Unit of Lissone Institute, Istituti Clinici Scientifici Maugeri IRCCS, Lissone, Monza e Brianza, Italy
| | - Luca Longoni
- Rehabilitation Unit of Lissone Institute, Istituti Clinici Scientifici Maugeri IRCCS, Lissone, Monza e Brianza, Italy
| | - Marco Monticone
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Neuroscience and Rehabilitation, G. Brotzu Hospital, Cagliari, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information Technology, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giorgio Ferriero
- Rehabilitation Unit of Lissone Institute, Istituti Clinici Scientifici Maugeri IRCCS, Lissone, Monza e Brianza, Italy
| | - Simona Ferrante
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information Technology, and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
21
|
Vourvopoulos A, Jorge C, Abreu R, Figueiredo P, Fernandes JC, Bermúdez I Badia S. Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report. Front Hum Neurosci 2019; 13:244. [PMID: 31354460 PMCID: PMC6637378 DOI: 10.3389/fnhum.2019.00244] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/28/2019] [Indexed: 11/13/2022] Open
Abstract
To maximize brain plasticity after stroke, a plethora of rehabilitation strategies have been explored. These include the use of intensive motor training, motor-imagery (MI), and action-observation (AO). Growing evidence of the positive impact of virtual reality (VR) techniques on recovery following stroke has been shown. However, most VR tools are designed to exploit active movement, and hence patients with low level of motor control cannot fully benefit from them. Consequently, the idea of directly training the central nervous system has been promoted by utilizing MI with electroencephalography (EEG)-based brain-computer interfaces (BCIs). To date, detailed information on which VR strategies lead to successful functional recovery is still largely missing and very little is known on how to optimally integrate EEG-based BCIs and VR paradigms for stroke rehabilitation. The purpose of this study was to examine the efficacy of an EEG-based BCI-VR system using a MI paradigm for post-stroke upper limb rehabilitation on functional assessments, and related changes in MI ability and brain imaging. To achieve this, a 60 years old male chronic stroke patient was recruited. The patient underwent a 3-week intervention in a clinical environment, resulting in 10 BCI-VR training sessions. The patient was assessed before and after intervention, as well as on a one-month follow-up, in terms of clinical scales and brain imaging using functional MRI (fMRI). Consistent with prior research, we found important improvements in upper extremity scores (Fugl-Meyer) and identified increases in brain activation measured by fMRI that suggest neuroplastic changes in brain motor networks. This study expands on the current body of evidence, as more data are needed on the effect of this type of interventions not only on functional improvement but also on the effect of the intervention on plasticity through brain imaging.
Collapse
Affiliation(s)
- Athanasios Vourvopoulos
- Neural Plasticity and Neurorehabilitation Laboratory, University of Southern California, Los Angeles, CA, United States
| | - Carolina Jorge
- Madeira Interactive Technologies Institute, Universidade da Madeira, Funchal, Portugal
| | - Rodolfo Abreu
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jean-Claude Fernandes
- Central Hospital of Funchal, Physical Medicine and Rehabilitation Service, Funchal, Portugal
| | - Sergi Bermúdez I Badia
- Madeira Interactive Technologies Institute, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
22
|
Smith C, Sun M, Kenney L, Howard D, Luckie H, Waring K, Taylor P, Merson E, Finn S, Cotterill S. A Three-Site Clinical Feasibility Study of a Flexible Functional Electrical Stimulation System to Support Functional Task Practice for Upper Limb Recovery in People With Stroke. Front Neurol 2019; 10:227. [PMID: 30949116 PMCID: PMC6436422 DOI: 10.3389/fneur.2019.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/22/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction: Of those people who survive a stroke, only between 40 and 70% regain upper limb dexterity. A number of reviews have suggested that functional electrical stimulation (FES) may have a beneficial effect on upper limb motor recovery. In light of the promise offered by FES and the limitations with current systems a new system was developed (FES-UPP) to support people with stroke (PwS) to practice a range of voluntary controlled, FES-assisted functional activities. Objective: This paper reports on a three center clinical investigation with the primary aim of demonstrating compliance of the new FES system with relevant essential requirements of the EU Medical Device Directive, namely to evaluate whether use of the FES-UPP enables PwS to perform a wider range of functional activities, and/or perform the same activities in an improved way. Design: Clinical investigation and feasibility study. Settings: An in-patient stroke unit, a combined Early Supported Discharge (ESD) and community service, and an outpatient clinic and in-patient stroke unit. Participants: Nine therapists and 22 PwS with an impaired upper limb. Intervention: Every PwS was offered up to eight sessions of FES-UPP therapy, each lasting ~1 h, over a period of up to 6 weeks. Primary and secondary outcome measures: The operation, acceptability, and feasibility of the interventions were assessed using video rating and the Wolf Motor Function Test Functional Ability Scale (WMF-FAS), direct observations of sessions and questionnaires for therapists and PwS. Results: The system enabled 24% (Rater A) and 28% (Rater B) of PwS to carry out a wider range of functional tasks and improved the way in which the tasks were performed (mean scores of 2.6 and 2.2 (with FES) vs. mean scores 1.5 and 1.3 (without FES) (p < 0.05). Conclusion: The FES-UP proved feasible to use in three different clinical environments, with PwS who varied widely in their impairment levels and time since stroke. Therapists and therapy assistants from a wide range of backgrounds, with varying degrees of computer and/or FES knowledge, were able to use the system without on-site technical support.
Collapse
Affiliation(s)
- Christine Smith
- Department of Allied Health Professions, Sheffield Hallam University, Sheffield, United Kingdom
| | - Mingxu Sun
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
- School of Electrical Engineering, University of Jinan, Jinan, China
| | - Laurence Kenney
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - David Howard
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
- School of Computing, Science and Engineering, University of Salford, Salford, United Kingdom
| | - Helen Luckie
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - Karen Waring
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - Paul Taylor
- The National Clinical FES Centre, Salisbury District Hospital, Salisbury, United Kingdom
| | - Earl Merson
- The National Clinical FES Centre, Salisbury District Hospital, Salisbury, United Kingdom
| | - Stacey Finn
- The National Clinical FES Centre, Salisbury District Hospital, Salisbury, United Kingdom
| | - Sarah Cotterill
- Centre for Biostatistics, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Mitsutake T, Sakamoto M, Koyama S, Matsuda K, Okita M, Horikawa E. Effects of the combination therapy of tilt sensor functional electrical stimulation and integrated volitional control electrical stimulation on brain activity during the subacute phase following stroke: a feasibility study. J Phys Ther Sci 2018; 30:1412-1416. [PMID: 30568326 PMCID: PMC6279698 DOI: 10.1589/jpts.30.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/12/2018] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate whether the combination of integrated
volitional control functional electrical stimulation and tilt sensor functional electrical
stimulation training affected brain activation during the subacute phase following a
stroke. [Participant and Methods] The patient was a 60-year-old male with right
hemiparesis, secondary to stroke in the left thalamus. Conventional intervention was
performed for 60 minutes per day during the first two weeks of treatment (the control
condition). Functional electrical stimulation intervention, including integrated
volitional control functional electrical stimulation and tilt sensor functional electrical
stimulation training, was then performed for 60 minutes per day for two weeks (the
experimental condition). These sessions were repeated four times. Brain activity was
measured during voluntary right ankle dorsiflexion in both sessions, using functional
magnetic resonance imaging. Brain activity measurements were obtained a total of eight
times every two weeks (34, 48, 62, 76, 90, 104, 118, and 132 days following the stroke).
[Results] There was a significantly higher level of activation in the bilateral cerebellum
and the left side of the supplementary motor area in the experimental condition than in
the control condition. [Conclusion] The present study demonstrates that the combination of
integrated volitional control functional.
Collapse
Affiliation(s)
- Tsubasa Mitsutake
- Department of Rehabilitation, Shiroishi Kyoritsu Hospital: 1296 Fukuta, Shiroishi, Kishima, Saga 849-1112, Japan.,Research and Education Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Japan
| | - Maiko Sakamoto
- Research and Education Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Japan
| | - Soichiro Koyama
- Faculty of Rehabilitation, School of Health Science, Fujita Health University, Japan
| | - Kensuke Matsuda
- Department of Physical Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Japan
| | | | - Etsuo Horikawa
- Research and Education Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Japan
| |
Collapse
|
24
|
Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors. Exp Brain Res 2018; 237:467-476. [DOI: 10.1007/s00221-018-5437-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
25
|
Gad* A. Functional Electrical Stimulation (FES): Clinical successes and failures to date. ACTA ACUST UNITED AC 2018. [DOI: 10.29328/journal.jnpr.1001022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Sun M, Smith C, Howard D, Kenney L, Luckie H, Waring K, Taylor P, Merson E, Finn S. FES-UPP: A Flexible Functional Electrical Stimulation System to Support Upper Limb Functional Activity Practice. Front Neurosci 2018; 12:449. [PMID: 30026683 PMCID: PMC6041417 DOI: 10.3389/fnins.2018.00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
There is good evidence supporting highly intensive, repetitive, activity-focused, voluntary-initiated practice as a key to driving recovery of upper limb function following stroke. Functional electrical stimulation (FES) offers a potential mechanism to efficiently deliver this type of therapy, but current commercial devices are too inflexible and/or insufficiently automated, in some cases requiring engineering support. In this paper, we report a new, flexible upper limb FES system, FES-UPP, which addresses the issues above. The FES-UPP system consists of a 5-channel stimulator running a flexible FES finite state machine (FSM) controller, the associated setup software that guides therapists through the setup of FSM controllers via five setup stages, and finally the Session Manager used to guide the patient in repeated attempts at the activities(s) and provide feedback on their performance. The FSM controller represents a functional activity as a sequence of movement phases. The output for each phase implements the stimulations to one or more muscles. Progression between movement phases is governed by user-defined rules. As part of a clinical investigation of the system, nine therapists used the FES-UPP system to set up FES-supported activities with twenty two patient participants with impaired upper-limbs. Therapists with little or no FES experience and without any programming skills could use the system in their usual clinical settings, without engineering support. Different functional activities, tailored to suit the upper limb impairment levels of each participant were used, in up to 8 sessions of FES-supported therapy per participant. The efficiency of delivery of the therapy using FES-UPP was promising when compared with published data on traditional face-face therapy. The FES-UPP system described in this paper has been shown to allow therapists with little or no FES experience and without any programming skills to set up state-machine FES controllers bespoke to the patient's impairment patterns and activity requirements, without engineering support. The clinical results demonstrated that the system can be used to efficiently deliver high intensity, activity-focused therapy. Nevertheless, further work to reduce setup time is still required.
Collapse
Affiliation(s)
- Mingxu Sun
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - Christine Smith
- Department of Allied Health Professions, Sheffield Hallam University, Sheffield, United Kingdom
| | - David Howard
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
- School of Computing, Science and Engineering, University of Salford, Salford, United Kingdom
| | - Laurence Kenney
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - Helen Luckie
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - Karen Waring
- Centre for Health Sciences Research, University of Salford, Salford, United Kingdom
| | - Paul Taylor
- The National Clinical FES Centre, Salisbury District Hospital, Salisbury, United Kingdom
| | - Earl Merson
- The National Clinical FES Centre, Salisbury District Hospital, Salisbury, United Kingdom
| | - Stacey Finn
- The National Clinical FES Centre, Salisbury District Hospital, Salisbury, United Kingdom
| |
Collapse
|
27
|
Gandolla M, Guanziroli E, D'Angelo A, Cannaviello G, Molteni F, Pedrocchi A. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population. Front Neurorobot 2018; 12:10. [PMID: 29615890 PMCID: PMC5868134 DOI: 10.3389/fnbot.2018.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial-it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context.
Collapse
Affiliation(s)
- Marta Gandolla
- Nearlab@Lecco, Polo territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | | | - Andrea D'Angelo
- Nearlab@Lecco, Polo territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
28
|
Functional Electrical Stimulation and Its Use During Cycling for the Rehabilitation of Individuals with Stroke. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-72736-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Ambrosini E, Ferrante S, Zajc J, Bulgheroni M, Baccinelli W, d'Amico E, Schauer T, Wiesener C, Russold M, Gfoehler M, Puchinger M, Weber M, Becker S, Krakow K, Rossini M, Proserpio D, Gasperini G, Molteni F, Ferrigno G, Pedrocchi A. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project. IEEE Int Conf Rehabil Robot 2017; 2017:56-61. [PMID: 28813793 DOI: 10.1109/icorr.2017.8009221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combined use of Functional Electrical Stimulation (FES) and robotic technologies is advocated to improve rehabilitation outcomes after stroke. This work describes an arm rehabilitation system developed within the European project RETRAINER. The system consists of a passive 4-degrees-of-freedom exoskeleton equipped with springs to provide gravity compensation and electromagnetic brakes to hold target positions. FES is integrated in the system to provide additional support to the most impaired muscles. FES is triggered based on the volitional EMG signal of the same stimulated muscle; in order to encourage the active involvement of the patient the volitional EMG is also monitored throughout the task execution and based on it a happy or sad emoji is visualized at the end of each task. The control interface control of the system provides a GUI and multiple software tools to organize rehabilitation exercises and monitor rehabilitation progress. The functionality and the usability of the system was evaluated on four stroke patients. All patients were able to use the system and judged positively its wearability and the provided support. They were able to trigger the stimulation based on their residual muscle activity and provided different levels of active involvement in the exercise, in agreement with their level of impairment. A randomized controlled trial aimed at evaluating the effectiveness of the RETRAINER system to improve arm function after stroke is currently ongoing.
Collapse
|
30
|
Wegrzyk J, Ranjeva JP, Fouré A, Kavounoudias A, Vilmen C, Mattei JP, Guye M, Maffiuletti NA, Place N, Bendahan D, Gondin J. Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols. Sci Rep 2017; 7:2742. [PMID: 28577338 PMCID: PMC5457446 DOI: 10.1038/s41598-017-03188-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz–1 ms) and conventional (CONV, 25 Hz–0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
Collapse
Affiliation(s)
- Jennifer Wegrzyk
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | | | - Alexandre Fouré
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, Laboratoire Neurosciences Intégratives et Adaptatives, UMR 7260, 13385, Marseille, France
| | | | - Jean-Pierre Mattei
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de Sainte Marguerite, Service de Rhumatologie, Pôle Appareil Locomoteur, 13005, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de la Timone, CEMEREM, Pôle Imagerie Médicale, 13005, Marseille, France
| | | | - Nicolas Place
- University of Lausanne, Faculty of Biology and Medicine, Institute of Sport Sciences and Department of Physiology, Lausanne, Switzerland
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Julien Gondin
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France. .,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France.
| |
Collapse
|
31
|
Tacchino G, Gandolla M, Coelli S, Barbieri R, Pedrocchi A, Bianchi AM. EEG Analysis During Active and Assisted Repetitive Movements: Evidence for Differences in Neural Engagement. IEEE Trans Neural Syst Rehabil Eng 2017; 25:761-771. [DOI: 10.1109/tnsre.2016.2597157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Gandolla M, Ferrante S, Ferrigno G, Baldassini D, Molteni F, Guanziroli E, Cotti Cottini M, Seneci C, Pedrocchi A. Artificial neural network EMG classifier for functional hand grasp movements prediction. J Int Med Res 2016; 45:1831-1847. [PMID: 27677300 PMCID: PMC5805179 DOI: 10.1177/0300060516656689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2-3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25-26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay.
Collapse
Affiliation(s)
- Marta Gandolla
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Simona Ferrante
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Giancarlo Ferrigno
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Davide Baldassini
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Franco Molteni
- 2 Villa Beretta Rehabilitation Centre, Valduce Hospital, Costamasnaga, Italy
| | - Eleonora Guanziroli
- 2 Villa Beretta Rehabilitation Centre, Valduce Hospital, Costamasnaga, Italy
| | | | | | - Alessandra Pedrocchi
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| |
Collapse
|
33
|
Ferrante S, Chia Bejarano N, Ambrosini E, Nardone A, Turcato AM, Monticone M, Ferrigno G, Pedrocchi A. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke. Front Neurosci 2016; 10:425. [PMID: 27695397 PMCID: PMC5025903 DOI: 10.3389/fnins.2016.00425] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023] Open
Abstract
It has been largely suggested in neuroscience literature that to generate a vast variety of movements, the Central Nervous System (CNS) recruits a reduced set of coordinated patterns of muscle activities, defined as muscle synergies. Recent neurophysiological studies have recommended the analysis of muscle synergies to finely assess the patient's impairment, to design personalized interventions based on the specific nature of the impairment, and to evaluate the treatment outcomes. In this scope, the aim of this study was to design a personalized multi-channel functional electrical stimulation (FES) controller for gait training, integrating three novel aspects: (1) the FES strategy was based on healthy muscle synergies in order to mimic the neural solutions adopted by the CNS to generate locomotion; (2) the FES strategy was personalized according to an initial locomotion assessment of the patient and was designed to specifically activate the impaired biomechanical functions; (3) the FES strategy was mapped accurately on the altered gait kinematics providing a maximal synchronization between patient's volitional gait and stimulation patterns. The novel intervention was tested on two chronic stroke patients. They underwent a 4-week intervention consisting of 30-min sessions of FES-supported treadmill walking three times per week. The two patients were characterized by a mild gait disability (walking speed > 0.8 m/s) at baseline. However, before treatment both patients presented only three independent muscle synergies during locomotion, resembling two different gait abnormalities. After treatment, the number of extracted synergies became four and they increased their resemblance with the physiological muscle synergies, which indicated a general improvement in muscle coordination. The originally merged synergies seemed to regain their distinct role in locomotion control. The treatment benefits were more evident for one patient, who achieved a clinically important change in dynamic balance (Mini-Best Test increased from 17 to 22) coupled with a very positive perceived treatment effect (GRC = 4). The treatment had started the neuro-motor relearning process also on the second subject, but twelve sessions were not enough to achieve clinically relevant improvements. This attempt to apply the novel theories of neuroscience research in stroke rehabilitation has provided promising results, and deserves to be further investigated in a larger clinical study.
Collapse
Affiliation(s)
- Simona Ferrante
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milan, Italy
| | - Noelia Chia Bejarano
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milan, Italy
| | - Emilia Ambrosini
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy; Physical Medicine and Rehabilitation Unit, Scientific Institute of Lissone, Fondazione Salvatore Maugeri (IRCCS)Lissone, Monza Brianza, Italy
| | - Antonio Nardone
- Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Fondazione Salvatore Maugeri (IRCCS)Veruno, Novara, Italy; Department of Translational Medicine, University of Eastern PiedmontNovara, Italy
| | - Anna M Turcato
- Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Fondazione Salvatore Maugeri (IRCCS)Veruno, Novara, Italy; Department of Translational Medicine, University of Eastern PiedmontNovara, Italy
| | - Marco Monticone
- Physical Medicine and Rehabilitation Unit, Scientific Institute of Lissone, Fondazione Salvatore Maugeri (IRCCS)Lissone, Monza Brianza, Italy; Department of Public Health, Clinical and Molecular Medicine, University of CagliariCagliari, Italy
| | - Giancarlo Ferrigno
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milan, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milan, Italy
| |
Collapse
|