1
|
Shi L, Guo C, Fang M, Yang Y, Yin F, Shen Y. Cross-kingdom regulation of plant microRNAs: potential application in crop improvement and human disease therapeutics. FRONTIERS IN PLANT SCIENCE 2024; 15:1512047. [PMID: 39741676 PMCID: PMC11685121 DOI: 10.3389/fpls.2024.1512047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Plant microRNAs (miRNAs) are small non-coding RNA molecules that usually negatively regulate gene expression at the post-transcriptional level. Recent data reveal that plant miRNAs are not limited to individual plants but can transfer across different species, allowing for communication with the plant, animal, and microbial worlds in a cross-kingdom approach. This review discusses the differences in miRNA biosynthesis between plants and animals and summarizes the current research on the cross-species regulatory effects of plant miRNAs on nearby plants, pathogenic fungi, and insects, which can be applied to crop disease and pest resistance. In particular, this review highlights the latest findings regarding the function of plant miRNAs in the transboundary regulation of human gene expression, which may greatly expand the clinical applicability of plant miRNAs as intriguing tools in natural plant-based medicinal products in the future.
Collapse
Affiliation(s)
- Lei Shi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Fang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yingmei Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fei Yin
- National Demonstration Center for Experimental (Aquaculture) Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuan Shen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01432-5. [PMID: 39562408 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Li D, Yao X, Yue J, Fang Y, Cao G, Midgley AC, Nishinari K, Yang Y. Advances in Bioactivity of MicroRNAs of Plant-Derived Exosome-Like Nanoparticles and Milk-Derived Extracellular Vesicles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6285-6299. [PMID: 35583385 DOI: 10.1021/acs.jafc.2c00631] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MicroRNA (miRNA) is a class of small noncoding RNA involved in physiological and pathological processes via the regulation of gene expression. Naked miRNAs are unstable and liable to degradation by RNases. Exosome-like nanoparticles (ELNs) secreted by plants and extracellular vesicles (EVs) found in milk are abundant in miRNAs, which can be carried by ELNs and EVs to target cells to exert their bioactivities. In this review, we describe the current understanding of miRNAs in plant ELNs and milk EVs, summarize their important roles in regulation of inflammation, intestinal barrier, tumors, and infantile immunological functions, and also discuss the adverse effect of EV miRNAs on human health. Additionally, we prospect recent challenges centered around ELN and EV miRNAs for interventional applications and provide insights of grain-derived ELNs and miRNAs interventional use in human health. Overall, plant ELNs and milk EVs can transfer miRNAs to mitigate the pathological status of recipient cells by mediating the expression of target genes but may also exert some side effects. More studies are required to elucidate the in-depth understanding of potential interventional effects of ELN and EV miRNAs on human health.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Jianxiong Yue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yongli Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| |
Collapse
|
4
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
5
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
6
|
Zhang L, Chen T, Yin Y, Zhang CY, Zhang YL. Dietary microRNA-A Novel Functional Component of Food. Adv Nutr 2019; 10:711-721. [PMID: 31120095 PMCID: PMC6628849 DOI: 10.1093/advances/nmy127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small RNAs that play essential roles in various biological processes by silencing genes. Evidence emerging in recent years suggests that microRNAs in food can be absorbed into the circulatory system and organs of humans and other animals, where they regulate gene expression and biological processes. These food-derived dietary microRNAs may serve as a novel functional component of food, a role that has been neglected to date. However, a significant amount of evidence challenges this new concept. The absorption, stability, and physiological effects of dietary microRNA in recipients, especially in mammals, are currently under heavy debate. In this review, we summarize our current understanding of the unique characteristics of dietary microRNAs and concerns about both the mechanistic and methodological basis for studying the biological significance of dietary microRNAs. Such efforts will benefit continuing investigations and offer new perspectives for the interpretation of the roles of dietary microRNA with respect to the health and disease of humans and animals.
Collapse
Affiliation(s)
- Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China,Address correspondence to C-YZ (e-mail: )
| | - Yong-Liang Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China,Address correspondence to Y-LZ (e-mail: )
| |
Collapse
|
7
|
Sanchita, Trivedi R, Asif MH, Trivedi PK. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation. RNA Biol 2018; 15:1433-1439. [PMID: 30474479 PMCID: PMC6333437 DOI: 10.1080/15476286.2018.1551693] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cross-kingdom gene regulation by microRNAs (miRNAs) initiated a hot debate on the effective role of orally acquired plant miRNAs on human gene expression. It resulted in the expansion of gene regulation theories and role of plant miRNAs in cross-kingdom regulation of gene expression. This opened up the discussion that 'Whether we really get what we eat?' and 'Whether the orally acquired miRNAs really have a biologically important consequences after entering our digestive and circulatory system?' The reports of orally acquired plant miRNAs inside human alimentary canal have been a topic of discussion in the scientific community. The cross-kingdom gene regulations have raised our hopes to explore the exciting world of plant miRNAs as therapeutic potential and dietary supplements. However, there are reports which have raised concerns over any such cross-kingdom regulation and argued that technical flaws in the experiments might have led to such hypothesis. This review will give the complete understanding of exogenous application and cross-kingdom regulation of plant miRNAs on human health. Here, we provide update and discuss the consequences of plant miRNA mediated cross-kingdom gene regulation and possibilities for this exciting regulatory mechanism as an augmented therapy against various diseases.
Collapse
Affiliation(s)
- Sanchita
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Mehar Hasan Asif
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Prabodh Kumar Trivedi
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
8
|
Comparative Study of Withanolide Biosynthesis-Related miRNAs in Root and Leaf Tissues of Withania somnifera. Appl Biochem Biotechnol 2018; 185:1145-1159. [PMID: 29476318 DOI: 10.1007/s12010-018-2702-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Withania somnifera, popularly known as Indian ginseng, is one of the most important medicinal plants. The plant is well studied in terms of its pharmaceutical activities and genes involved in biosynthetic pathways. However, not much is known about the regulatory mechanism of genes responsible for the production of secondary metabolites. The idea was to identify miRNA transcriptome responsible for the regulation of withanolide biosynthesis, specifically of root and leaf tissues individually. The transcriptome data of in vitro culture of root and leaf tissues of the plant was considered for miRNA identification. A total of 24 and 39 miRNA families were identified in root and leaf tissues, respectively. Out of these, 15 and 27 miRNA families have shown their involvement in different biological functions in root and leaf tissues, respectively. We report here, specific miRNAs and their corresponding target genes for corresponding root and leaf tissues. The target genes have also been analyzed for their role in withanolide metabolism. Endogenous root-miR5140, root-miR159, leaf-miR477, and leaf-miR530 were reported for regulation of withanolide biosynthesis.
Collapse
|
9
|
Chen X, Wu RZ, Zhu YQ, Ren ZM, Tong YL, Yang F, Dai GH. Study on the inhibition of Mfn1 by plant-derived miR5338 mediating the treatment of BPH with rape bee pollen. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:38. [PMID: 29382326 PMCID: PMC5791735 DOI: 10.1186/s12906-018-2107-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023]
Abstract
Background Recent studies have found that plant derived microRNA can cross-kingdom regulate the expression of genes in humans and other mammals, thereby resisting diseases. Can exogenous miRNAs cross the blood-prostate barrier and entry prostate then participate in prostate disease treatment? Methods Using HiSeq sequencing and RT-qPCR technology, we detected plant miRNAs that enriched in the prostates of rats among the normal group, BPH model group and rape bee pollen group. To forecast the functions of these miRNAs, the psRobot software and TargetFinder software were used to predict their candidate target genes in rat genome. The qRT-PCR technology was used to validate the expression of candidate target genes. Results Plant miR5338 was enriched in the posterior lobes of prostate gland of rats fed with rape bee pollen, which was accompanied by the improvement of BPH. Among the predicted target genes of miR5338, Mfn1 was significantly lower in posterior lobes of prostates of rats in the rape bee pollen group than control groups. Further experiments suggested that Mfn1 was highly related to BPH. Conclusions These results suggesting that plant-derived miR5338 may involve in treatment of rat BPH through inhibiting Mfn1 in prostate. These results will provide more evidence for plant miRNAs cross-kingdom regulation of animal gene, and will provide preliminary theoretical and experimental basis for development of rape bee pollen into innovative health care product or medicine for the treatment of BPH. Electronic supplementary material The online version of this article (10.1186/s12906-018-2107-y) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-Dependent Polymerase Chain Reaction and Elimination of Confounders in Sample Collection, Storage, and Analysis Strengthen Evidence That microRNAs in Bovine Milk Are Bioavailable in Humans. J Nutr 2018; 148:153-159. [PMID: 29378054 PMCID: PMC6251634 DOI: 10.1093/jn/nxx024] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Evidence suggests that dietary microRNAs (miRs) are bioavailable and regulate gene expression across species boundaries. Concerns were raised that the detection of dietary miRs in plasma might have been due to sample contamination or lack of assay specificity. Objectives: The objectives of this study were to assess potential confounders of plasma miR analysis and to detect miRs from bovine milk in human plasma. Methods Potential confounders of plasma miR analysis (circadian rhythm, sample collection and storage, calibration, and erythrocyte hemolysis) were assessed by quantitative reverse transcriptase polymerase chain reaction (PCR) by using blood from healthy adults (7 men, 6 women; aged 23-57 y). Bovine miRs were analyzed by RNase H2-dependent PCR (rhPCR) in plasma collected from a subcohort of 11 participants before and 6 h after consumption of 1.0 L of 1%-fat bovine milk. Results The use of heparin tubes for blood collection resulted in a complete loss of miRs. Circadian variations did not affect the concentrations of 8 select miRs. Erythrocyte hemolysis caused artifacts for some miRs if plasma absorbance at 414 nm was >0.300. The stability of plasma miRs depended greatly on the matrix in which the miRs were stored and whether the plasma was frozen before analysis. Purified miR-16, miR-200c, and cel-miR-39 were stable for ≤24 h at room temperature, whereas losses equaled ≤80% if plasma was frozen, thawed, and stored at room temperature for as little as 4 h. rhPCR distinguished between bovine and human miRs with small variations in the nucleotide sequence; plasma concentrations of Bos taurus (bta)-miR-21-5p and bta-miR-30a-5p were >100% higher 6 h after milk consumption than before milk consumption. Conclusions Confounders in plasma miR analysis include the use of heparin tubes, erythrocyte hemolysis, and storage of thawed plasma at room temperature. rhPCR is a useful tool to detect dietary miRs.
Collapse
Affiliation(s)
- Lanfang Wang
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE,Address correspondence to JZ (e-mail: )
| |
Collapse
|
11
|
Wang W, Hang C, Zhang Y, Chen M, Meng X, Cao Q, Song N, Itkow J, Shen F, Yu D. Dietary miR-451 protects erythroid cells from oxidative stress via increasing the activity of Foxo3 pathway. Oncotarget 2017; 8:107109-107124. [PMID: 29291015 PMCID: PMC5739800 DOI: 10.18632/oncotarget.22346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
One fundamental issue in public health is the safety of food products derived from plants and animals. A recent study raised a concern that microRNAs, which widely exist in everyday foods, may alter consumers' functions. However, some studies have strongly questioned the likelihood of dietary uptake of functional microRNAs in mammals. Here we use a microRNA gene knockout animal model to show that miR-144/451 null mice can orally uptake miR-451 from a daily chow diet, and ingestion of wild type blood, that contains abundant miR-451, also enhances the level of miR-451 in the circulating blood of knockout mice. Moreover, reducing miR-451 level in miR-144/451 knockout blood by consuming food lacking miR-451 reduces the anti-oxidant capacity of miR-144/451 null red blood cells by targeting the 14-3-3ζ/Foxo3 pathway, while increasing miR-451 level via gavage-feeding of wild type blood increases the anti-oxidant capacity of miR-144/451 null red blood cells. We conclude that 1) some miRNAs in food can pass through the gastrointestinal tract into the blood to affect consumers' function and 2) microRNA knockout animals such as miR-144/451 null mice can acquire the deleted genetic information from daily foods, which might alter the results and conclusions from the studies using such animals.
Collapse
Affiliation(s)
- Wanchen Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Chengwen Hang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Yanqing Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Mingshi Chen
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Xinyu Meng
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Qing Cao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Nana Song
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Jacobi Itkow
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Feiyang Shen
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001, China.,Institute of Translational Medicine, Yangzhou University School of Medicine, Yangzhou 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001, China
| |
Collapse
|
12
|
Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017; 9:nu9111168. [PMID: 29077020 PMCID: PMC5707640 DOI: 10.3390/nu9111168] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials).
Collapse
Affiliation(s)
- Bruna J Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| | - Bruna Z Reis
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Graziela B Silva Duarte
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Silvia M F Cozzolino
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| |
Collapse
|
13
|
Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. GENES AND NUTRITION 2017; 12:13. [PMID: 29308096 PMCID: PMC5753850 DOI: 10.1186/s12263-017-0561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants. Rigorous assessment of these data emphasize that uptake of active dietary sRNAs is neither a robust nor a prevalent mechanism to maintain steady-state levels in higher organisms. While disagreement still continues regarding whether such transfer may occur in specialized contexts, concerns about technical difficulties and a lack of consensus on appropriate methods have led to questions regarding the reproducibility and biologic significance of some seemingly positive results. For any continuing investigations, concerted efforts should be made to establish a strong mechanistic basis for potential effects of dietary sRNAs and to agree on methodological guidelines for realizing such proof. Such processes would ensure proper interpretation of studies aiming to prove dietary sRNA activity in mammals and inform potential for application in therapeutics and agriculture.
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, BST 1704.2, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027 USA
| |
Collapse
|
14
|
Zempleni J. Milk exosomes: beyond dietary microRNAs. GENES AND NUTRITION 2017; 12:12. [PMID: 28694874 PMCID: PMC5501576 DOI: 10.1186/s12263-017-0562-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles deliver a variety of cargos to recipient cells, including the delivery of cargos in dietary vesicles from bovine milk to non-bovine species. The rate of discovery in this important line of research is slowed by a controversy whether the delivery and bioactivity of a single class of vesicle cargos, microRNAs, are real or not. This opinion paper argues that the evidence in support of the bioavailability of microRNAs encapsulated in dietary exosomes outweighs the evidence produced by scholars doubting that phenomenon is real. Importantly, this paper posits that the time is ripe to look beyond microRNA cargos and pursue innovative pathways through which dietary exosomes alter metabolism. Here, we highlight potentially fruitful lines of exploration.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
15
|
Zhou G, Zhou Y, Chen X. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs. Front Microbiol 2017; 8:768. [PMID: 28507539 PMCID: PMC5410588 DOI: 10.3389/fmicb.2017.00768] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups’ subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.
Collapse
Affiliation(s)
- Geyu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
16
|
Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017; 147:3-10. [PMID: 27852870 PMCID: PMC5177735 DOI: 10.3945/jn.116.238949] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are limited.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ana Aguilar-Lozano
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonia Manca
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|