1
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
2
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Curley JP, Champagne FA. Shaping the development of complex social behavior. Ann N Y Acad Sci 2023; 1530:46-63. [PMID: 37855311 DOI: 10.1111/nyas.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Early life experiences can have an enduring impact on the brain and behavior, with implications for stress reactivity, cognition, and social behavior. In particular, the neural systems that contribute to the expression of social behavior are altered by early life social environments. However, paradigms that have been used to alter the social environment during development have typically focused on exposure to stress, adversity, and deprivation of species-typical social stimulation. Here, we explore whether complex social environments can shape the development of complex social behavior. We describe lab-based paradigms for studying early life social complexity in rodents that are generally focused on enriching the social and sensory experiences of the neonatal and juvenile periods of development. The impact of these experiences on social behavior and neuroplasticity is highlighted. Finally, we discuss the degree to which our current approaches for studying social behavior outcomes give insight into "complex" social behavior and how social complexity can be better integrated into lab-based methodologies.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
5
|
Huang C, Voglewede MM, Ozsen EN, Wang H, Zhang H. SHANK3 Mutations Associated with Autism and Schizophrenia Lead to Shared and Distinct Changes in Dendritic Spine Dynamics in the Developing Mouse Brain. Neuroscience 2023; 528:1-11. [PMID: 37532012 PMCID: PMC10528879 DOI: 10.1016/j.neuroscience.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Autism Spectrum Disorders (ASD) and schizophrenia are distinct neurodevelopmental disorders that share certain symptoms and genetic components. Both disorders show abnormalities in dendritic spines, which are the main sites of excitatory synaptic inputs. Recent studies have identified the synaptic scaffolding protein Shank3 as a leading candidate gene for both disorders. Mutations in the SHANK3 gene have been linked to both ASD and schizophrenia; however, how patient-derived mutations affect the structural plasticity of dendritic spines during brain development is unknown. Here we use live two photon in vivo imaging to examine dendritic spine structural plasticity in mice with SHANK3 mutations associated with ASD and schizophrenia. We identified shared and distinct phenotypes in dendritic spine morphogenesis and plasticity in the ASD-associated InsG3680 mutant mice and the schizophrenia-associated R1117X mutant mice. No significant changes in dendritic arborization were observed in either mutant, raising the possibility that synaptic dysregulation may be a key contributor to the behavioral defects previously reported in these mice. These findings shed light on how patient-linked mutations in SHANK3 affect dendritic spine dynamics in the developing brain, which provides insight into the synaptic basis for the distinct phenotypes observed in ASD and schizophrenia.
Collapse
Affiliation(s)
- Chengyu Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mikayla M Voglewede
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
6
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Caires CRS, Bossolani-Martins AL. Which form of environmental enrichment is most effective in rodent models of autism? Behav Processes 2023; 211:104915. [PMID: 37451559 DOI: 10.1016/j.beproc.2023.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Environmental enrichment (EE) is known to produce experience-dependent changes in the brains and behaviors of rodents, and it has therefore been widely used to study neurodevelopmental disorders, including autism. Current studies show significant protocol variation, such as the presence of running wheels, number of cagemates, duration of enrichment, and the age of the animals at the beginning and end of the enrichment interventions. EE has been shown to have prominent positive effects in animal models of idiopathic and syndromic autism, but little is known about the ideal type of EE and the most efficient protocols for reversing autism spectrum disorder (ASD) behaviors modeled in rodents. This review presents evidence that social enrichment is the most effective way to rescue typical behaviors, and that variables such as onset, duration, and type of induction in the ASD model are important for EE success. Understanding which EE protocols are most beneficial for reversing ASD behaviors modeled in rodents opens up possibilities for the potential treatment of neuropsychiatric disorders characterized by behavioral deficits, such as autism.
Collapse
Affiliation(s)
- Cássia Regina Suzuki Caires
- Laboratory of Experimental Physiology, Faculty of Medicine of São Jose do Rio Preto - FAMERP, Av. Brg. Faria Lima, 5416 - Vila São Pedro, São José do Rio Preto, SP, Brazil.
| | - Ana Luiza Bossolani-Martins
- Federal University of Mato Grosso do Sul - UFMS, Av. Pedro Pedrossian, 725 - Universitário, Paranaíba, MS, Brazil.
| |
Collapse
|
8
|
Early Social Enrichment Modulates Tumor Progression and p53 Expression in Adult Mice. Biomolecules 2022; 12:biom12040532. [PMID: 35454121 PMCID: PMC9032412 DOI: 10.3390/biom12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2022] Open
Abstract
Epidemiological evidence indicates that stress and aversive psychological conditions can affect cancer progression, while well-being protects against it. Although a large set of studies have addressed the impact of stress on cancer, not much is known about the mechanisms that protect from cancer in healthy psychological conditions. C57BL/6J mouse pups were exposed to an environmental enrichment condition consisting of being raised until weaning by the biological lactating mother plus a non-lactating virgin female (LnL = Lactating and non-Lactating mothers). The Control group consisted of mice raised by a single lactating mother (L = Lactating). Four months after weaning, mice from LnL and L conditions were exposed to intramuscular injection of 3-methylcolantrene (3MCA), a potent tumorigenic drug, and onset and progression of 3MCA-induced fibrosarcomas were monitored over time. Pups from the LnL compared to the L group received more parental care and were more resilient to stressful events during the first week of life. In association, the onset of tumors in LnL adults was significantly delayed. At the molecular level, we observed increased levels of wild-type p53 protein in tumor samples of LnL compared to L adults and higher levels of its target p21 in healthy muscles of LnL mice compared to the L group, supporting the hypothesis of potential involvement of p53 in tumor development. Our study sustains the model that early life care protects against tumor susceptibility.
Collapse
|
9
|
Chen YS, Zhang SM, Yue CX, Xiang P, Li JQ, Wei Z, Xu L, Zeng Y. Early environmental enrichment for autism spectrum disorder Fmr1 mice models has positive behavioral and molecular effects. Exp Neurol 2022; 352:114033. [DOI: 10.1016/j.expneurol.2022.114033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
|
10
|
Saré RM, Lemons A, Smith CB. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci 2021; 11:brainsci11040522. [PMID: 33924037 PMCID: PMC8073298 DOI: 10.3390/brainsci11040522] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rodent models of brain disorders including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases are essential for increasing our understanding of underlying pathology and for preclinical testing of potential treatments. Some of the most important outcome measures in such studies are behavioral. Unfortunately, reports from different labs are often conflicting, and preclinical studies in rodent models are not often corroborated in human trials. There are many well-established tests for assessing various behavioral readouts, but subtle aspects can influence measurements. Features such as housing conditions, conditions of testing, and the sex and strain of the animals can all have effects on tests of behavior. In the conduct of behavior testing, it is important to keep these features in mind to ensure the reliability and reproducibility of results. In this review, we highlight factors that we and others have encountered that can influence behavioral measures. Our goal is to increase awareness of factors that can affect behavior in rodents and to emphasize the need for detailed reporting of methods.
Collapse
|
11
|
Dual Profile of Environmental Enrichment and Autistic-Like Behaviors in the Maternal Separated Model in Rats. Int J Mol Sci 2021; 22:ijms22031173. [PMID: 33503967 PMCID: PMC7865216 DOI: 10.3390/ijms22031173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Environmental Enrichment (EE) has been suggested as a possible therapeutic intervention for neurodevelopmental disorders such as autism. Although the benefits of this therapeutic method have been reported in some animal models and human studies, the unknown pathophysiology of autism as well as number of conflicting results, urge for further examination of the therapeutic potential of EE in autism. Therefore, the aim of this study was to examine the effects of environmental enrichment on autism-related behaviors which were induced in the maternal separation (MS) animal model. MATERIAL AND METHODS Maternally separated (post-natal day (PND) 1-14, 3h/day) and control male rats were at weaning (PND21) age equally divided into rats housed in enriched environment and normal environment. At adolescence (PND42-50), the four groups were behaviorally tested for direct social interaction, sociability, repetitive behaviors, anxiety behavior, and locomotion. Following completion of the behavioral tests, the blood and brain tissue samples were harvested in order to assess plasma level of brain derived neurotrophic factor (BDNF) and structural plasticity of brain using ELISA and stereological methods respectively. RESULTS We found that environmental enrichment reduced repetitive behaviors but failed to improve the impaired sociability and anxiety behaviors which were induced by maternal separation. Indeed, EE exacerbated anxiety and social behaviors deficits in association with increased plasma BDNF level, larger volume of the hippocampus and infra-limbic region and higher number of neurons in the infra-limbic area (p < 0.05). Conclusion: We conclude that environmental enrichment has a significant improvement effect on the repetitive behavior as one of the core autistic-like behaviors induced by maternal separation but has negative effect on the anxiety and social behaviors which might have been modulated by BDNF.
Collapse
|
12
|
Burrows E, Koyama L, May C, Hill-Yardin E, Hannan A. Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav 2020; 195:172955. [DOI: 10.1016/j.pbb.2020.172955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
|
13
|
Moreno-Jiménez EP, Jurado-Arjona J, Ávila J, Llorens-Martín M. The Social Component of Environmental Enrichment Is a Pro-neurogenic Stimulus in Adult c57BL6 Female Mice. Front Cell Dev Biol 2019; 7:62. [PMID: 31080799 PMCID: PMC6497743 DOI: 10.3389/fcell.2019.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
In rodents, the hippocampal dentate gyrus gives rise to newly generated dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis (AHN), converges in the functional integration of mature DGCs into the trisynaptic hippocampal circuit. Environmental enrichment (EE) is one of the most potent positive regulators of AHN. This paradigm includes the combination of three major stimulatory components, namely increased physical activity, constant cognitive stimulation, and higher social interaction. In this regard, the pro-neurogenic effects of physical activity and cognitive stimulation have been widely addressed in adult rodents. However, the pro-neurogenic potential of the social aspect of EE has been less explored to date. Here we tackled this question by specifically focusing on the effects of a prolonged period of social enrichment (SE) in adult female C57BL6 mice. To this end, 7-week-old mice were housed in groups of 12 per cage for 8 weeks. These mice were compared with others housed under control housing (2–3 mice per cage) or EE (12 mice per cage plus running wheels and toys) conditions during the same period. We analyzed the number and morphology of Doublecortin-expressing (DCX+) cells. Moreover, using RGB retroviruses that allowed the labeling of three populations of newborn DGCs of different ages in the same mouse, we performed morphometric, immunohistochemical, and behavioral determinations. Both SE and EE increased the number and maturation of DCX+ cells, and caused an increase in dendritic maturation in certain populations of newborn DGCs. Moreover, both manipulations increased exploratory behavior in the Social Interaction test. Unexpectedly, our data revealed the potent neurogenesis-stimulating potential of SE in the absence of any further cognitive stimulation or increase in physical activity. Given that an increase in physical activity is strongly discouraged under certain circumstances, our findings may be relevant in the context of enhancing AHN via physical activity-independent mechanisms.
Collapse
Affiliation(s)
- Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jerónimo Jurado-Arjona
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
Ball NJ, Mercado E, Orduña I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Front Psychol 2019; 10:466. [PMID: 30894830 PMCID: PMC6414413 DOI: 10.3389/fpsyg.2019.00466] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The beneficial effects of enriched environments have been established through a long history of research. Enrichment of the living conditions of captive animals in the form of larger cages, sensory stimulating objects, and opportunities for social interaction and physical exercise, has been shown to reduce emotional reactivity, ameliorate abnormal behaviors, and enhance cognitive functioning. Recently, environmental enrichment research has been extended to humans, in part due to growing interest in its potential therapeutic benefits for children with neurodevelopmental disorders (NDDs). This paper reviews the history of enriched environment research and the use of enriched environments as a developmental intervention in studies of both NDD animal models and children. We argue that while environmental enrichment may sometimes benefit children with NDDs, several methodological factors need to be more closely considered before the efficacy of this approach can be adequately evaluated, including: (i) operationally defining and standardizing enriched environment treatments across studies; (ii) use of control groups and better control over potentially confounding variables; and (iii) a comprehensive theoretical framework capable of predicting when and how environmental enrichment will alter the trajectory of NDDs.
Collapse
Affiliation(s)
- Natalie J Ball
- Neural and Cognitive Plasticity Laboratory, Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Eduardo Mercado
- Neural and Cognitive Plasticity Laboratory, Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Itzel Orduña
- Department of School and Counseling Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
15
|
Hulbert SW, Bey AL, Jiang YH. Environmental enrichment has minimal effects on behavior in the Shank3 complete knockout model of autism spectrum disorder. Brain Behav 2018; 8:e01107. [PMID: 30317697 PMCID: PMC6236244 DOI: 10.1002/brb3.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Several studies have supported the use of enriched environments to prevent the manifestation of ASD-like phenotypes in laboratory rodents. While the translational value of such experiments is unknown, the findings have been relatively consistent across many different models. METHODS In the current study, we tested the effects of early environmental enrichment on a mouse model of ASD with high construct validity, the Shank3 ∆e4-22 mice our laboratory previously generated and characterized. RESULTS Contrary to previous reports, we found no benefits of enriched rearing, including no change in repetitive self-grooming or hole-board exploration. Instead, we found that early environmental enrichment increased anxiety-like behavior in all mice regardless of genotype and decreased motor performance specifically in wild-type mice. CONCLUSIONS Although using a different enrichment protocol may have rescued the phenotypes in our mouse model, these results suggest that a "one-size fits all" approach may not be the best when it comes to behavioral intervention for ASD and underscores the need for effective pharmaceutical development in certain genetic syndromes with severe symptom presentation.
Collapse
Affiliation(s)
- Samuel W Hulbert
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Alexandra L Bey
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Yong-Hui Jiang
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina.,Duke Institute of Brain Science, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
16
|
Boparai S, Borelli JL, Partington L, Smiley P, Jarvik E, Rasmussen HF, Seaman LC, Nurmi EL. Interaction between the Opioid Receptor OPRM1 Gene and Mother-Child Language Style Matching Prospectively Predicts Children's Separation Anxiety Disorder Symptoms. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:120-131. [PMID: 29576267 DOI: 10.1016/j.ridd.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/24/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Recent research suggests that lower mother-child language style matching (LSM) is associated with greater physiological reactivity and insecure attachment in school-aged children, but to date no studies have explored this measure of parent-child behavioral matching for its association with children's anxiety symptoms, a well-known correlate of attachment insecurity and heightened physiological reactivity. There is also considerable evidence of genetic risk for anxiety, including possession of the OPRM1 minor allele, 118G. In the current study (N = 44), we expand upon what is known about children's genetic and environmental risk for anxiety by examining the unique and interactive effects of mother-child LSM and the OPRM1 polymorphism A118G on school-aged children's separation anxiety disorder (SAD) symptoms. SAD symptoms were measured both concurrently with LSM and OPRM1 genotype and two years later through self-report. No significant associations emerged between LSM or OPRM1 and concurrent Time 1 SAD symptoms. However, lower LSM and 118G minor allele possession were both associated with greater SAD symptoms at Time 2; further, the interaction between LSM and OPRM1 genotype significantly predicted SAD symptoms beyond the main effects of the two variables. Possession of the minor allele was only associated with greater SAD symptoms among children in low LSM dyads, whereas children with the minor allele in high LSM dyads showed non-significantly lower SAD symptoms. These findings and a proportion affected analysis provide support for a differential susceptibility model of gene by environment interactions for the OPRM1 gene. We discuss the implications for predicting children's separation anxiety across development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Erika L Nurmi
- University of California, Los Angeles, United States
| |
Collapse
|
17
|
Pujol CN, Pellissier LP, Clément C, Becker JAJ, Le Merrer J. Back-translating behavioral intervention for autism spectrum disorders to mice with blunted reward restores social abilities. Transl Psychiatry 2018; 8:197. [PMID: 30242222 PMCID: PMC6155047 DOI: 10.1038/s41398-018-0247-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022] Open
Abstract
The mu opioid receptor (MOR) plays a critical role in modulating social behavior in humans and animals. Accordingly, MOR null mice display severe alterations in their social repertoire as well as multiple other behavioral deficits, recapitulating core and secondary symptoms of autism spectrum disorder (ASD). Such behavioral profile suggests that MOR dysfunction, and beyond this, altered reward processes may contribute to ASD etiopathology. Interestingly, the only treatments that proved efficacy in relieving core symptoms of ASD, early behavioral intervention programs, rely principally on positive reinforcement to ameliorate behavior. The neurobiological underpinnings of their beneficial effects, however, remain poorly understood. Here we back-translated applied behavior analysis (ABA)-based behavioral interventions to mice lacking the MOR (Oprm1-/-), as a model of autism with blunted reward processing. By associating a positive reinforcement, palatable food reward, to daily encounter with a wild-type congener, we were able to rescue durably social interaction and preference in Oprm1-/- mice. Along with behavioral improvements, the expression of marker genes of neuronal activity and plasticity as well as genes of the oxytocin/vasopressin system were remarkably normalized in the reward/social circuitry. Our study provides further evidence for a critical involvement of reward processes in driving social behavior and opens new perspectives regarding therapeutic intervention in ASD.
Collapse
Affiliation(s)
- Camille N. Pujol
- 0000 0001 2157 9291grid.11843.3fMédecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France ,0000 0004 0383 2080grid.461890.2Present Address: Département de Neurosciences, Institut de Génomique fonctionnelle, Inserm U-661, CNRS UMR 5203, 34094 Montpellier, France
| | - Lucie P. Pellissier
- 0000 0001 2182 6141grid.12366.30Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Université de Tours, Inserm, Nouzilly, France ,0000 0004 0383 2080grid.461890.2Present Address: Département de Neurosciences, Institut de Génomique fonctionnelle, Inserm U-661, CNRS UMR 5203, 34094 Montpellier, France
| | - Céline Clément
- 0000 0001 2157 9291grid.11843.3fLaboratoire Interuniversitaire en Sciences de l’Education et de la Communication, EA 2310, Université de Strasbourg, Strasbourg, France
| | - Jérôme A. J. Becker
- 0000 0001 2157 9291grid.11843.3fMédecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France ,0000 0001 2182 6141grid.12366.30Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Université de Tours, Inserm, Nouzilly, France ,0000 0004 0383 2080grid.461890.2Present Address: Département de Neurosciences, Institut de Génomique fonctionnelle, Inserm U-661, CNRS UMR 5203, 34094 Montpellier, France
| | - Julie Le Merrer
- Médecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France. .,Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Université de Tours, Inserm, Nouzilly, France.
| |
Collapse
|
18
|
Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav Brain Res 2017; 333:67-73. [DOI: 10.1016/j.bbr.2017.06.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 01/16/2023]
|