1
|
Tang MDQ, Tran NB, Nguyen THT, Nguyen KUH, Trinh NT, Van Vo T, Kobayashi M, Yoshitomi T, Nagasaki Y, Vong LB. Development of oral pH-sensitive redox nanotherapeutics for gastric ulcer therapy. J Control Release 2024; 375:758-766. [PMID: 39326501 DOI: 10.1016/j.jconrel.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Gastric ulcer is a common gastrointestinal disorder worldwide. Although its pathogenesis is unclear, the overproduction of reactive oxygen species (ROS), which results in an oxidative imbalance, has been reported as a central driving mechanism. Within the scope of this investigation, we developed two different self-assembling redox nanoparticles (RNPs) with ROS-scavenging features for the oral treatment of gastric ulcers. One of them, referred to as RNPN, disintegrates in response to acidic pH, whereas the other, denoted as RNPO, remains intact regardless of pH variations. Both types of RNPs showed different free radical scavenging activities in vitro. Protonation of the amino linkages in the side chains of RNPN caused the micelle structure to collapse and the nitroxide radicals encapsulated in the core were exposed to the outside, resulting in a significant increase in antioxidant capacity as the pH decreases. In contrast, RNPO maintained its spherical structure and consistent antioxidant reactivity irrespective of pH changes. The in vivo gastric retention of orally administered RNPN was significantly improved compared to that of RNPO which might be explained by the increased exposure of cationic protonating segments in RNPN on the negatively charged gastric mucosal surface. Owing to its improved gastric retention and enhanced ROS scavenging capacity under acidic pH conditions, RNPN exhibited superior protective effects against oxidative stress induced by aspirin in a gastric ulcer mouse model compared to RNPO. In addition, neither RNPN nor RNPO resulted in severe lethal effects or significant changes in the morphology of zebrafish embryos, indicating their biosafety. Our results suggest that the oral administration of RNPs has a high therapeutic potential for gastric ulcer treatment.
Collapse
Affiliation(s)
- Minh-Dat Quoc Tang
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Nhi Bao Tran
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Khanh-Uyen Hoang Nguyen
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam; Faculty of Biology and Biotechnology, University of Science Ho Chi Minh 700000, Viet Nam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Makoto Kobayashi
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam.
| |
Collapse
|
2
|
Tempol Alters Antioxidant Enzyme Function, Modulates Multiple Genes Expression, and Ameliorates Hepatic and Renal Impairment in Carbon Tetrachloride (CCl4)-Intoxicated Rats. LIVERS 2023. [DOI: 10.3390/livers3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
The purpose of this study was to determine the effect of the superoxide dismutase mimic compound “tempol” on liver and renal damage in Long Evans male rats administered with carbon tetrachloride (CCl4). Methods: The antioxidant enzyme activity and oxidative stress parameters were investigated in the liver, kidney, and plasma tissues. Histological examination of the liver and kidney sections affirmed inflammatory cell infiltration, collagen deposition, and iron deposition. RT-PCR was also employed to evaluate the expression of oxidative stress and inflammatory genes. Results: The CCl4-administered rats exhibited increased plasma activities of ALT, AST, and ALP compared to the control rats. The tempol treatment in the CCl4-administered rats significantly lowered ALT, AST, and ALP enzyme activities compared to the CCl4 group. Oxidative stress parameters, such as the MDA, NO, and APOP levels in various tissues of the CCl4-administered rats, showed increased concentrations, whereas tempol significantly lowered the level of oxidative stress. Moreover, CCl4 administration decreased the antioxidant enzyme activities, which were further significantly restored by the tempol treatment. The control rats that underwent treatment with tempol did not present with any abnormality or toxicity. Furthermore, the tempol treatment in the CCl4-administered rats increased Nrf-2-HO-1-mediated gene expression and enhanced related antioxidant enzyme gene expressions. The tempol treatment in the CCl4-administered rats also decreased anti-inflammatory gene expressions in the liver. In histological sections of the liver, CCl4 increased inflammatory cell infiltration, collagen deposition, and iron deposition, which were reduced significantly due to the tempol treatment. Conclusion: The results of this investigation revealed that tempol could protect against liver and kidney damage in CCl4-administered rats by modulating antioxidant gene expressions and restoring antioxidant defense mechanisms.
Collapse
|
3
|
Miao X, Jin C, Liu J, Wang J, Chen Y. Honokiol attenuates acetaminophen-induced acute liver injury by inhibiting hepatic CYP1A2 activity and improving liver mitochondrial dysfunction. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
4
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
5
|
Maeda H, Ishima Y, Saruwatari J, Mizuta Y, Minayoshi Y, Ichimizu S, Yanagisawa H, Nagasaki T, Yasuda K, Oshiro S, Taura M, McConnell MJ, Oniki K, Sonoda K, Wakayama T, Kinoshita M, Shuto T, Kai H, Tanaka M, Sasaki Y, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH. J Control Release 2021; 341:457-474. [PMID: 34856227 DOI: 10.1016/j.jconrel.2021.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Kupffer cells are a key source of reactive oxygen species (ROS) and are implicated in the development of steatohepatitis and fibrosis in nonalcoholic steatohepatitis (NASH). We recently developed a polythiolated and mannosylated human serum albumin (SH-Man-HSA), a nano-antioxidant that targets Kupffer cells, in which the mannosyl units on albumin allows their specific uptake by Kupffer cells via the mannose receptor C type 1 (MRC1), and in which the polythiolation confers antioxidant activity. The aim of this study was to investigate the therapeutic potential of SH-Man-HSA in NASH model mice. In livers from mice and/or patients with NASH, we observed a reduced blood flow in the liver lobes and the down-regulation in MRC1 expression in Kupffer cells, and SH-Man-HSA alone failed to improve the pathological phenotype in NASH. However, the administration of a nitric oxide (NO) donor restored hepatic blood flow and increased the expression of the mannose receptor C type 2 (MRC2) instead of MRC1. Consequently, treatment with a combination of SH-Man-HSA and an NO donor improved oxidative stress-associated pathology. Finally, we developed a hybrid type of nano-antioxidant (SNO-Man-HSA) via the S-nitrosation of SH-Man-HSA. This nanomedicine efficiently delivered both NO and thiol groups to the liver, with a hepatoprotective effect that was comparable to the combination therapy of SH-Man-HSA and an NO donor. These findings suggest that SNO-Man-HSA has the potential for functioning as a novel nano-therapy for the treatment of NASH.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Ichimizu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Matthew J McConnell
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
da Silva Souza B, Sales ACS, da Silva FDS, de Souza TF, de Freitas CDT, Vasconcelos DFP, de Oliveira JS. Latex Proteins from Plumeria pudica with Therapeutic Potential on Acetaminophen-Induced Liver Injury. Mini Rev Med Chem 2020; 20:2011-2018. [DOI: 10.2174/1389557520666200821121903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Liver disease is global health problem. Paracetamol (APAP) is used as an analgesic drug
and is considered safe at therapeutic doses, but at higher doses, it causes acute liver injury. N-acetyl-p-
Benzoquinone Imine (NAPQI) is a reactive toxic metabolite produced by biotransformation of APAP.
NAPQI damages the liver by oxidative stress and the formation of protein adducts. The glutathione
precursor N-acetylcysteine (NAC) is the only approved antidote against APAP hepatotoxicity, but it
has limited hepatoprotective effects. The search for new drugs and novel therapeutic intervention strategies
increasingly includes testing plant extracts and other natural products. Plumeria pudica (Jacq.,
1760) is a plant that produces latex containing molecules with therapeutic potential. Proteins obtained
from this latex (LPPp), a well-defined mixture of chitinases, proteinases proteinase inhibitors have
shown anti-inflammatory, antinociceptive, antidiarrheal effects as well as a protective effect against
ulcerative colitis. These studies have demonstrated that LPPp acts on parameters such as Glutathione
(GSH) and Malondialdehyde (MDA) concentration, Superoxide Dismutase (SOD) activity, Myeloperoxidase
(MPO) activity, and TNF- α IL1-β levels. Since oxidative stress and inflammation have been
reported to affect the initiation and progression of liver injury caused by APAP, it is suggested that
LPPp can act on aspects related to paracetamol hepatoxicity. This article brings new insights into the
potential of the laticifer proteins extracted from the latex of P. pudica and opens new perspectives for
the treatment of this type of liver disease with LPPp.
Collapse
Affiliation(s)
- Bruna da Silva Souza
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | - Ana Clara Silva Sales
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | - Francisca Dayane Soares da Silva
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | - Thalis Ferreira de Souza
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | | | - Daniel Fernando Pereira Vasconcelos
- Universidade Federal do Piaui - UFPI, Programa de Doutorado em Biotecnologia - Rede Nordeste de Biotecnologia (RENORBIO), CEP 64049-550, Teresina, PI, Brazil
| | - Jefferson Soares de Oliveira
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| |
Collapse
|
7
|
Li C, Hu Y, Nie Q, Chen S, Li G, Li L, Chen S, Tang B, Zhang J. A reactive oxygen species-responsive antioxidant nanotherapy for the treatment of drug-induced tissue and organ injury. Biomater Sci 2020; 8:7117-7131. [PMID: 33211787 DOI: 10.1039/d0bm01660h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug-induced tissue injury has become a growing public health problem. Gastrointestinal injury and liver dysfunction are the most common side effects related to drug therapies, resulting in high morbidity and mortality in recent years. The overproduction of reactive oxygen species (ROS) is critically involved in the pathogenesis of drug-induced tissue injury. Consequently, antioxidant therapy represents a very promising strategy for the treatment of drug-induced tissue injury. Herein, a multifunctional antioxidant nanotherapy (TON) is engineered from a cyclodextrin-derived ROS-responsive material and a radical scavenger tempol, and is capable of eliminating a broad spectrum of ROS. After oral administration, TON can passively accumulate in the inflamed gastrointestinal tissues in mice with indomethacin-induced gastrointestinal injury. Correspondingly, TON shows superior efficacy in two representative murine models of indomethacin-induced gastrointestinal injury and acetaminophen-induced hepatic injury via attenuating oxidative stress and mitigating inflammatory responses. Additionally, preliminary in vitro and in vivo experiments demonstrate the good safety profile of TON. Consequently, the ROS-responsive antioxidant nanotherapy TON is promising for the treatment of drug-induced tissue and organ injury.
Collapse
Affiliation(s)
- Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jin Y, Wang H, Yi K, Lv S, Hu H, Li M, Tao Y. Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. NANO-MICRO LETTERS 2020; 13:25. [PMID: 34138224 PMCID: PMC8187515 DOI: 10.1007/s40820-020-00550-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
9
|
Hetta HF, Ahmed EA, Hemdan AG, El-Deek HE, Abd-Elregal S, Abd Ellah NH. Modulation of rifampicin-induced hepatotoxicity using poly(lactic-co-glycolic acid) nanoparticles: a study on rat and cell culture models. Nanomedicine (Lond) 2020; 15:1375-1390. [PMID: 32495696 DOI: 10.2217/nnm-2020-0001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Hepatotoxicity is the most serious adverse effect of rifampicin (RIF). We aimed to investigate the potential hepatoprotective effect of mannose-functionalized poly(lactic-co-glycolic acid)(PLGA)/RIF nanoparticles (NPs) in rats as a possible promising approach to minimize RIF-induced hepatotoxicity. Materials & methods: Mannose-functionalized PLGA/RIF NPs were fabricated and characterized in vitro, then the hepatoprotective effect of optimized NPs was studied on rat and cell culture models. Results: Following intraperitoneal administration of RIF NPs into rats, highly significant differences in levels of serum transaminases and oxidative stress markers, associated with significant differences in expression of Bax and Bcl-2 genes between NP- and free RIF-treated groups, revealing the hepatoprotective potential of NPs. Conclusion: RIF NPs may represent a promising therapeutic approach for tuberculosis via reducing dose frequency and consequently, RIF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA.,Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed G Hemdan
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Heba Em El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saida Abd-Elregal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
10
|
Protective effect of Nectaroscordum tripedale extract and its bioactive component tetramethylpyrazine against acetaminophen-induced hepatotoxicity in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00431-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Ahmad S, Zeb A. Effects of phenolic compounds from aqueous extract of Trifolium repens against acetaminophen-induced hepatotoxicity in mice. J Food Biochem 2019; 43:e12963. [PMID: 31489655 DOI: 10.1111/jfbc.12963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
The aqueous extract of Trifolium repens (TR) leaves was analyzed for the phenolic profile using reversed phase HPLC-DAD and administered to mice against acetaminophen-induced hepatoxicity. Twenty-four phenolic compounds were identified and quantified. The highest amounts present were of kaempferol-3-(caffeoyldiglucoside)-7-glucoside (983.7 µg/ml), followed by p-coumaroyl-4-glucoside (905.6 µg/ml) and daidzein-O-sulfate (808.3 µg/ml). The aqueous extract was administered to mice along with acetaminophen at different doses. Acetaminophen was found to significantly alter body weight, serum biochemistry, and hematological indices of mice, which were ameliorated by the co-administration of aqueous extract. Liver histopathological studies revealed that acetaminophen significantly induced toxicity, while TR aqueous extract provides curative functions. Lipid peroxidation and total reduced glutathione in the liver were also normalized by the aqueous extract of TR. The aqueous extract of TR was rich in important phenolic compounds, which can be used as a source of beneficial bioactive compounds with hepato-protective function. PRACTICAL APPLICATIONS: Acetaminophen has been widely used as antipyretic and analgesic. However, the major complication reported is hepatotoxicity. Synthetic or conventional drugs used for hepatic diseases or against hepatotoxicity are insufficient and causes severe side effects. For this purpose, traditional medicinal plants or nutraceuticals are used to decrease in the side effects of different hepatotoxic medicine are demanding. Food and neutraceuticals are rich in important polyphenolic compounds which are the best antioxidants. This study was aimed to evaluate the phenolic composition of aqueous extract of Trifolium repens and its potential protective action against the acetaminophen-induced toxicity in mice. This study showed for the first time that the aqueous extract of TR was protective against the hepatotoxicity induced by acetaminophen.
Collapse
Affiliation(s)
- Sultan Ahmad
- Laboratory of Biochemistry, Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Laboratory of Biochemistry, Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
12
|
Shashni B, Nagasaki Y. Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer. Biomaterials 2018; 178:48-62. [PMID: 29908344 DOI: 10.1016/j.biomaterials.2018.05.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The critical importance of reactive oxygen species (ROS) as oncogene activators and essential secondary messengers in cancer cell survival have been widely reported. Since oxidative stress has been implicated as being pivotal in various cancers, antioxidant therapy seems an apt strategy to abrogate ROS-mediated cellular processes to attenuate cancers. We therefore synthesized ROS scavenging nitroxide radical-containing nanoparticles (RNPs); pH insensitive RNPO and pH sensitive RNPN, to impede the proliferative and metastatic characteristics of the triple negative breast cancer cell line, MDA-MB-231, both in vitro and in vivo. RNPs significantly curtailed the proliferative and clonogenic potential of MDA-MB-231 and MCF-7 cell lines. Inhibition of ROS-mediated migratory and invasive characteristics of MDA-MB-231, via down regulation of NF-κB and MMP-2, was also confirmed. Furthermore, a significant anti-tumor and anti-metastatic potential of RNPs was observed in an MDA-MB-231 mouse xenograft model. Such tumoricidal effects of RNPs were attained with negligible adverse effects, compared to conventional low molecular weight antioxidants, TEMPOL. Thus, the tumoricidal effects of RNPs are suggestive of insights on precedence of nanoparticle-based therapeutics over current low molecular weight antioxidants to curtail ROS-induced tumorigenesis of various cancers.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotope and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
13
|
Tung BT, Hai NT, Son PK. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|