1
|
Trivedi J, Desai S, Molino J, Owens BD, Jayasuriya CT. Intra-articular Injections of CXCR4-Overexpressing Human Cartilage-Derived Progenitor Cells Improve Meniscus Healing and Protect Against Posttraumatic Osteoarthritis in Immunocompetent Rabbits. Am J Sports Med 2025; 53:396-405. [PMID: 39763468 PMCID: PMC11794014 DOI: 10.1177/03635465241309305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
BACKGROUND Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity. HYPOTHESIS Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries. STUDY DESIGN Controlled laboratory study. METHODS hCPCs were genetically modified to overexpress CXCR4 (CXCR4-overexpressing [OE] hCPCs) using lentivirus. In vitro characterization was performed using cell viability assay, cell migration assay, and immunoblotting. These cells were then used to treat a meniscal injury in rabbits. A medial meniscal tear was surgically created in the right knees of New Zealand White rabbits, followed by 2 intra-articular injections (5.0 × 106 cells each) of either CXCR4-OE hCPCs, wild-type hCPCs, or saline alone. A histological assessment of menisci and cartilage was performed using safranin O/fast green staining. Joints were assessed for PTOA changes using the modified Osteoarthritis Research Society International scoring system. Fluorescence imaging and DNA analysis were performed to examine tissue for human cells. RESULTS SDF-1 inhibited NF-κB and ERK pathways in both wild-type and CXCR4-OE hCPCs. CXCR4 overexpression increased hCPC trafficking toward sources of SDF-1, including injured meniscal fibrocartilage and an SDF-1-presoaked collagen scaffold. Intra-articular injections of CXCR4-OE hCPCs significantly improved meniscus healing, as evidenced by the complete absence of tears in 5 of 6 (83%) animals that received CXCR4-OE hCPCs compared with only 3 of 6 (50%) wild-type hCPC-treated animals and 2 of 6 (33%) animals in the saline control group. CXCR4-OE hCPC-treated animals also showed significantly less erosion in their knee cartilage compared with control animals. CONCLUSION Overall, CXCR4 overexpression inhibited catabolic pathway signaling in hCPCs and increased cell migration. Evidence suggests that intra-articular injections of these cells into the injured knee allow them to home in on sites of fibrocartilage injuries and ultimately result in meniscal tear healing and PTOA inhibition in immunocompetent animals. CLINICAL RELEVANCE This study demonstrated that cartilage progenitors with elevated CXCR4 expression have the potential to be a potent therapeutic tool for stimulating meniscal tear healing.
Collapse
Affiliation(s)
| | | | | | | | - Chathuraka T. Jayasuriya
- Address correspondence to Chathuraka T. Jayasuriya, PhD, Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 1 Hoppin Street, Suite 4.313, Providence, RI 02903, USA () (X: @JayasuriyaLab)
| |
Collapse
|
2
|
Sinna J, Jeencham R, Mueangkhot P, Sophon S, Noralak P, Raksapakdee R, Numpaisal PO, Ruksakulpiwat Y. Development of Poly(vinyl alcohol) Grafted Glycidyl Methacrylate/Cellulose Nanofiber Injectable Hydrogels for Meniscus Tissue Engineering. Polymers (Basel) 2023; 15:4230. [PMID: 37959910 PMCID: PMC10647663 DOI: 10.3390/polym15214230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to develop poly (vinyl alcohol) grafted glycidyl methacrylate/cellulose nanofiber (PVA-g-GMA/CNF) injectable hydrogels for meniscus tissue engineering. PVA-g-GMA is an interesting polymer for preparing cross-linking injectable hydrogels with UV radiation, but it has poor mechanical properties and low cell proliferation. In this study, CNF as a reinforcing agent was selected to improve mechanical properties and cell proliferation in PVA-g-GMA injectable hydro-gels. The effect of CNF concentration on hydrogel properties was investigated. Both PVA-g-GMA and PVA-g-GMA hydrogels incorporating 0.3, 0.5, and 0.7% (w/v) CNF can be formed by UV curing at a wavelength of 365 nm, 6 mW/cm2 for 10 min. All hydrogels showed substantial microporosity with interconnected tunnels, and a pore size diameter range of 3-68 µm. In addition, all hydrogels also showed high physicochemical properties, a gel fraction of 81-82%, porosity of 83-94%, water content of 73-87%, and water swelling of 272-652%. The water content and swelling of hydrogels were increased when CNF concentration increased. It is worth noting that the reduction of porosity in the hydrogels occurred with increasing CNF concentration. With increasing CNF concentration from 0.3% to 0.7% (w/v), the compressive strength and compressive modulus of the hydrogels significantly increased from 23 kPa to 127 kPa and 27 kPa to 130 kPa, respectively. All of the hydrogels were seeded with human cartilage stem/progenitor cells (CSPCs) and cultured for 14 days. PVA-g-GMA hydrogels incorporating 0.5% and 0.7% (w/v) CNF demonstrated a higher cell proliferation rate than PVA-g-GMA and PVA-g-GMA hydrogels incorporating 0.3% (w/v) CNF, as confirmed by MTT assay. At optimum formulation, 10%PVA-g-GMA/0.7%CNF injectable hydrogel met tissue engineering requirements, which showed excellent properties and significantly promoted cell proliferation, and has a great potential for meniscus tissue engineering application.
Collapse
Affiliation(s)
- Jiraporn Sinna
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rachasit Jeencham
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Priyapat Mueangkhot
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sorasak Sophon
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornpattara Noralak
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Romtira Raksapakdee
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piya-on Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
3
|
Chen Z, Deng XH, Jiang C, Wang JS, Li WP, Zhu KL, Li YH, Song B, Zhang ZZ. Repairing Avascular Meniscal Lesions by Recruiting Endogenous Targeted Cells Through Bispecific Synovial-Meniscal Aptamers. Am J Sports Med 2023; 51:1177-1193. [PMID: 36917829 DOI: 10.1177/03635465231159668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Tissue engineering is a promising treatment option for meniscal lesions in the avascular area, but a favorable cell source and its utilization in tissue-engineered menisci remain uncertain. Therefore, a more controllable and convenient method for cell recruitment is required. HYPOTHESIS Circular bispecific synovial-meniscal (S-M) aptamers with a gelatin methacryloyl (GelMA) hydrogel can recruit endogenous synovial and meniscal cells to the site of the defect, thereby promoting in situ meniscal regeneration and chondroprotection. STUDY DESIGN Controlled laboratory study. METHODS Synovial and meniscal aptamers were filtered through systematic evolution of ligands by exponential enrichment (SELEX) and cross-linked to synthesize the S-M aptamer. A GelMA-aptamer system was constructed. An in vitro analysis of the bi-recruitment of synovial and meniscal cells was performed, and the migration and proliferation of the GelMA-aptamer hydrogel were also tested. For the in vivo assay, rabbits (n = 90) with meniscal defects in the avascular zone were divided into 3 groups: repair with the GelMA-aptamer hydrogel (GelMA-aptamer group), repair with the GelMA hydrogel (GelMA group), and no repair (blank group). Regeneration of the repaired meniscus and degeneration of the cartilage were assessed by gross and histological evaluations at 4, 8, and 12 weeks postoperatively. The mechanical properties of repaired menisci were also evaluated. RESULTS In vitro synovial and meniscal cells were recruited simultaneously by the S-M aptamer with high affiliation and specificity. The GelMA-aptamer hydrogel promoted the migration of targeted cells. Compared with the other groups, the GelMA-aptamer group showed enhanced fibrocartilaginous regeneration, lower cartilage degeneration, and better mechanical strength at 12 weeks after meniscal repair. CONCLUSION/CLINICAL RELEVANCE Bispecific S-M aptamers could be used for avascular meniscal repair by recruiting endogenous synovial and meniscal cells and promoting fibrocartilaginous regeneration.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing-Hao Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ping Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke-Long Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yu-Heng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Song
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Zheng Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang J, Roberts S, Li W, Wright K. Phenotypic characterization of regional human meniscus progenitor cells. Front Bioeng Biotechnol 2022; 10:1003966. [PMID: 36338137 PMCID: PMC9629835 DOI: 10.3389/fbioe.2022.1003966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2023] Open
Abstract
Stimulating meniscus regeneration using meniscal progenitor cells has been suggested as a promising new strategy. However, there is a lack of studies which decisively identify and characterize progenitor cell populations in human meniscus tissues. In this study, donor-matched progenitor cells were isolated via selective fibronectin adhesion from the avascular and vascular regions of the meniscus and chondroprogenitors from articular cartilage (n = 5). The mixed populations of cells from these regions were obtained by standard isolation techniques for comparison. The colony formation efficacy of avascular progenitors, vascular progenitors and chondroprogenitors was monitored using Cell-IQ® live cell imaging. Proliferation rates of progenitors were compared with their mixed population counterparts. Cell surface markers indicative of mesenchymal stromal cells profile and progenitor markers were characterized by flow cytometry in all populations. The fibrochondrogenic capacity was assessed via fibrochondrogenic differentiation and measuring GAG/DNA content and morphology. All meniscal progenitor and chondroprogenitor populations showed superior colony forming efficacy and faster proliferation rates compare to their mixed populations. Progenitor populations showed significantly higher positivity for CD49b and CD49c compared to their mixed population counterparts and chondroprogenitors had a higher positivity level of CD166 compared to mixed chondrocytes. GAG/DNA analysis demonstrated that progenitor cells generally produced more GAG than mixed populations. Our study demonstrates that the human meniscus contains meniscal progenitor populations in both the avascular and vascular regions. Meniscal progenitors derived from the vascular region exhibit enhanced proliferative and fibrochondrogenic characteristics compared to those from the avascular region; this may associate with the enhanced meniscal healing potential in the vascular region. These findings build on the body of evidence which suggests that meniscal progenitors represent an attractive cell therapy strategy for meniscal regeneration.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Weiping Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
5
|
Deng Z, Luo F, Lin Y, Luo J, Ke D, Song C, Xu J. Research trends of mesenchymal stem cells application in orthopedics: A bibliometric analysis of the past 2 decades. Front Public Health 2022; 10:1021818. [PMID: 36225768 PMCID: PMC9548591 DOI: 10.3389/fpubh.2022.1021818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
Background Bibliometric analysis and visualization tools were used to determine the development trend of mesenchymal stem cells (MSCs) in orthopedics in the past 20 years, so as to guide researchers to explore new directions and hotspots in the field in the future. Methods In the Web of Science Core Collection, all articles about the application of MSCs in orthopedics from 2002 to 2021 were searched. The qualitative and quantitative analysis was performed based on Web of Science and CiteSpace software. Results A total of 2,207 articles were retrieved. After excluding non-article articles such as review and letter and non-English language articles, 1,489 articles were finally included. Over the past 2 decades, the number of publications on the application of MSCs in orthopedic diseases increased. Among them, the United States, China, Japan and the United Kingdom have made significant contributions in this field. The most productive institution was Shanghai Jiao Tong University. Journal of Orthopedic Research published the largest number of publications. The journal with the highest citation frequency was Experimental Hematology. The authors with the highest output and the highest citation frequency on average were Rochy S. Tuan and Scott A. Rodeo, respectively. "Mesenchymal stem cell", "in vitro" and "Differentiation" were the top three keywords that appeared. From the keyword analysis, the current research trend indicates that the primary research hotspots of MSCs in orthopedics are the source of MSCs, in vitro experiments and the differentiation of MSCs into bone and cartilage. The frontiers of this field are the combination of MSCs and platelet-rich plasma (PRP), the treatment of knee diseases such as osteoarthritis, osteogenic differentiation, and the application of biological scaffolds combined with MSCs. Conclusion Over the past 2 decades, the application of MSCs in orthopedic diseases has received increasing attention. Our bibliometric analysis results provide valuable information and research trends for researchers in the field to understand the basic knowledge of the field, identify current research hotspots, potential collaborators, and future research frontiers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Xu
- Department of Orthopedics, Fujian Clinical Research Center for Spinal Nerve and Joint Diseases, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
6
|
Loofah-chitosan and poly (-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) based hydrogel scaffolds for meniscus tissue engineering applications. Int J Biol Macromol 2022; 221:1171-1183. [PMID: 36087757 DOI: 10.1016/j.ijbiomac.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The meniscus is a fibrocartilaginous tissue that is very important for the stability of the knee joint. However, it has a low ability to heal itself, so damage to it will always lead to articular cartilage degeneration. The goal of this study was to make a new type of meniscus scaffold made of chitosan, loofah mat, and PHBV nanofibers, as well as to describe hydrogel composite scaffolds in terms of their shape, chemical composition, mechanical properties, and temperature. Three different concentrations of genipin (0.1, 0.3, and 0.5 %) were used and the optimal crosslinker concentration was 0.3 % for Chitosan/loofah (CL) and Chitosan/loofah/PHBV fiber (CLF). Scaffolds were seeded using undifferentiated MSCs and incubated for 21 days to investigate the chondrogenic potential of hydrogel scaffolds. Cell proliferation analyses were performed using WST-1 assay, GAG content was analyzed, SEM and fluorescence imaging observed morphologies and cell attachment, and histological and immunohistochemical studies were performed. The in vitro analysis showed no cytotoxic effect and enabled cells to attach, proliferate, and migrate inside the scaffold. In conclusion, the hydrogel composite scaffold is a promising material for engineering meniscus tissue.
Collapse
|
7
|
Shadi M, Talaei-Khozani T, Sani M, Hosseinie R, Parsaei H, Vojdani Z. Optimizing artificial meniscus by mechanical stimulation of the chondrocyte-laden acellular meniscus using ad hoc bioreactor. Stem Cell Res Ther 2022; 13:382. [PMID: 35908010 PMCID: PMC9338671 DOI: 10.1186/s13287-022-03058-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Tissue engineering focuses on reconstructing the damaged meniscus by mimicking the native meniscus. The application of mechanical loading on chondrocyte-laden decellularized whole meniscus is providing the natural microenvironment. The goal of this study was to evaluate the effects of dynamic compression and shear load on chondrocyte-laden decellularized meniscus. Material and methods The fresh samples of rabbit menisci were decellularized, and the DNA removal was confirmed by histological assessments and DNA quantification. The biocompatibility, degradation and hydration rate of decellularized menisci were evaluated. The decellularized meniscus was injected at a density of 1 × 105 chondrocyte per scaffold and was subjected to 3 cycles of dynamic compression and shear stimuli (1 h of 5% strain, ± 25°shear at 1 Hz followed by 1 h rest) every other day for 2 weeks using an ad hoc bioreactor. Cytotoxicity, GAG content, ultrastructure, gene expression and mechanical properties were examined in dynamic and static condition and compared to decellularized and intact menisci.
Results Mechanical stimulation supported cell viability and increased glycosaminoglycan (GAG) accumulation. The expression of collagen-I (COL-I, 10.7-folds), COL-II (6.4-folds), aggrecan (AGG, 3.2-folds), and matrix metalloproteinase (MMP3, 2.3-folds) was upregulated compared to the static conditions. Furthermore, more aligned fibers and enhanced tensile strength were observed in the meniscus treated in dynamic condition with no sign of mineralization.
Conclusion Compress and shear stimulation mimics the loads on the joint during walking and be able to improve cell function and ultrastructure of engineered tissue to recreate a functional artificial meniscus.
Collapse
Affiliation(s)
- Mehri Shadi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Histomorphometry and stereology research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Tissue Engineering Lab, Department of Anatomcal sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Radmarz Hosseinie
- Department of Mechanical Engineering, College of Engineering, Fasa University, Fasa, Iran
| | - Hossein Parsaei
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Tissue Engineering Lab, Department of Anatomcal sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Babaei M, Jamshidi N, Amiri F, Rafienia M. Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study. J Tissue Eng Regen Med 2022; 16:812-824. [PMID: 35689535 DOI: 10.1002/term.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Menisci are fibrocartilaginous structures in the knee joint with an inadequate regenerative capacity, which causes low healing potential and further leads to osteoarthritis. Recently, three-dimensional (3D) printing techniques and ultrasound treatment have gained plenty of attention for meniscus tissue engineering. The present study investigates the effectiveness of low-intensity pulsed ultrasound stimulations (LIPUS) on the proliferation, viability, morphology, and gene expression of the chondrocytes seeded on 3D printed polyurethane scaffolds dip-coated with gellan gum, hyaluronic acid, and glucosamine. LIPUS stimulation was performed at 100, 200, and 300 mW/cm2 intensities for 20 min/day. A faster gap closure (78.08 ± 2.56%) in the migration scratch assay was observed in the 200 mW/cm2 group after 24 h. Also, inverted microscopic and scanning electron microscopic images showed no cell morphology changes during LIPUS exposure at different intensities. The 3D cultured chondrocytes under LIPUS treatment revealed a promotion in cell proliferation rate and viability as the intensity doses increased. Additionally, LIPUS could stimulate chondrocytes to overexpress the aggrecan and collagen II genes and improve their chondrogenic phenotype. This study recommends that the combination of LIPUS treatment and 3D hybrid scaffolds can be considered as a valuable treatment for meniscus regeneration based on our in vitro data.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Farshad Amiri
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| |
Collapse
|
9
|
Bian Y, Wang H, Zhao X, Weng X. Meniscus repair: up-to-date advances in stem cell-based therapy. Stem Cell Res Ther 2022; 13:207. [PMID: 35578310 PMCID: PMC9109379 DOI: 10.1186/s13287-022-02863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
The meniscus is a semilunar fibrocartilage between the tibia and femur that is essential for the structural and functional integrity of the keen joint. In addition to pain and knee joint dysfunction, meniscus injuries can also lead to degenerative changes of the knee joint such as osteoarthritis, which further affect patient productivity and quality of life. However, with intrinsic avascular property, the tearing meniscus tends to be nonunion and the augmentation of post-injury meniscus repair has long time been a challenge. Stem cell-based therapy with potent regenerative properties has recently attracted much attention in repairing meniscus injuries, among which mesenchymal stem cells were most explored for their easy availability, trilineage differentiation potential, and immunomodulatory properties. Here, we summarize the advances and achievements in stem cell-based therapy for meniscus repair in the last 5 years. We also highlight the obstacles before their successful clinical translation and propose some perspectives for stem cell-based therapy in meniscus repair.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Ding G, Du J, Hu X, Ao Y. Mesenchymal Stem Cells From Different Sources in Meniscus Repair and Regeneration. Front Bioeng Biotechnol 2022; 10:796367. [PMID: 35573249 PMCID: PMC9091333 DOI: 10.3389/fbioe.2022.796367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023] Open
Abstract
Meniscus damage is a common trauma that often arises from sports injuries or menisci tissue degeneration. Current treatment methods focus on the repair, replacement, and regeneration of the meniscus to restore its original function. The advance of tissue engineering provides a novel approach to restore the unique structure of the meniscus. Recently, mesenchymal stem cells found in tissues including bone marrow, peripheral blood, fat, and articular cavity synovium have shown specific advantages in meniscus repair. Although various studies explore the use of stem cells in repairing meniscal injuries from different sources and demonstrate their potential for chondrogenic differentiation, their meniscal cartilage-forming properties are yet to be systematically compared. Therefore, this review aims to summarize and compare different sources of mesenchymal stem cells for meniscal repair and regeneration.
Collapse
Affiliation(s)
- Guocheng Ding
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jianing Du
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Amiri F, Babaei M, Jamshidi N, Agheb M, Rafienia M, Kazemi M. Fabrication and assessment of a novel hybrid scaffold consisted of polyurethane-gellan gum-hyaluronic acid-glucosamine for meniscus tissue engineering. Int J Biol Macromol 2022; 203:610-622. [PMID: 35051502 DOI: 10.1016/j.ijbiomac.2022.01.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The meniscus has inadequate intrinsic regenerative capacity and its damage can lead to degeneration of articular cartilage. Meniscus tissue engineering aims to restore an injured meniscus followed by returning its normal function through bioengineered scaffolds. In the present study, the structural and biological properties of 3D-printed polyurethane (PU) scaffolds dip-coated with gellan gum (GG), hyaluronic acid (HA), and glucosamine (GA) were investigated. The optimum concentration of GG was 3% (w/v) with maintaining porosity at 88.1%. The surface coating of GG-HA-GA onto the PU scaffolds increased the compression modulus from 30.30 kPa to 59.10 kPa, the water uptake ratio from 27.33% to 60.80%, degradation rate from 5.18% to 8.84%, whereas the contact angle was reduced from 104.8° to 59.3°. MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and SEM were adopted to assess the behavior of the seeded chondrocytes on scaffolds, and it was found that the ternary surface coating stimulated the cell proliferation, viability, and adhesion. Moreover, the coated scaffolds showed higher expression levels of collagen II and aggrecan genes at day 7 compared to the control groups. Therefore, the fabricated PU-3% (w/v) GG-HA-GA scaffold can be considered as a promising scaffold for meniscus tissue engineering.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Melika Babaei
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Maria Agheb
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
13
|
Jiao D, Zheng A, Liu Y, Zhang X, Wang X, Wu J, She W, Lv K, Cao L, Jiang X. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 2021; 6:2011-2028. [PMID: 33426373 PMCID: PMC7782557 DOI: 10.1016/j.bioactmat.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 01/07/2023] Open
Abstract
Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangkai Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao Wang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Jiannan Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Wenjun She
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Kaige Lv
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
14
|
Yang CP, Hung KT, Weng CJ, Chen ACY, Hsu KY, Chan YS. Clinical Outcomes of Meniscus Repair with or without Multiple Intra-Articular Injections of Platelet Rich Plasma after Surgery. J Clin Med 2021; 10:jcm10122546. [PMID: 34207554 PMCID: PMC8228048 DOI: 10.3390/jcm10122546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Preservation of the meniscal volume is crucial in meniscus repair. The goal of this study was to evaluate the clinical outcome of repeated intra-articular platelet-rich plasma (PRP) injections after arthroscopic repair of a traumatic meniscal tear. We retrospectively reviewed 61 primary meniscal repairs in 61 patients (PRP group: 30; non-PRP: 31) from 2017 to 2018. Patients in the PRP group received repeated intra-articular PRP injections in week 2,4,6 after the primary meniscus repair. Subsequent meniscal repair treatment or meniscectomy, knee arthroplasty, and IKDC changes of less than 11.5 points were defined as healing failures. After following up for at least 24 months, the IKDC score was 75.1 ± 13.6, and the Lysholm score was 80.6 ± 14.9 in the PRP group and 72.6 ± 15.8 (IKDC) and 77.7 ± 17.2 (Lysholm) in the non-PRP group. Healing rates of the PRP and the non-PRP groups were 93.3% (Kaplan-Meier 91.6%) and 87.1% (Kaplan-Meier 84.7%), respectively (log rank test p = 0.874). Our study is the first to use multiple intra-articular PRP injections to facilitate meniscal healing after meniscal repair. Though selection bias may be present in this study, the PRP group had similar functional outcome and healing rate compared to non-PRP group.
Collapse
Affiliation(s)
- Cheng-Pang Yang
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Linkou 333, Taiwan; (C.-P.Y.); (K.-T.H.); (C.-J.W.); (A.C.-Y.C.); (K.-Y.H.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Kung-Tseng Hung
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Linkou 333, Taiwan; (C.-P.Y.); (K.-T.H.); (C.-J.W.); (A.C.-Y.C.); (K.-Y.H.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Chun-Jui Weng
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Linkou 333, Taiwan; (C.-P.Y.); (K.-T.H.); (C.-J.W.); (A.C.-Y.C.); (K.-Y.H.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Alvin Chao-Yu Chen
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Linkou 333, Taiwan; (C.-P.Y.); (K.-T.H.); (C.-J.W.); (A.C.-Y.C.); (K.-Y.H.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Kuo-Yao Hsu
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Linkou 333, Taiwan; (C.-P.Y.); (K.-T.H.); (C.-J.W.); (A.C.-Y.C.); (K.-Y.H.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Yi-Sheng Chan
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Linkou 333, Taiwan; (C.-P.Y.); (K.-T.H.); (C.-J.W.); (A.C.-Y.C.); (K.-Y.H.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 2163)
| |
Collapse
|
15
|
Biomechanical Performance of Menisci under Cyclic Loads. Appl Bionics Biomech 2021. [DOI: 10.1155/2021/5512762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meniscus, composed of fibrocartilage, is a very important part of the human knee joint that behaves like a buffer. Located in the middle of the femoral condyles and the tibial plateau, it is a necessary structure to maintain normal biomechanical properties of the knee. Whether walking or exercising, the meniscus plays a vital role to protect the articular surface of both the femoral condyles and the tibial plateau by absorbing the conveying shock from body weight. However, modern people often suffer from irreversible degeneration of joint tissue due to exercise-induced harm or aging. Therefore, understanding its dynamic characteristics will help to learn more about the actual state of motion and to avoid unnecessary injury. This study uses reverse engineering equipment, a 3D optical scanner, and a plastic teaching human body model to build the geometry of knee joint meniscus. Then, the finite element method (FEM) is employed to obtain the dynamic characteristics of the meniscus. The results show the natural frequencies, mode shapes, and fatigue life analysis of meniscus, with real human material parameters. The achieved results can be applied to do subsequent knee dynamic simulation analysis, to reduce the knee joint and lower external impacts, and to manufacture artificial meniscus through tissue engineering.
Collapse
|
16
|
Kara A, Koçtürk S, Bilici G, Havitcioglu H. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells. J Biomater Appl 2021; 35:1192-1207. [PMID: 33444085 DOI: 10.1177/0885328220981189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering approaches which include a combination of cells and scaffold materials provide an alternative treatment for meniscus regeneration. Decellularization and recellularization techniques are potential treatment options for transplantation. Maintenance of the ultrastructure composition of the extracellular matrix and repopulation with cells are important factors in constructing a biological scaffold and eliminating immunological reactions.The aim of the study is to develop a method to obtain biological functional meniscus scaffolds for meniscus regeneration. For this purpose, meniscus tissue was decellularized by our modified method, a combination of physical, chemical, and enzymatic methods and then recellularized with a meniscal cell population composed of fibroblasts, chondrocytes and fibrochondrocytes that obtained from mesenchymal stem cells. Decellularized and recellularized meniscus scaffolds were analysed biochemically, biomechanically and histologically. Our results revealed that cellular components of the meniscus were successfully removed by preserving collagen and GAG structures without any significant loss in biomechanical properties. Recellularization results showed that the meniscal cells were localized in the empty lacuna on the decellularized meniscus, and also well distributed and proliferated consistently during the cell culture period (p < 0.05). Furthermore, a high amount of DNA, collagen, and GAG contents (p < 0.05) were obtained with the meniscal cell population in recellularized meniscus tissue.The study demonstrates that our decellularization and recellularization methods were effective to develop a biological functional meniscus scaffold and can mimic the meniscus tissue with structural and biochemical features. We predict that the obtained biological meniscus scaffolds may provide avoidance of adverse immune reactions and an appropriate microenvironment for allogeneic or xenogeneic recipients in the transplantation process. Therefore, as a promising candidate, the obtained biological meniscus scaffolds might be verified with a transplantation experiment.
Collapse
Affiliation(s)
- Aylin Kara
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Semra Koçtürk
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Gokcen Bilici
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Hasan Havitcioglu
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
17
|
Okuno N, Otsuki S, Aoyama J, Nakagawa K, Murakami T, Ikeda K, Hirose Y, Wakama H, Okayoshi T, Okamoto Y, Hirano Y, Neo M. Feasibility of a self-assembling peptide hydrogel scaffold for meniscal defect: An in vivo study in a rabbit model. J Orthop Res 2021; 39:165-176. [PMID: 32852842 DOI: 10.1002/jor.24841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The inner avascular zone of the meniscus has limited healing capacity as the area is poorly vascularized. Although peptide hydrogels have been reported to regenerate bone and cartilage, their effect on meniscus regeneration remains unknown. We tested whether the self-assembling peptide hydrogel scaffold KI24RGDS stays in the meniscal lesion and facilitates meniscal repair and regeneration in an induced rabbit meniscal defect model. Full-thickness (2.0 mm diameter) cylindrical defects were introduced into the inner avascular zones of the anterior portions of the medial menisci of rabbit knees (n = 40). Right knee defects were left empty (control group) while the left knee defects were transplanted with peptide hydrogel (KI24RGDS group). Macroscopic meniscus scores were significantly higher in the KI24RGDS group than in the control group at 2, 4, and 8 weeks after surgery. Histological examinations including quantitative and qualitative scores indicated that compared with the control group, the reparative tissue in the meniscus was significantly enhanced in the KI24RGDS group at 2, 4, 8, and 12 weeks after surgery. Immunohistochemical staining showed that the reparative tissue induced by KI24RGDS at 12 weeks postimplantation was positive for Type I and II collagen. KI24RGDS is highly biocompatible and biodegradable, with strong stiffness, and a three dimensional structure mimicking native extracellular matrix and RGDS sequences that enhance cell adhesion and proliferation. This in vivo study demonstrated that KI24RGDS remained in the meniscal lesion and facilitated the repair and regeneration in a rabbit meniscal defect model.
Collapse
Affiliation(s)
- Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Jo Aoyama
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiko Murakami
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Kuniaki Ikeda
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | | | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiro Okayoshi
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshiaki Hirano
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| |
Collapse
|
18
|
Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. NANO TODAY 2020; 34:100898. [PMID: 32802145 PMCID: PMC7425807 DOI: 10.1016/j.nantod.2020.100898] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Zhao W, Zou T, Cui H, Lv Y, Gao D, Ruan C, Zhang X, Zhang Y. Parathyroid hormone (1-34) promotes the effects of 3D printed scaffold-seeded bone marrow mesenchymal stem cells on meniscus regeneration. Stem Cell Res Ther 2020; 11:328. [PMID: 32731897 PMCID: PMC7394673 DOI: 10.1186/s13287-020-01845-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cell-based tissue engineering represents a promising management for meniscus repair and regeneration. The present study aimed to investigate whether the injection of parathyroid hormone (PTH) (1-34) could promote the regeneration and chondroprotection of 3D printed scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in a canine total meniscal meniscectomy model. Methods 3D printed poly(e-caprolactone) scaffold seeded with BMSCs was cultured in vitro, and the effects of in vitro culture time on cell growth and matrix synthesis of the BMSCs–scaffold construct were evaluated by microscopic observation and cartilage matrix content detection at 7, 14, 21, and 28 days. After that, the tissue-engineered meniscus based on BMSCs–scaffold cultured for the appropriate culture time was selected for in vivo implantation. Sixteen dogs were randomly divided into four groups: PTH + BMSCs–scaffold, BMSCs–scaffold, total meniscectomy, and sham operation. The regeneration of the implanted tissue and the degeneration of articular cartilage were assessed by gross, histological, and immunohistochemical analysis at 12 weeks postoperatively. Results In vitro study showed that the glycosaminoglycan (GAG)/DNA ratio and the expression of collagen type II (Col2) were significantly higher on day 21 as compared to the other time points. In vivo study showed that, compared with the BMSCs–scaffold group, the PTH + BMSCs–scaffold group showed better regeneration of the implanted tissue and greater similarity to native meniscus concerning gross appearance, cell composition, and cartilage extracellular matrix deposition. This group also showed less expression of terminal differentiation markers of BMSC chondrogenesis as well as lower cartilage degeneration with less damage on the knee cartilage surface, higher expression of Col2, and lower expression of degeneration markers. Conclusions Our results demonstrated that PTH (1-34) promotes the regenerative and chondroprotective effects of the BMSCs–3D printed meniscal scaffold in a canine model, and thus, their combination could be a promising strategy for meniscus tissue engineering.
Collapse
Affiliation(s)
- Wen Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Zou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangou Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dengke Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenmei Ruan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Early Functional Rehabilitation after Meniscus Surgery: Are Currently Used Orthopedic Rehabilitation Standards Up to Date? Rehabil Res Pract 2020; 2020:3989535. [PMID: 32292602 PMCID: PMC7146095 DOI: 10.1155/2020/3989535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022] Open
Abstract
Meniscus therapy is a challenging process. Besides the respective surgical procedure such as partial meniscectomy, meniscus repair, or meniscus replacement, early postoperative rehabilitation is important for meniscus regeneration and return to sport and work as well as long-term outcome. Various recommendations are available. However, the current literature lacks information concerning the actual early rehabilitation in daily routine recommended by orthopedic surgeons. Thus, the purpose of this study was to investigate currently used standard early rehabilitation protocols in the daily routine of orthopedic surgeons. This study investigated the recommendations and concepts for early rehabilitation after meniscus therapy given by German, Austrian, and Swiss orthopedic institutions. Standardized criteria such as weight bearing, range of motion, use of an orthosis, and rehabilitation training were analyzed according to the conducted surgical procedure: partial meniscectomy, meniscus repair, or meniscus replacement. The analysis of standard rehabilitation concepts for partial meniscectomy (n = 15), meniscus repair (n = 54), and meniscus replacement (n = 7) showed significantly earlier functional rehabilitation in all criteria after partial meniscectomy in contrast to meniscus repair techniques (p < 0.001). In addition, significant restrictions were found in full weight bearing, full range of motion, and the use of braces. In summary, a wide range of recommendations for weight bearing, ROM, brace therapy, and mobilization is available, particularly after meniscus repair and meniscus replacement. Most concepts are in accordance with those described in the current literature. Further research is necessary to enhance the scientific evidence on currently used early rehabilitation concepts after meniscus therapy.
Collapse
|
21
|
Hidalgo Perea S, Lyons LP, Nishimuta JF, Weinberg JB, McNulty AL. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:322-337. [PMID: 31661326 PMCID: PMC7188595 DOI: 10.1080/03008207.2019.1680656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Meniscal injury and loss of meniscus tissue lead to osteoarthritis development. Therefore, novel biologic strategies are needed to enhance meniscus tissue repair. The purpose of this study was to identify a favorable culture medium for both bone marrow-derived mesenchymal stem cells (MSCs) and meniscal tissue, and to establish a novel meniscus tissue defect model that could be utilized for in vitro screening of biologics to promote meniscus repair.Materials and Methods: In parallel, we analyzed the biochemical properties of MSC - seeded meniscus-derived matrix (MDM) scaffolds and meniscus repair model explants cultured in different combinations of serum, dexamethasone (Dex), and TGF-β. Next, we combined meniscus tissue and MSC-seeded MDM scaffolds into a novel meniscus tissue defect model to evaluate the effects of chondrogenic and meniscal media on the tissue biochemical properties and repair strength.Results: Serum-free medium containing TGF-β and Dex was the most promising formulation for experiments with MSC-seeded scaffolds, whereas serum-containing medium was the most effective for meniscus tissue composition and integrative repair. When meniscus tissue and MSC-seeded MDM scaffolds were combined into a defect model, the chondrogenic medium (serum-free with TGF-β and Dex) enhanced the production of proteoglycans and promoted integrative repair of meniscus tissue. As well, cross-linked scaffolds improved repair over the MDM slurry.Conclusions: The meniscal tissue defect model established in this paper can be used to perform in vitro screening to identify and optimize biological treatments to enhance meniscus tissue repair prior to conducting preclinical animal studies.
Collapse
Affiliation(s)
- Sofia Hidalgo Perea
- Department of Biology, Duke University, Durham, North
Carolina, USA,Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - James F. Nishimuta
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University School of Medicine,
Durham, North Carolina, USA,VA Medical Center, Durham, NC, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA,Department of Pathology, Duke University School of
Medicine, Durham, North Carolina, USA,Corresponding Author: Amy L. McNulty,
PhD, Duke University School of Medicine, 355A Medical Sciences Research Building
1, DUMC Box 3093, Durham, NC 27710, Phone: 919-684-6882,
| |
Collapse
|
22
|
Chen M, Feng Z, Guo W, Yang D, Gao S, Li Y, Shen S, Yuan Z, Huang B, Zhang Y, Wang M, Li X, Hao L, Peng J, Liu S, Zhou Y, Guo Q. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41626-41639. [PMID: 31596568 DOI: 10.1021/acsami.9b13611] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration of an injured meniscus continues to be a scientific challenge due to its poor self-healing potential. Tissue engineering provides an avenue for regenerating a severely damaged meniscus. In this study, we first investigated the superiority of five concentrations (0%, 0.5%, 1%, 2%, and 4%) of meniscus extracellular matrix (MECM)-based hydrogel in promoting cell proliferation and the matrix-forming phenotype of meniscal fibrochondrocytes (MFCs). We found that the 2% group strongly enhanced chondrogenic marker mRNA expression and cell proliferation compared to the other groups. Moreover, the 2% group showed the highest glycosaminoglycan (GAG) and collagen production by day 14. We then constructed a hybrid scaffold by 3D printing a wedge-shaped poly(ε-caprolactone) (PCL) scaffold as a backbone, followed by injection with the optimized MECM-based hydrogel (2%), which served as a cell delivery system. The hybrid scaffold (PCL-hydrogel) clearly yielded favorable biomechanical properties close to those of the native meniscus. Finally, PCL scaffold, PCL-hydrogel, and MFCs-loaded hybrid scaffold (PCL-hydrogel-MFCs) were implanted into the knee joints of New Zealand rabbits that underwent total medial meniscectomy. Six months postimplantation we found that the PCL-hydrogel-MFCs group exhibited markedly better gross appearance and cartilage protection than the PCL scaffold and PCL-hydrogel groups. Moreover, the regenerated menisci in the PCL-hydrogel-MFCs group had similar histological structures, biochemical contents, and biomechanical properties as the native menisci in the sham operation group. In conclusion, PCL-MECM-based hydrogel hybrid scaffold seeded with MFCs can successfully promote whole meniscus regeneration, and cell-loaded PCL-MECM-based hydrogel hybrid scaffold may be a promising strategy for meniscus regeneration in the future.
Collapse
Affiliation(s)
- Mingxue Chen
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital , Peking University Fourth School of Clinical Medicine , No. 31 Xinjiekou East Street, Xicheng District , Beijing 100035 , People's Republic of China
| | - Zhaoxuan Feng
- School of Material Science and Engineering , University of Science and Technology Beijing , No. 30 Xueyuan Road, Haidian District , Beijing 100083 , People's Republic of China
| | - Weimin Guo
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Orthopaedic Surgery, First Affiliated Hospital , Sun Yat-sen University , No. 58 Zhongshan Second Road, Yuexiu District , Guangzhou , Guangdong 510080 , People's Republic of China
| | - Dejin Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital , Peking University Fourth School of Clinical Medicine , No. 31 Xinjiekou East Street, Xicheng District , Beijing 100035 , People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies , Peking University , No. 5 Yiheyuan Road, Haidian District , Beijing 100871 , People's Republic of China
| | - Yangyang Li
- Academy for Advanced Interdisciplinary Studies , Peking University , No. 5 Yiheyuan Road, Haidian District , Beijing 100871 , People's Republic of China
| | - Shi Shen
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , No. 25 Taiping Road , Luzhou 646000 , People's Republic of China
| | - Zhiguo Yuan
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Bo Huang
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , No. 25 Taiping Road , Luzhou 646000 , People's Republic of China
| | - Yu Zhang
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Mingjie Wang
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Xu Li
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Libo Hao
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Jiang Peng
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Shuyun Liu
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Yixin Zhou
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital , Peking University Fourth School of Clinical Medicine , No. 31 Xinjiekou East Street, Xicheng District , Beijing 100035 , People's Republic of China
| | - Quanyi Guo
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| |
Collapse
|
23
|
Liu F, Xu H, Huang H. A novel kartogenin-platelet-rich plasma gel enhances chondrogenesis of bone marrow mesenchymal stem cells in vitro and promotes wounded meniscus healing in vivo. Stem Cell Res Ther 2019; 10:201. [PMID: 31287023 PMCID: PMC6615105 DOI: 10.1186/s13287-019-1314-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background The meniscus tear is one of the most common knee injuries particularly seen in athletes and aging populations. Subchondral bone sclerosis, irreparable joint damage, and the early onset of osteoarthritis make the injured meniscus heal difficultly. Methods The study was performed by in vitro and in vivo experiments. The in vitro experiments were carried out using the bone marrow stem cells (BMSCs) isolated from the rabbits, and the stemness of the BMSCs was tested by immunostaining. The BMSCs positively expressed stem cell markers were cultured with various concentrations of kartogenin (KGN) for 2 weeks. The chondrogenesis of BMSCs induced by KGN was examined by histochemical staining and quantitative RT-PCR. The in vivo experiments were completed by a rabbit model. Three holes were created in each meniscus by a biopsy punch. The rabbits were treated with four different conditions in each group. Group 1 was treated with 20 μl of saline (saline); group 2 was treated with 5 μl of 100 μM KGN and 15 μl saline (KGN); group 3 was treated with 5 μl of 100 μM KGN, 5 μl of 10,000 U/ ml thrombin, and 10 μl of PRP (KGN+PRP); group 4 was treated with 10,000 BMSCs in 10 μl of PRP, 5 μl of saline solution, and 5 μl of 10,000 U/ml thrombin (PRP+BMSC); group 5 was treated with 10,000 BMSCs in 10 μl of PRP, 5 μl of 100 μM KGN, and 5 μl of 10,000 U/ml thrombin (KGN+PRP+BMSC). The menisci were collected at day 90 post-surgery for gross inspection and histochemical analysis. Results The histochemical staining showed that KGN induced chondrogenesis of BMSCs in a concentration-dependent manner. The RT-PCR results indicated that chondrocyte-related genes were also increased in the BMSCs cultured with KGN in a dose-dependent manner. The in vivo results showed that large unhealed wound areas were still found in the wounds treated with saline and KGN groups. The wounds treated with BMSCs-containing PRP gel healed much faster than the wounds treated without BMSCs. Furthermore, the wounds treated with BMSCs-containing KGN-PRP gel have healed completely and formed more cartilage-like tissues than the wounds treated with BMSCs-containing PRP gel. Conclusions BMSCs could be differentiated into chondrocytes when they were cultured with KGN-PRP gel in vitro and formed more cartilage-like tissues in the wounded rabbit meniscus when the wounds were treated with BMSCs-containing KGN-PRP gel. The results indicated that the BMSCs-containing KGN-PRP gel is a good substitute for injured meniscus repair and regeneration.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopaedics, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - He Huang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China. .,China Orthopaedic Regeneration Medicine Group, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
24
|
Shen S, Chen M, Guo W, Li H, Li X, Huang S, Luo X, Wang Z, Wen Y, Yuan Z, Zhang B, Peng L, Gao C, Guo Q, Liu S, Zhuo N. Three Dimensional Printing-Based Strategies for Functional Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:187-201. [PMID: 30608012 DOI: 10.1089/ten.teb.2018.0248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shi Shen
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Haojiang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Suqiong Huang
- Department of Liver and Gallbladder Disease, The Affiliated Chinese Traditional Medicine Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xujiang Luo
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Yang Wen
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Bin Zhang
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Liqing Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Chao Gao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Naiqiang Zhuo
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
25
|
Koch M, Hammer S, Fuellerer J, Lang S, Pfeifer CG, Pattappa G, Weber J, Loibl M, Nerlich M, Angele P, Zellner J. Bone Marrow Aspirate Concentrate for the Treatment of Avascular Meniscus Tears in a One-Step Procedure-Evaluation of an In Vivo Model. Int J Mol Sci 2019; 20:ijms20051120. [PMID: 30841560 PMCID: PMC6429139 DOI: 10.3390/ijms20051120] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Avascular meniscus tears show poor intrinsic regenerative potential. Thus, lesions within this area predispose the patient to developing knee osteoarthritis. Current research focuses on regenerative approaches using growth factors or mesenchymal stem cells (MSCs) to enhance healing capacity within the avascular meniscus zone. The use of MSCs especially as progenitor cells and a source of growth factors has shown promising results. However, present studies use bone-marrow-derived BMSCs in a two-step procedure, which is limiting the transfer in clinical praxis. So, the aim of this study was to evaluate a one-step procedure using bone marrow aspirate concentrate (BMAC), containing BMSCs, for inducing the regeneration of avascular meniscus lesions. Longitudinal meniscus tears of 4 mm in size of the lateral New Zealand White rabbit meniscus were treated with clotted autologous PRP (platelet-rich plasma) or BMAC and a meniscus suture or a meniscus suture alone. Menisci were harvested at 6 and 12 weeks after initial surgery. Macroscopical and histological evaluation was performed according to an established Meniscus Scoring System. BMAC significantly enhanced regeneration of the meniscus lesions in a time-dependent manner and in comparison to the PRP and control groups, where no healing could be observed. Treatment of avascular meniscus lesions with BMAC and meniscus suturing seems to be a promising approach to promote meniscus regeneration in the avascular zone using a one-step procedure.
Collapse
Affiliation(s)
- Matthias Koch
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Selma Hammer
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julian Fuellerer
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Siegmund Lang
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Christian G Pfeifer
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Girish Pattappa
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Johannes Weber
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Markus Loibl
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Peter Angele
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Sporthopaedicum Regensburg/Straubing, Hildegard-von-Bingen-Str. 1, 93053, Regensburg, Germany.
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
26
|
Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, Wang Z, Li X, Jing X, Zhang X, Yuan Z, Wang M, Zhang Y, Peng J, Wang A, Wang Y, Sui X, Liu S, Guo Q. Biomechanical Stimulus Based Strategies for Meniscus Tissue Engineering and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:392-402. [PMID: 29897012 DOI: 10.1089/ten.teb.2017.0508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meniscus injuries are very common in the knee joint. Treating a damaged meniscus continues to be a scientific challenge in sport medicine because of its poor self-healing potential and few clinical therapeutic options. Tissue engineering strategies are very promising solutions for repairing and regenerating a damaged meniscus. Meniscus is exposed to a complex biomechanical microenvironment, and it plays a crucial role in meniscal development, growth, and repairing. Over the past decades, increasing attention has been focused on the use of biomechanical stimulus to enhance biomechanical properties of the engineered meniscus. Further understanding the influence of mechanical stimulation on cell proliferation and differentiation, metabolism, relevant gene expression, and pro/anti-inflammatory responses may be beneficial to enhance meniscal repair and regeneration. On the one hand, this review describes some basic information about meniscus; on the other hand, we sum up the various biomechanical stimulus based strategies applied in meniscus tissue engineering and how these factors affect meniscal regeneration. We hope this review will provide researchers with inspiration on tissue engineering strategies for meniscus regeneration in the future.
Collapse
Affiliation(s)
- Mingxue Chen
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,2 Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, 100035 Beijing, People's Republic of China
| | - Weimin Guo
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shunag Gao
- 3 Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing, People's Republic of China
| | - Chunxiang Hao
- 4 Institute of Anesthesiology , Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shi Shen
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,5 Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University , Luzhou, People's Republic of China
| | - Zengzeng Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,6 First Department of Orthopedics, First Affiliated Hospital of Jiamusi University , Jiamusi, People's Republic of China
| | - Zehao Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xu Li
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,7 School of Medicine, Nankai University , Tianjin, People's Republic of China
| | - Xiaoguang Jing
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,6 First Department of Orthopedics, First Affiliated Hospital of Jiamusi University , Jiamusi, People's Republic of China
| | - Xueliang Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,8 Shanxi Traditional Chinese Hospital , Taiyuan, People's Republic of China
| | - Zhiguo Yuan
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yu Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Jiang Peng
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Aiyuan Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yu Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xiang Sui
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| |
Collapse
|
27
|
Gopinathan J, Pillai MM, Shanthakumari S, Gnanapoongothai S, Dinakar Rai BK, Santosh Sahanand K, Selvakumar R, Bhattacharyya A. Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2247-2258. [DOI: 10.1016/j.nano.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
|
28
|
Shen S, Chen M, Gao S, Guo W, Wang Z, Li H, Li X, Zhang B, Xian H, Zhang X, Liu S, Hao L, Zhuo N, Guo Q. [Study on the preparation of polycaprolactone/type Ⅰcollagen tissue engineered meniscus scaffold by three-dimensional printing and its physiochemical properties]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1205-1210. [PMID: 30129332 DOI: 10.7507/1002-1892.201803074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To manufacture a polycaprolactone (PCL)/type Ⅰ collagen (COL Ⅰ) tissue engineered meniscus scaffold (hereinafter referred to as PCL/COL Ⅰ meniscus scaffold) by three-dimensional (3D) printing with low temperature deposition technique and to study its physicochemical properties. Methods First, the 15% PCL/4% COLⅠ composite solution and 15% PCL simple solution were prepared. Then, 15% PCL/4% COL Ⅰmeniscus scaffold and 15% PCL meniscal scaffold were prepared by using 3D printing with low temperature deposition techniques. The morphology and microstructure of the scaffolds were observed by gross observation and scanning electron microscope. The compression modulus and tensile modulus of the scaffolds were measured by biomechanical test. The components of the scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR). The contact angle of the scaffold surface was measured. The meniscus cells of rabbits were cultured with the two scaffold extracts and scaffolds, respectively. After cultured, the cell proliferations were detected by cell counting kit 8 (CCK-8), and the normal cultured cells were used as controls. Cell adhesion and growth of scaffold-cell complex were observed by scanning electron microscope. Results According to the gross and scanning electron microscope observations, two scaffolds had orientated 3D microstructures and pores, but the surface of the PCL/COLⅠ meniscus scaffold was rougher than the PCL meniscus scaffold. Biomechanical analysis showed that the tensile modulus and compression modulus of the PCL/COL Ⅰ meniscus scaffold were not significantly different from those of the PCL meniscus scaffold ( P>0.05). FTIR analysis results showed that COL Ⅰ and PCL were successful mixed in PCL/ COL Ⅰ meniscus scaffolds. The contact angle of PCL/COLⅠ meniscus scaffold [(83.19±7.49)°] was significantly lower than that of PCL meniscus scaffold [(111.13±5.70)°] ( t=6.638, P=0.000). The results of the CCK-8 assay indicated that with time, the number of cells cultured in two scaffold extracts showed an increasing trend, and there was no significant difference when compared with the control group ( P>0.05). Scanning electron microscope observation showed that the cells attached on the PCL/ COL Ⅰ meniscus scaffold more than that on the PCL scaffold. Conclusion PCL/COLⅠmeniscus scaffolds are prepared by 3D printing with low temperature deposition technique, which has excellent physicochemical properties without cytotoxicity. PCL/COLⅠmeniscus scaffold is expected to be used as the material for meniscus tissue engineering.
Collapse
Affiliation(s)
- Shi Shen
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Mingxue Chen
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Shuang Gao
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Weimin Guo
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Zhenyong Wang
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Haojiang Li
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Xu Li
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Bin Zhang
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Hai Xian
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Xueliang Zhang
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Shuyun Liu
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Libo Hao
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Naiqiang Zhuo
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000,
| | - Quanyi Guo
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853,
| |
Collapse
|
29
|
Cell-Free Strategies for Repair and Regeneration of Meniscus Injuries through the Recruitment of Endogenous Stem/Progenitor Cells. Stem Cells Int 2018; 2018:5310471. [PMID: 30123286 PMCID: PMC6079391 DOI: 10.1155/2018/5310471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022] Open
Abstract
The meniscus plays a vital role in protecting the articular cartilage of the knee joint. The inner two-thirds of the meniscus are avascular, and injuries to this region often fail to heal without intervention. The use of tissue engineering and regenerative medicine techniques may offer novel and effective approaches to repairing meniscal injuries. Meniscal tissue engineering and regenerative medicine typically use one of two techniques, cell-based or cell-free. While numerous cell-based strategies have been applied to repair and regenerate meniscal defects, these techniques possess certain limitations including cellular contamination and an increased risk of disease transmission. Cell-free strategies attempt to repair and regenerate the injured tissues by recruiting endogenous stem/progenitor cells. Cell-free strategies avoid several of the disadvantages of cell-based techniques and, therefore, may have a wider clinical application. This review first compares cell-based to cell-free techniques. Next, it summarizes potential sources for endogenous stem/progenitor cells. Finally, it discusses important recruitment factors for meniscal repair and regeneration. In conclusion, cell-free techniques, which focus on the recruitment of endogenous stem and progenitor cells, are growing in efficacy and may play a critical role in the future of meniscal repair and regeneration.
Collapse
|
30
|
Tissue Engineering of Large Full-Size Meniscus Defects by a Polyurethane Scaffold: Accelerated Regeneration by Mesenchymal Stromal Cells. Stem Cells Int 2018; 2018:8207071. [PMID: 29853919 PMCID: PMC5964612 DOI: 10.1155/2018/8207071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
The endogenous healing potential of avascular meniscal lesions is poor. Up to now, partial meniscectomy is still the treatment of choice for meniscal lesions within the avascular area. However, the large loss of meniscus substance predisposes the knee for osteoarthritic changes. Tissue engineering techniques for the replacement of such lesions could be a promising alternative treatment option. Thus, a polyurethane scaffold, which is already in clinical use, loaded with mesenchymal stromal cells, was analyzed for the repair of critical meniscus defects in the avascular zone. Large, approximately 7 mm broad meniscus lesions affecting both the avascular and vascular area of the lateral rabbit meniscus were treated with polyurethane scaffolds either loaded or unloaded with mesenchymal stromal cells. Menisci were harvested at 6 and 12 weeks after initial surgery. Both cell-free and cell-loaded approaches led to well-integrated and stable meniscus-like repair tissue. However, an accelerated healing was achieved by the application of mesenchymal stromal cells. Dense vascularization was detected throughout the repair tissue of both treatment groups. Overall, the polyurethane scaffold seems to promote the vessel ingrowth. The application of mesenchymal stromal cells has the potential to speed up the healing process.
Collapse
|
31
|
Helgeland E, Shanbhag S, Pedersen TO, Mustafa K, Rosén A. Scaffold-Based Temporomandibular Joint Tissue Regeneration in Experimental Animal Models: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:300-316. [PMID: 29400140 DOI: 10.1089/ten.teb.2017.0429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reconstruction of degenerated temporomandibular joint (TMJ) structures remains a clinical challenge. Tissue engineering (TE) is a promising alternative to current treatment options, where the TMJ is either left without functional components, or replaced with autogenous, allogeneic, or synthetic grafts. The objective of this systematic review was to answer the focused question: in experimental animal models, does the implantation of biomaterial scaffolds loaded with cells and/or growth factors (GFs) enhance regeneration of the discal or osteochondral TMJ tissues, compared with scaffolds alone, without cells, or GFs? Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) guidelines, electronic databases were searched for relevant controlled preclinical in vivo studies. Thirty studies reporting TMJ TE strategies in both small (rodents, rabbits; n = 25) and large animals (dogs, sheep, goats; n = 5) reporting histological and/or radiographic outcomes were included. Twelve studies reported ectopic (subcutaneous) implantation models in rodents, whereas 18 studies reported orthotopic, surgically induced defect models in large animals. On average, studies presented with an unclear-to-high risk of bias. In most studies, mesenchymal stem cells or chondrocytes were used in combination with either natural or synthetic polymer scaffolds, aiming for either TMJ disc or condyle regeneration. In summary, the overall preclinical evidence (ectopic [n = 6] and orthotopic TMJ models [n = 6]) indicate that addition of chondrogenic and/or osteogenic cells to biomaterial scaffolds enhances the potential for TMJ tissue regeneration. Standardization of animal models and quantitative outcome evaluations (biomechanical, biochemical, histomorphometric, and radiographic) in future studies, would allow more reliable comparisons and increase the validity of the results.
Collapse
Affiliation(s)
- Espen Helgeland
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Torbjørn Ostvik Pedersen
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Oral and Maxillofacial Surgery, University of Bergen and Haukeland University Hospital , Bergen, Norway
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Annika Rosén
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Oral and Maxillofacial Surgery, University of Bergen and Haukeland University Hospital , Bergen, Norway
| |
Collapse
|
32
|
Huang H, Xu H, Zhao J. A Novel Approach for Meniscal Regeneration Using Kartogenin-Treated Autologous Tendon Graft. Am J Sports Med 2017; 45:3289-3297. [PMID: 28859517 DOI: 10.1177/0363546517721192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The meniscus is one of the most commonly injured parts of the body, and meniscal healing is difficult. HYPOTHESIS Kartogenin (KGN) induces tendon stem cells (TSCs) to differentiate into cartilage cells in vitro and form meniscus-like tissue in vivo. A damaged meniscus can be replaced with a KGN-treated autologous tendon graft. STUDY DESIGN Controlled laboratory study. METHODS In the in vitro experiments, TSCs were isolated from rabbit patellar tendons and cultured with various concentrations of KGN, from 0 to 1000 µM. The effect of KGN on the chondrogenesis of TSCs in vitro was investigated by histochemical staining and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The in vivo experiments were carried out on 6 New Zealand White rabbits by removing a meniscus from the rabbit knee and implanting an autologous tendon graft treated with KGN or saline. The meniscus formation in vivo was examined by histological analysis and immune staining. RESULTS The proliferation of TSCs was promoted by KGN in a concentration-dependent manner. Both histochemical staining and qRT-PCR showed that the chondrogenic differentiation of TSCs was increased with KGN concentration. After 3 months of implantation, the tendon graft treated with KGN formed a meniscus-like tissue with a white and glistening appearance, while the saline-treated tendon graft retained tendon-like tissue and appeared yellowish and unhealthy. Histochemical staining showed that after 3 months of implantation, the KGN-treated tendon graft had a structure similar to that of normal meniscus. Many cartilage-like cells and fibrocartilage-like tissues were found in the KGN-treated tendon graft. However, no cartilage-like cells were found in the saline-treated tendon graft after 3 months of implantation. Furthermore, the KGN-treated tendon graft was positively stained by both anti-collagen type I and type II antibodies, but the saline-treated tendon graft was not stained by collagen type II. CONCLUSION The findings indicated that KGN can induce the differentiation of TSCs into cartilage-like cells in vitro and in vivo. The results suggest that KGN-treated tendon graft may be a good substitute for meniscal repair and regeneration. CLINICAL RELEVANCE This study revealed the direct effects of KGN on the chondrogenic differentiation of TSCs in vitro and in vivo. A KGN-treated autologous tendon graft induced formation of a meniscus-like tissue in vivo. This study provides a new cartilage regenerating technology for the treatment of damaged meniscus.
Collapse
Affiliation(s)
- He Huang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyao Xu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianning Zhao
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
33
|
Koch M, Ehrenreich T, Koehl G, Pattappa G, Pfeifer C, Loibl M, Müller M, Nerlich M, Angele P, Zellner J. Do cell based tissue engineering products for meniscus regeneration influence vascularization? Clin Hemorheol Microcirc 2017; 67:125-140. [DOI: 10.3233/ch-17085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matthias Koch
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tobias Ehrenreich
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Gudrun Koehl
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Girish Pattappa
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Pfeifer
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Markus Loibl
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Müller
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Peter Angele
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
- Sporthopaedicum Regensburg/Straubing, Regensburg, Germany
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. NPJ Microgravity 2017; 3:28. [PMID: 29147680 PMCID: PMC5681589 DOI: 10.1038/s41526-017-0032-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023] Open
Abstract
Simulated microgravity has been shown to enhance cartilaginous matrix formation by chondrocytes and chondrogenesis of mesenchymal stem cells (MSCs). Similarly, coculture of primary chondrocytes with MSCs has been shown as a strategy to simultaneously retain the differentiated phenotype of chondrocytes and enhance cartilaginous matrix formation. In this study, we investigated the effect of simulated microgravity on cocultures of primary human meniscus cells and adipose-derived MSCs. We used biochemical, qPCR, and immunofluorescence assays to conduct our investigation. Simulated microgravity significantly enhanced cartilaginous matrix formation in cocultures of primary meniscus cells and adipose-derived MSCs. The enhancement was accompanied by increased hypertrophic differentiation markers, COL10A1 and MMP-13, and suppression of hypertrophic differentiation inhibitor, gremlin 1 (GREM1). Co-culture of meniscal cartilage-forming cells with fat-derived stem cells can lead to enhanced cartilage matrix production when cultured under simulated microgravity. Adetola Adesida from the University of Alberta in Edmonton, Canada, and colleagues cultured two types of cells found together in the knee—cartilage-forming chondrocyte cells (taken from the meniscus) and mesenchymal stem cells (isolated from the infrapatellar fat pad)—in a rotary cell culture system designed to model weightlessness on Earth. Simulated microgravity enhanced the synergistic interaction between the two types of cells in culture, resulting in more matrix production, but it also prompted the cartilage-forming cells to differentiate towards bone-forming cells, as evidenced by gene expression analysis. These findings suggest that microgravity and simulated microgravity-based culture technologies could help bioengineers grow knee replacements for people with meniscus tears, but increased bone-directed differentiation could pose a possible problem for astronauts on prolonged missions.
Collapse
|
35
|
Liang Y, Idrees E, Andrews SHJ, Labib K, Szojka A, Kunze M, Burbank AD, Mulet-Sierra A, Jomha NM, Adesida AB. Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Sci Rep 2017; 7:12148. [PMID: 28939894 PMCID: PMC5610182 DOI: 10.1038/s41598-017-12096-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Meniscus fibrochondrocytes (MFCs) may be the optimal cell source to repair non-healing meniscus injuries using tissue engineering strategies. In this study, we investigated the effects of mitotic divisions and oxygen tension on the plasticity of adult human MFCs. Our assessment techniques included gene expression, biochemical, histological, and immunofluorescence assays. MFCs were expanded in monolayer culture with combined growth factors TGFβ1 and FGF-2 (T1F2) under normoxia (21% O2). Trilineage (adipogenesis, chondrogenesis and osteogenesis) differentiation was performed under both normoxic (21% O2) and hypoxic (3% O2) conditions. The data demonstrated that MFCs with a mean total population doubling of 10 can undergo adipogenesis and chondrogenesis. This capability was enhanced under hypoxic conditions. The MFCs did not undergo osteogenesis. In conclusion, our findings suggest that extensively expanded human MFCs have the capacity to generate tissues with the functional matrix characteristics of avascular meniscus. To this end, expanded MFCs may be an ideal cell source for engineering functional constructs for the replacement or repair of avascular meniscus.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
- Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Kirollos Labib
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Alexander Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Andrea D Burbank
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
36
|
Platelet-Rich Fibrin Facilitates Rabbit Meniscal Repair by Promoting Meniscocytes Proliferation, Migration, and Extracellular Matrix Synthesis. Int J Mol Sci 2017; 18:ijms18081722. [PMID: 28783120 PMCID: PMC5578112 DOI: 10.3390/ijms18081722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Although platelet-rich fibrin (PRF) has been used in clinical practice for some time, to date, few studies reveal its role as a bioactive scaffold in facilitating meniscal repair. Here, the positive anabolic effects of PRF on meniscocytes harvested from the primary culture of a rabbit meniscus were revealed. The rabbit meniscocytes were cultured with different concentrations of PRF-conditioned medium, and were evaluated for their ability to stimulate cell migration, proliferation, and extracellular matrix formation. In vivo, meniscal defects were created via an established rabbit animal model and were evaluated by a histology-based four-stage scoring system to validate the treatment outcome three months postoperatively. The in vitro results showed that PRF could induce cellular migration and promote proliferation and meniscocyte extracellular matrix (ECM) synthesis of cultured meniscocytes. In addition, PRF increased the formation and deposition of cartilaginous matrix produced by cultured meniscocytes. Morphological and histological evaluations demonstrated that PRF could facilitate rabbit meniscal repair. The data highlight the potential utility of using PRF in augmenting the healing of meniscal injuries. These advantages would benefit clinical translation, and are a potential new treatment strategy for meniscal repair.
Collapse
|
37
|
Isolation, Characterization, and Multipotent Differentiation of Mesenchymal Stem Cells Derived from Meniscal Debris. Stem Cells Int 2016; 2016:5093725. [PMID: 28044083 PMCID: PMC5164906 DOI: 10.1155/2016/5093725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/22/2016] [Accepted: 11/06/2016] [Indexed: 02/05/2023] Open
Abstract
This study aimed to culture and characterize mesenchymal stem cells derived from meniscal debris. Cells in meniscal debris from patients with meniscal injury were isolated by enzymatic digestion, cultured in vitro to the third passage, and analyzed by light microscopy to observe morphology and growth. Third-passage cultures were also analyzed for immunophenotype and ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. After 4-5 days in culture, cells showed a long fusiform shape and adhered to the plastic walls. After 10-12 days, cell clusters and colonies were observed. Third-passage cells showed uniform morphology and good proliferation. They expressed CD44, CD90, and CD105 but were negative for CD34 and CD45. Cultures induced to differentiate via osteogenesis became positive for Alizarin Red staining as well as alkaline phosphatase activity. Cultures induced to undergo adipogenesis were positive for Oil Red O staining. Cultures induced to undergo chondrogenesis were positive for staining with Toluidine Blue, Alcian Blue, and type II collagen immunohistochemistry, indicating cartilage-specific matrix. These results indicate that the cells we cultured from meniscal debris are mesenchymal stem cells capable of differentiating along three lineages. These stem cells may be valuable source for meniscal regeneration.
Collapse
|