1
|
Visone R, Lozano-Juan F, Marzorati S, Rivolta MW, Pesenti E, Redaelli A, Sassi R, Rasponi M, Occhetta P. Predicting human cardiac QT alterations and pro-arrhythmic effects of compounds with a 3D beating heart-on-chip platform. Toxicol Sci 2022; 191:47-60. [PMID: 36226800 PMCID: PMC9887672 DOI: 10.1093/toxsci/kfac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Determining the potential cardiotoxicity and pro-arrhythmic effects of drug candidates remains one of the most relevant issues in the drug development pipeline (DDP). New methods enabling to perform more representative preclinical in vitro studies by exploiting induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are under investigation to increase the translational power of the outcomes. Here we present a pharmacological campaign conducted to evaluate the drug-induced QT alterations and arrhythmic events on uHeart, a 3D miniaturized in vitro model of human myocardium encompassing iPSC-CM and dermal fibroblasts embedded in fibrin. uHeart was mechanically trained resulting in synchronously beating cardiac microtissues in 1 week, characterized by a clear field potential (FP) signal that was recorded by means of an integrated electrical system. A drug screening protocol compliant with the new International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines was established and uHeart was employed for testing the effect of 11 compounds acting on single or multiple cardiac ion channels and well-known to elicit QT prolongation or arrhythmic events in clinics. The alterations of uHeart's electrophysiological parameters such as the beating period, the FP duration, the FP amplitude, and the detection of arrhythmic events prior and after drug administration at incremental doses were effectively analyzed through a custom-developed algorithm. Results demonstrated the ability of uHeart to successfully anticipate clinical outcome and to predict the QT prolongation with a sensitivity of 83.3%, a specificity of 100% and an accuracy of 91.6%. Cardiotoxic concentrations of drugs were notably detected in the range of the clinical highest blood drug concentration (Cmax), qualifying uHeart as a fit-to-purpose preclinical tool for cardiotoxicity studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Roberto Sassi
- Department of Computer Science, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | | |
Collapse
|
2
|
Canonico F, Chirivi M, Maiullari F, Milan M, Rizzi R, Arcudi A, Galli M, Pane M, Gowran A, Pompilio G, Mercuri E, Crea F, Bearzi C, D'Amario D. Focus on the road to modelling cardiomyopathy in muscular dystrophy. Cardiovasc Res 2021; 118:1872-1884. [PMID: 34254111 DOI: 10.1093/cvr/cvab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3 D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine.
Collapse
Affiliation(s)
- Francesco Canonico
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Maila Chirivi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Marika Milan
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.,Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Alessandra Arcudi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Mattia Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Marika Pane
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Women, Children and Public Health Sciences, Rome, Italy
| | - Aoife Gowran
- Centro Cardiologico Monzino IRCCS, Unit of Vascular Biology and Regenerative Medicine, Milan, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Unit of Vascular Biology and Regenerative Medicine, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Eugenio Mercuri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Women, Children and Public Health Sciences, Rome, Italy
| | - Filippo Crea
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.,Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Milan, Italy
| | - Domenico D'Amario
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Department of Cardiovascular Sciences, Rome, Italy
| |
Collapse
|
3
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
4
|
Visone R, Talò G, Occhetta P, Cruz-Moreira D, Lopa S, Pappalardo OA, Redaelli A, Moretti M, Rasponi M. A microscale biomimetic platform for generation and electro-mechanical stimulation of 3D cardiac microtissues. APL Bioeng 2018; 2:046102. [PMID: 31069324 PMCID: PMC6481729 DOI: 10.1063/1.5037968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
Organs-on-chip technology has recently emerged as a promising tool to generate advanced cardiac tissue in vitro models, by recapitulating key physiological cues of the native myocardium. Biochemical, mechanical, and electrical stimuli have been investigated and demonstrated to enhance the maturation of cardiac constructs. However, the combined application of such stimulations on 3D organized constructs within a microfluidic platform was not yet achieved. For this purpose, we developed an innovative microbioreactor designed to provide a uniform electric field and cyclic uniaxial strains to 3D cardiac microtissues, recapitulating the complex electro-mechanical environment of the heart. The platform encompasses a compartment to confine and culture cell-laden hydrogels, a pressure-actuated chamber to apply a cyclic uniaxial stretch to microtissues, and stainless-steel electrodes to accurately regulate the electric field. The platform was exploited to investigate the effect of two different electrical stimulation patterns on cardiac microtissues from neonatal rat cardiomyocytes: a controlled electric field [5 V/cm, or low voltage (LV)] and a controlled current density [74.4 mA/cm2, or high voltage (HV)]. Our results demonstrated that LV stimulation enhanced the beating properties of the microtissues. By fully exploiting the platform, we combined the LV electrical stimulation with a physiologic mechanical stretch (10% strain) to recapitulate the key cues of the native cardiac microenvironment. The proposed microbioreactor represents an innovative tool to culture improved miniaturized cardiac tissue models for basic research studies on heart physiopathology and for drug screening.
Collapse
Affiliation(s)
- Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | | | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Omar Antonio Pappalardo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
6
|
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules 2016; 21:E1128. [PMID: 27571058 PMCID: PMC6274098 DOI: 10.3390/molecules21091128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa.
Collapse
Affiliation(s)
- Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Mara Gilardi
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Department of Biotechnology and Biosciences, PhD School in Life Sciences, University of Milano-Bicocca, Milano 20126, Italy.
| | - Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Basel 4065, Switzerland.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland.
- Swiss Institute for Regenerative Medicine, Lugano 6900, Switzerland.
- Cardiocentro Ticino, Lugano 6900, Switzerland.
| |
Collapse
|