1
|
Akila V, Christaline JA, Edward AS. Novel Feature Generation for Classification of Motor Activity from Functional Near-Infrared Spectroscopy Signals Using Machine Learning. Diagnostics (Basel) 2024; 14:1008. [PMID: 38786306 PMCID: PMC11119315 DOI: 10.3390/diagnostics14101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recent research in the field of cognitive motor action decoding focuses on data acquired from Functional Near-Infrared Spectroscopy (fNIRS) and its analysis. This research aims to classify two different motor activities, namely, mental drawing (MD) and spatial navigation (SN), using fNIRS data from non-motor baseline data and other motor activities. Accurate activity detection in non-stationary signals like fNIRS is challenging and requires complex feature descriptors. As a novel framework, a new feature generation by fusion of wavelet feature, Hilbert, symlet, and Hjorth parameters is proposed for improving the accuracy of the classification. This new fused feature has statistical descriptor elements, time-localization in the frequency domain, edge feature, texture features, and phase information to detect and locate the activity accurately. Three types of independent component analysis, including FastICA, Picard, and Infomax were implemented for preprocessing which removes noises and motion artifacts. Two independent binary classifiers are designed to handle the complexity of classification in which one is responsible for mental drawing (MD) detection and the other one is spatial navigation (SN). Four different types of algorithms including nearest neighbors (KNN), Linear Discriminant Analysis (LDA), light gradient-boosting machine (LGBM), and Extreme Gradient Boosting (XGBOOST) were implemented. It has been identified that the LGBM classifier gives high accuracies-98% for mental drawing and 97% for spatial navigation. Comparison with existing research proves that the proposed method gives the highest classification accuracies. Statistical validation of the proposed new feature generation by the Kruskal-Wallis H-test and Mann-Whitney U non-parametric test proves the reliability of the proposed mechanism.
Collapse
Affiliation(s)
- V. Akila
- Department of ECE, SRM Institute of Science and Technology, Vadapalani, Chennai 600026, India; (J.A.C.); (A.S.E.)
| | | | | |
Collapse
|
2
|
Qin Y, Li B, Wang W, Shi X, Peng C, Lu Y. Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism. Neuroscience 2024; 542:59-68. [PMID: 38369007 DOI: 10.1016/j.neuroscience.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial-temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development.
Collapse
Affiliation(s)
- Yuxin Qin
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Baojiang Li
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Wenlong Wang
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Xingbin Shi
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Cheng Peng
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Yifan Lu
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| |
Collapse
|
3
|
Forecasting Unplanned Purchase Behavior under Buy-One Get-One-Free Promotions Using Functional Near-Infrared Spectroscopy. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1034983. [PMID: 36387766 PMCID: PMC9663223 DOI: 10.1155/2022/1034983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
It is very important for consumers to recognize their wrong shopping habits such as unplanned purchase behavior (UPB). The traditional methods used for measuring the UPB in qualitative and quantitative studies have some drawbacks because of human perception and memory. We proposed a UPB identification methodology applied with the brain-computer interface technique using a support vector machine (SVM) along with a functional near-infrared spectroscopy (fNIRS). Hemodynamic signals and behavioral data were collected from 33 subjects by performing Task 1 which included the Buy-One-Get-One-Free (BOGOF) and Task 2 which excluded the BOGOF condition. The acquired data were calculated with 6 time-domain features and then classified them using SVM with 10-cross validations. Thereafter, we evaluated whether the results were reliable using the area under the receiver operating characteristic curve (AUC). As a result, we achieved average accuracy greater than 94%, which is reliable because of the AUC values above 0.97. We found that the UPB brain activity was more relevant to Task 1 with the BOGOF condition than with Task 2 in the prefrontal cortex. UPBs were sufficiently derived from self-reported measurement, indicating that the subjects perceived increased impulsivity in the BOGOF condition. Therefore, this study improves the detection and understanding of UPB as a path for a computer-aided detection perspective for rating the severity of UPBs.
Collapse
|
4
|
Eastmond C, Subedi A, De S, Intes X. Deep learning in fNIRS: a review. NEUROPHOTONICS 2022; 9:041411. [PMID: 35874933 PMCID: PMC9301871 DOI: 10.1117/1.nph.9.4.041411] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023]
Abstract
Significance: Optical neuroimaging has become a well-established clinical and research tool to monitor cortical activations in the human brain. It is notable that outcomes of functional near-infrared spectroscopy (fNIRS) studies depend heavily on the data processing pipeline and classification model employed. Recently, deep learning (DL) methodologies have demonstrated fast and accurate performances in data processing and classification tasks across many biomedical fields. Aim: We aim to review the emerging DL applications in fNIRS studies. Approach: We first introduce some of the commonly used DL techniques. Then, the review summarizes current DL work in some of the most active areas of this field, including brain-computer interface, neuro-impairment diagnosis, and neuroscience discovery. Results: Of the 63 papers considered in this review, 32 report a comparative study of DL techniques to traditional machine learning techniques where 26 have been shown outperforming the latter in terms of the classification accuracy. In addition, eight studies also utilize DL to reduce the amount of preprocessing typically done with fNIRS data or increase the amount of data via data augmentation. Conclusions: The application of DL techniques to fNIRS studies has shown to mitigate many of the hurdles present in fNIRS studies such as lengthy data preprocessing or small sample sizes while achieving comparable or improved classification accuracy.
Collapse
Affiliation(s)
- Condell Eastmond
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Aseem Subedi
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Suvranu De
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
5
|
Erdoğan SB, Yükselen G. Four-Class Classification of Neuropsychiatric Disorders by Use of Functional Near-Infrared Spectroscopy Derived Biomarkers. SENSORS (BASEL, SWITZERLAND) 2022; 22:5407. [PMID: 35891088 PMCID: PMC9322944 DOI: 10.3390/s22145407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Diagnosis of most neuropsychiatric disorders relies on subjective measures, which makes the reliability of final clinical decisions questionable. The aim of this study was to propose a machine learning-based classification approach for objective diagnosis of three disorders of neuropsychiatric or neurological origin with functional near-infrared spectroscopy (fNIRS) derived biomarkers. Thirteen healthy adolescents and sixty-seven patients who were clinically diagnosed with migraine, obsessive compulsive disorder, or schizophrenia performed a Stroop task, while prefrontal cortex hemodynamics were monitored with fNIRS. Hemodynamic and cognitive features were extracted for training three supervised learning algorithms (naïve bayes (NB), linear discriminant analysis (LDA), and support vector machines (SVM)). The performance of each algorithm in correctly predicting the class of each participant across the four classes was tested with ten runs of a ten-fold cross-validation procedure. All algorithms achieved four-class classification performances with accuracies above 81% and specificities above 94%. SVM had the highest performance in terms of accuracy (85.1 ± 1.77%), sensitivity (84 ± 1.7%), specificity (95 ± 0.5%), precision (86 ± 1.6%), and F1-score (85 ± 1.7%). fNIRS-derived features have no subjective report bias when used for automated classification purposes. The presented methodology might have significant potential for assisting in the objective diagnosis of neuropsychiatric disorders associated with frontal lobe dysfunction.
Collapse
|
6
|
Salimpour S, Kalbkhani H, Seyyedi S, Solouk V. Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals. Sci Rep 2022; 12:11773. [PMID: 35817814 PMCID: PMC9273790 DOI: 10.1038/s41598-022-15813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few years, the processing of motor imagery (MI) electroencephalography (EEG) signals has been attracted for developing brain-computer interface (BCI) applications, since feature extraction and classification of these signals are extremely difficult due to the inherent complexity and tendency to artifact properties of them. The BCI systems can provide a direct interaction pathway/channel between the brain and a peripheral device, hence the MI EEG-based BCI systems seem crucial to control external devices for patients suffering from motor disabilities. The current study presents a semi-supervised model based on three-stage feature extraction and machine learning algorithms for MI EEG signal classification in order to improve the classification accuracy with smaller number of deep features for distinguishing right- and left-hand MI tasks. Stockwell transform is employed at the first phase of the proposed feature extraction method to generate two-dimensional time-frequency maps (TFMs) from one-dimensional EEG signals. Next, the convolutional neural network (CNN) is applied to find deep feature sets from TFMs. Then, the semi-supervised discriminant analysis (SDA) is utilized to minimize the number of descriptors. Finally, the performance of five classifiers, including support vector machine, discriminant analysis, k-nearest neighbor, decision tree, random forest, and the fusion of them are compared. The hyperparameters of SDA and mentioned classifiers are optimized by Bayesian optimization to maximize the accuracy. The presented model is validated using BCI competition II dataset III and BCI competition IV dataset 2b. The performance metrics of the proposed method indicate its efficiency for classifying MI EEG signals.
Collapse
Affiliation(s)
- Sahar Salimpour
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Hashem Kalbkhani
- Faculty of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Saeed Seyyedi
- University of California San Francisco and Berkeley, Berkeley, USA
| | - Vahid Solouk
- Department of IT and Computer Engineering, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
7
|
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI. SENSORS 2022; 22:s22072575. [PMID: 35408190 PMCID: PMC9003428 DOI: 10.3390/s22072575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Brain-computer interface (BCI) systems based on functional near-infrared spectroscopy (fNIRS) have been used as a way of facilitating communication between the brain and peripheral devices. The BCI provides an option to improve the walking pattern of people with poor walking dysfunction, by applying a rehabilitation process. A state-of-the-art step-wise BCI system includes data acquisition, pre-processing, channel selection, feature extraction, and classification. In fNIRS-based BCI (fNIRS-BCI), channel selection plays a vital role in enhancing the classification accuracy of the BCI problem. In this study, the concentration of blood oxygenation (HbO) in a resting state and in a walking state was used to decode the walking activity and the resting state of the subject, using channel selection by Least Absolute Shrinkage and Selection Operator (LASSO) homotopy-based sparse representation classification. The fNIRS signals of nine subjects were collected from the left hemisphere of the primary motor cortex. The subjects performed the task of walking on a treadmill for 10 s, followed by a 20 s rest. Appropriate filters were applied to the collected signals to remove motion artifacts and physiological noises. LASSO homotopy-based sparse representation was used to select the most significant channels, and then classification was performed to identify walking and resting states. For comparison, the statistical spatial features of mean, peak, variance, and skewness, and their combination, were used for classification. The classification results after channel selection were then compared with the classification based on the extracted features. The classifiers used for both methods were linear discrimination analysis (LDA), support vector machine (SVM), and logistic regression (LR). The study found that LASSO homotopy-based sparse representation classification successfully discriminated between the walking and resting states, with a better average classification accuracy (p < 0.016) of 91.32%. This research provides a step forward in improving the classification accuracy of fNIRS-BCI systems. The proposed methodology may also be used for rehabilitation purposes, such as controlling wheelchairs and prostheses, as well as an active rehabilitation training technique for patients with motor dysfunction.
Collapse
|
8
|
Khalil K, Asgher U, Ayaz Y. Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain-computer interface. Sci Rep 2022; 12:3198. [PMID: 35210460 PMCID: PMC8873341 DOI: 10.1038/s41598-022-06805-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
The brain-computer interface (BCI) provides an alternate means of communication between the brain and external devices by recognizing the brain activities and translating them into external commands. The functional Near-Infrared Spectroscopy (fNIRS) is becoming popular as a non-invasive modality for brain activity detection. The recent trends show that deep learning has significantly enhanced the performance of the BCI systems. But the inherent bottleneck for deep learning (in the domain of BCI) is the requirement of the vast amount of training data, lengthy recalibrating time, and expensive computational resources for training deep networks. Building a high-quality, large-scale annotated dataset for deep learning-based BCI systems is exceptionally tedious, complex, and expensive. This study investigates the novel application of transfer learning for fNIRS-based BCI to solve three objective functions (concerns), i.e., the problem of insufficient training data, reduced training time, and increased accuracy. We applied symmetric homogeneous feature-based transfer learning on convolutional neural network (CNN) designed explicitly for fNIRS data collected from twenty-six (26) participants performing the n-back task. The results suggested that the proposed method achieves the maximum saturated accuracy sooner and outperformed the traditional CNN model on averaged accuracy by 25.58% in the exact duration of training time, reducing the training time, recalibrating time, and computational resources.
Collapse
Affiliation(s)
- Khurram Khalil
- National Center of Artificial Intelligence (NCAI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Umer Asgher
- National Center of Artificial Intelligence (NCAI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.,Department of Mechatronics Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasar Ayaz
- National Center of Artificial Intelligence (NCAI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
9
|
Zabcikova M, Koudelkova Z, Jasek R, Navarro JJL. Recent Advances and Current Trends in Brain-Computer Interface (BCI) Research and Their Applications. Int J Dev Neurosci 2021; 82:107-123. [PMID: 34939217 DOI: 10.1002/jdn.10166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/18/2021] [Indexed: 11/06/2022] Open
Abstract
Brain-Computer Interface (BCI) provides direct communication between the brain and an external device. BCI systems have become a trendy field of research in recent years. These systems can be used in a variety of applications to help both disabled and healthy people. Concerning significant BCI progress, we may assume that these systems are not very far from real-world applications. This review has taken into account current trends in BCI research. In this survey, one hundred most cited articles from the WOS database were selected over the last four years. This survey is divided into several sectors. These sectors are Medicine, Communication and Control, Entertainment, and Other BCI applications. The application area, recording method, signal acquisition types, and countries of origin have been identified in each article. This survey provides an overview of the BCI articles published from 2016 to 2020 and their current trends and advances in different application areas.
Collapse
Affiliation(s)
- Martina Zabcikova
- Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Zuzana Koudelkova
- Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Roman Jasek
- Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - José Javier Lorenzo Navarro
- Departamento de Informática y Sistemas, Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
10
|
Fairclough SH, Dobbins C, Stamp K. Classification of Game Demand and the Presence of Experimental Pain Using Functional Near-Infrared Spectroscopy. FRONTIERS IN NEUROERGONOMICS 2021; 2:695309. [PMID: 38235227 PMCID: PMC10790923 DOI: 10.3389/fnrgo.2021.695309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 01/19/2024]
Abstract
Pain tolerance can be increased by the introduction of an active distraction, such as a computer game. This effect has been found to be moderated by game demand, i.e., increased game demand = higher pain tolerance. A study was performed to classify the level of game demand and the presence of pain using implicit measures from functional Near-InfraRed Spectroscopy (fNIRS) and heart rate features from an electrocardiogram (ECG). Twenty participants played a racing game that was configured to induce low (Easy) or high (Hard) levels of demand. Both Easy and Hard levels of game demand were played with or without the presence of experimental pain using the cold pressor test protocol. Eight channels of fNIRS data were recorded from a montage of frontal and central-parietal sites located on the midline. Features were generated from these data, a subset of which were selected for classification using the RELIEFF method. Classifiers for game demand (Easy vs. Hard) and pain (pain vs. no-pain) were developed using five methods: Support Vector Machine (SVM), k-Nearest Neighbour (kNN), Naive Bayes (NB) and Random Forest (RF). These models were validated using a ten fold cross-validation procedure. The SVM approach using features derived from fNIRS was the only method that classified game demand at higher than chance levels (accuracy = 0.66, F1 = 0.68). It was not possible to classify pain vs. no-pain at higher than chance level. The results demonstrate the viability of utilising fNIRS data to classify levels of game demand and the difficulty of classifying pain when another task is present.
Collapse
Affiliation(s)
| | - Chelsea Dobbins
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Kellyann Stamp
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
11
|
Khan H, Noori FM, Yazidi A, Uddin MZ, Khan MNA, Mirtaheri P. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:7943. [PMID: 34883949 PMCID: PMC8659988 DOI: 10.3390/s21237943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky-Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were 0.75±0.04, 0.75±0.05, and 0.77±0.06 using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway;
| | - Farzan M. Noori
- Department of Informatics, University of Oslo, 0315 Oslo, Norway;
| | - Anis Yazidi
- Department of Computer Science, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway;
- Department of Neurosurgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Md Zia Uddin
- Software and Service Innovation, SINTEF Digital, 0373 Oslo, Norway;
| | - M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea;
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway;
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
12
|
Erdoğan SB, Yükselen G, Yegül MM, Usanmaz R, Kıran E, Derman O, Akın A. Identification of impulsive adolescents with a functional near infrared spectroscopy (fNIRS) based decision support system. J Neural Eng 2021; 18. [PMID: 34479222 DOI: 10.1088/1741-2552/ac23bb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Background.The gold standard for diagnosing impulsivity relies on clinical interviews, behavioral questionnaires and rating scales which are highly subjective.Objective.The aim of this study was to develop a functional near infrared spectroscopy (fNIRS) based classification approach for correct identification of impulsive adolescents. Taking into account the multifaceted nature of impulsivity, we propose that combining informative features from clinical, behavioral and neurophysiological domains might better elucidate the neurobiological distinction underlying symptoms of impulsivity.Approach. Hemodynamic and behavioral information was collected from 38 impulsive adolescents and from 33 non-impulsive adolescents during a Stroop task with concurrent fNIRS recordings. Connectivity-based features were computed from the hemodynamic signals and a neural efficiency metric was computed by fusing the behavioral and connectivity-based features. We tested the efficacy of two commonly used supervised machine-learning methods, namely the support vector machines (SVM) and artificial neural networks (ANN) in discriminating impulsive adolescents from their non-impulsive peers when trained with multi-domain features. Wrapper method was adapted to identify the informative biomarkers in each domain. Classification accuracies of each algorithm were computed after 10 runs of a 10-fold cross-validation procedure, conducted for 7 different combinations of the 3-domain feature set.Main results.Both SVM and ANN achieved diagnostic accuracies above 90% when trained with Wrapper-selected clinical, behavioral and fNIRS derived features. SVM performed significantly higher than ANN in terms of the accuracy metric (92.2% and 90.16%, respectively,p= 0.005).Significance.Preliminary findings show the feasibility and applicability of both machine-learning based methods for correct identification of impulsive adolescents when trained with multi-domain data involving clinical interviews, fNIRS based biomarkers and neuropsychiatric test measures. The proposed automated classification approach holds promise for assisting the clinical practice of diagnosing impulsivity and other psychiatric disorders. Our results also pave the path for a computer-aided diagnosis perspective for rating the severity of impulsivity.
Collapse
Affiliation(s)
- Sinem Burcu Erdoğan
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Gülnaz Yükselen
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Mustafa Mert Yegül
- Hemosoft Information Technologies and Training Services Inc., Ankara, Turkey
| | - Ruhi Usanmaz
- Hemosoft Information Technologies and Training Services Inc., Ankara, Turkey
| | - Engin Kıran
- Hemosoft Information Technologies and Training Services Inc., Ankara, Turkey
| | - Orhan Derman
- Department of Pediatrics, Division of Adolescent Medicine, Hacettepe University İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Ata Akın
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| |
Collapse
|
13
|
Afzal Khan MN, Hong KS. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI. BIOMEDICAL OPTICS EXPRESS 2021; 12:5939-5954. [PMID: 34745714 PMCID: PMC8547991 DOI: 10.1364/boe.434936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Meng M, Dai L, She Q, Ma Y, Kong W. Crossing time windows optimization based on mutual information for hybrid BCI. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7919-7935. [PMID: 34814281 DOI: 10.3934/mbe.2021392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid EEG-fNIRS brain-computer interface (HBCI) is widely employed to enhance BCI performance. EEG and fNIRS signals are combined to increase the dimensionality of the information. Time windows are used to select EEG and fNIRS singles synchronously. However, it ignores that specific modal signals have their own characteristics, when the task is stimulated, the information between the modalities will mismatch at the moment, which has a significant impact on the classification performance. Here we propose a novel crossing time windows optimization for mental arithmetic (MA) based BCI. The EEG and fNIRS signals were segmented separately by sliding time windows. Then crossing time windows (CTW) were combined with each one segment from EEG and fNIRS selected independently. Furthermore, EEG and fNIRS features were extracted using Filter Bank Common Spatial Pattern (FBCSP) and statistical methods from each sample. Mutual information was calculated for FBCSP and statistical features to characterize the discrimination of crossing time windows, and the optimal window would be selected based on the largest mutual information. Finally, a sparse structured framework of Fisher Lasso feature selection (FLFS) was designed to select the joint features, and conventional Linear Discriminant Analysis (LDA) was employed to perform classification. We used proposed method for a MA dataset. The classification accuracy of the proposed method is 92.52 ± 5.38% and higher than other methods, which shows the rationality and superiority of the proposed method.
Collapse
Affiliation(s)
- Ming Meng
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Luyang Dai
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qingshan She
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Yuliang Ma
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
15
|
Arif S, Khan MJ, Naseer N, Hong KS, Sajid H, Ayaz Y. Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain-Computer Interface. Front Hum Neurosci 2021; 15:658444. [PMID: 33994983 PMCID: PMC8121150 DOI: 10.3389/fnhum.2021.658444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
A passive brain-computer interface (BCI) based upon functional near-infrared spectroscopy (fNIRS) brain signals is used for earlier detection of human drowsiness during driving tasks. This BCI modality acquired hemodynamic signals of 13 healthy subjects from the right dorsolateral prefrontal cortex (DPFC) of the brain. Drowsiness activity is recorded using a continuous-wave fNIRS system and eight channels over the right DPFC. During the experiment, sleep-deprived subjects drove a vehicle in a driving simulator while their cerebral oxygen regulation (CORE) state was continuously measured. Vector phase analysis (VPA) was used as a classifier to detect drowsiness state along with sleep stage-based threshold criteria. Extensive training and testing with various feature sets and classifiers are done to justify the adaptation of threshold criteria for any subject without requiring recalibration. Three statistical features (mean oxyhemoglobin, signal peak, and the sum of peaks) along with six VPA features (trajectory slopes of VPA indices) were used. The average accuracies for the five classifiers are 90.9% for discriminant analysis, 92.5% for support vector machines, 92.3% for nearest neighbors, 92.4% for both decision trees, and ensembles over all subjects' data. Trajectory slopes of CORE vector magnitude and angle: m(|R|) and m(∠R) are the best-performing features, along with ensemble classifier with the highest accuracy of 95.3% and minimum computation time of 40 ms. The statistical significance of the results is validated with a p-value of less than 0.05. The proposed passive BCI scheme demonstrates a promising technique for online drowsiness detection using VPA along with sleep stage classification.
Collapse
Affiliation(s)
- Saad Arif
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Jawad Khan
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.,National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Hasan Sajid
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.,National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan
| | - Yasar Ayaz
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.,National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan
| |
Collapse
|
16
|
Dolmans TC, Poel M, van ’t Klooster JWJR, Veldkamp BP. Perceived Mental Workload Classification Using Intermediate Fusion Multimodal Deep Learning. Front Hum Neurosci 2021; 14:609096. [PMID: 33505259 PMCID: PMC7829255 DOI: 10.3389/fnhum.2020.609096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
A lot of research has been done on the detection of mental workload (MWL) using various bio-signals. Recently, deep learning has allowed for novel methods and results. A plethora of measurement modalities have proven to be valuable in this task, yet studies currently often only use a single modality to classify MWL. The goal of this research was to classify perceived mental workload (PMWL) using a deep neural network (DNN) that flexibly makes use of multiple modalities, in order to allow for feature sharing between modalities. To achieve this goal, an experiment was conducted in which MWL was simulated with the help of verbal logic puzzles. The puzzles came in five levels of difficulty and were presented in a random order. Participants had 1 h to solve as many puzzles as they could. Between puzzles, they gave a difficulty rating between 1 and 7, seven being the highest difficulty. Galvanic skin response, photoplethysmograms, functional near-infrared spectrograms and eye movements were collected simultaneously using LabStreamingLayer (LSL). Marker information from the puzzles was also streamed on LSL. We designed and evaluated a novel intermediate fusion multimodal DNN for the classification of PMWL using the aforementioned four modalities. Two main criteria that guided the design and implementation of our DNN are modularity and generalisability. We were able to classify PMWL within-level accurate (0.985 levels) on a seven-level workload scale using the aforementioned modalities. The model architecture allows for easy addition and removal of modalities without major structural implications because of the modular nature of the design. Furthermore, we showed that our neural network performed better when using multiple modalities, as opposed to a single modality. The dataset and code used in this paper are openly available.
Collapse
Affiliation(s)
- Tenzing C. Dolmans
- Data Management and Biometrics, University of Twente, Enschede, Netherlands
- Behavioural, Management and Social Sciences Lab, University of Twente, Enschede, Netherlands
| | - Mannes Poel
- Data Management and Biometrics, University of Twente, Enschede, Netherlands
| | | | - Bernard P. Veldkamp
- Research Methodology, Measurement, and Data Analysis, University of Twente, Enschede, Netherlands
| |
Collapse
|
17
|
Trambaiolli LR, Tossato J, Cravo AM, Biazoli CE, Sato JR. Subject-independent decoding of affective states using functional near-infrared spectroscopy. PLoS One 2021; 16:e0244840. [PMID: 33411817 PMCID: PMC7790273 DOI: 10.1371/journal.pone.0244840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data from an independent group of volunteers before being used by new patients. Here, we investigated if this subject-independent design of affective decoding can be achieved using functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 participants, 24.65±3.23 years) and then tested in a completely independent one (20 participants, 24.00±3.92 years). Significant balanced accuracies between classes were found for positive vs. negative (64.50 ± 12.03%, p<0.01) and negative vs. neutral (68.25 ± 12.97%, p<0.01) affective states discrimination during a reactive block consisting in viewing affective-loaded images. For an active block, in which volunteers were instructed to recollect personal affective experiences, significant accuracy was found for positive vs. neutral affect classification (71.25 ± 18.02%, p<0.01). In this last case, only three fNIRS channels were enough to discriminate between neutral and positive affective states. Although more research is needed, for example focusing on better combinations of features and classifiers, our results highlight fNIRS as a possible technique for subject-independent affective decoding, reaching significant classification accuracies of emotional states using only a few but biologically relevant features.
Collapse
Affiliation(s)
- Lucas R. Trambaiolli
- Division of Basic Neuroscience, McLean Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Juliana Tossato
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - André M. Cravo
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Claudinei E. Biazoli
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - João R. Sato
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|
18
|
Qing K, Huang R, Hong KS. Decoding Three Different Preference Levels of Consumers Using Convolutional Neural Network: A Functional Near-Infrared Spectroscopy Study. Front Hum Neurosci 2021; 14:597864. [PMID: 33488372 PMCID: PMC7815930 DOI: 10.3389/fnhum.2020.597864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between "like" vs. "dislike" out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively.
Collapse
Affiliation(s)
- Kunqiang Qing
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Ruisen Huang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
19
|
Nazeer H, Naseer N, Mehboob A, Khan MJ, Khan RA, Khan US, Ayaz Y. Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method. SENSORS 2020; 20:s20236995. [PMID: 33297516 PMCID: PMC7730208 DOI: 10.3390/s20236995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel’s correlation coefficients’ maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems’ performance.
Collapse
Affiliation(s)
- Hammad Nazeer
- Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan;
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan;
- Correspondence:
| | - Aakif Mehboob
- School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; (A.M.); (M.J.K.); (Y.A.)
| | - Muhammad Jawad Khan
- School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; (A.M.); (M.J.K.); (Y.A.)
- National Centre of Artificial Intelligence (NCAI), Islamabad 44000, Pakistan
| | - Rayyan Azam Khan
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada;
| | - Umar Shahbaz Khan
- Department of Mechatronics Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan;
- National Centre of Robotics and Automation (NCRA), Rawalpindi 46000, Pakistan
| | - Yasar Ayaz
- School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; (A.M.); (M.J.K.); (Y.A.)
- National Centre of Artificial Intelligence (NCAI), Islamabad 44000, Pakistan
| |
Collapse
|
20
|
Zhang X, Yao L, Wang X, Monaghan JJM, Mcalpine D, Zhang Y. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 2020; 18. [PMID: 33171452 DOI: 10.1088/1741-2552/abc902] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide a comprehensive survey of the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.
Collapse
Affiliation(s)
- Xiang Zhang
- Harvard University, Cambridge, Massachusetts, UNITED STATES
| | - Lina Yao
- University of New South Wales, Sydney, New South Wales, AUSTRALIA
| | - Xianzhi Wang
- Faculty of Engineering and IT, University of Technology Sydney, 81 Broadway, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | | | - David Mcalpine
- Macquarie University, Sydney, New South Wales, AUSTRALIA
| | - Yu Zhang
- Stanford University, Stanford, California, 94305-6104, UNITED STATES
| |
Collapse
|
21
|
Nazeer H, Naseer N, Khan RA, Noori FM, Qureshi NK, Khan US, Khan MJ. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. J Neural Eng 2020; 17:056025. [DOI: 10.1088/1741-2552/abb417] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Aydin EA. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105535. [PMID: 32534382 DOI: 10.1016/j.cmpb.2020.105535] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain-computer interfaces (BCIs) enable people to control an external device by analyzing the brain's neural activity. Functional near-infrared spectroscopy (fNIRS), which is an emerging optical imaging technique, is frequently used in non-invasive BCIs. Determining the subject-specific features is an important concern in enhancing the classification accuracy as well as reducing the complexity of fNIRS based BCI systems. In this study, the effectiveness of subject-specific feature selection on classification accuracy of fNIRS signals is examined. METHODS In order to determine the subject-specific optimal feature subsets, stepwise regression analysis based on sequential feature selection (SWR-SFS) and ReliefF methods were employed. Feature selection is applied on time-domain features of fNIRS signals such as mean, slope, peak, skewness and kurtosis values of signals. Linear discriminant analysis, k nearest neighborhood and support vector machines are employed to evaluate the performance of the selected feature subsets. The proposed techniques are validated on benchmark motor imagery (MI) and mental arithmetic (MA) based fNIRS datasets collected from 29 healthy subjects. RESULTS Both SWR-SFS and reliefF feature selection methods have significantly improved the classification accuracy. However, the best results (88.67% (HbR) and 86.43% (HbO) for MA dataset and 77.01% (HbR) and 71.32% (HbO) for MI dataset) were achieved using SWR-SFS while feature selection provided extremely high feature reduction rates (89.50% (HbR) and 93.99% (HbO) for MA dataset and 94.04% (HbR) and 97.73% (HbO) for MI dataset). CONCLUSIONS The results of the study indicate that employing feature selection improves both MA and MI-based fNIRS signals classification performance significantly.
Collapse
Affiliation(s)
- Eda Akman Aydin
- Gazi University, Faculty of Technology, Department of Electrical and Electronics Engineering, 06500, Besevler, Ankara, Turkey.
| |
Collapse
|
23
|
Siddiquee MR, Atri R, Marquez JS, Hasan SMS, Ramon R, Bai O. Sensor Location Optimization of Wireless Wearable fNIRS System for Cognitive Workload Monitoring Using a Data-Driven Approach for Improved Wearability. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5082. [PMID: 32906737 PMCID: PMC7570614 DOI: 10.3390/s20185082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) is a hemodynamic modality in human cognitive workload assessment receiving popularity due to its easier implementation, non-invasiveness, low cost and other benefits from the signal-processing point of view. Wearable wireless fNIRS systems used in research have promisingly shown that fNIRS could be used in cognitive workload assessment in out-of-the-lab scenarios, such as in operators' cognitive workload monitoring. In such a scenario, the wearability of the system is a significant factor affecting user comfort. In this respect, the wearability of the system can be improved if it is possible to minimize an fNIRS system without much compromise of the cognitive workload detection accuracy. In this study, cognitive workload-related hemodynamic changes were acquired using an fNIRS system covering the whole forehead, which is the region of interest in most cognitive workload-monitoring studies. A machine learning approach was applied to explore how the mean accuracy of the cognitive workload classification accuracy varied across various sensing locations on the forehead such as the Left, Mid, Right, Left-Mid, Right-Mid and Whole forehead. The statistical significance analysis result showed that the Mid location could result in significant cognitive workload classification accuracy compared to Whole forehead sensing, with a statistically insignificant difference in the mean accuracy. Thus, the wearable fNIRS system can be improved in terms of wearability by optimizing the sensor location, considering the sensing of the Mid location on the forehead for cognitive workload monitoring.
Collapse
Affiliation(s)
- Masudur R. Siddiquee
- Human Cyber-Physical Systems Laboratory, Florida International University, Miami, FL 33174, USA; (R.A.); (J.S.M.); (S.M.S.H.); (R.R.); (O.B.)
| | | | | | | | | | | |
Collapse
|
24
|
A J, M S, Chhabra H, Shajil N, Venkatasubramanian G. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Asgher U, Khalil K, Khan MJ, Ahmad R, Butt SI, Ayaz Y, Naseer N, Nazir S. Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain-Computer Interface. Front Neurosci 2020; 14:584. [PMID: 32655353 PMCID: PMC7324788 DOI: 10.3389/fnins.2020.00584] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Cognitive workload is one of the widely invoked human factors in the areas of human-machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and evaluate the cognitive states of the brain. In this study, we have decoded four classes of MWL using long short-term memory (LSTM) with 89.31% average accuracy for brain-computer interface (BCI). The brain activity signals are acquired using functional near-infrared spectroscopy (fNIRS) from the prefrontal cortex (PFC) region of the brain. We performed a supervised MWL experimentation with four varying MWL levels on 15 participants (both male and female) and 10 trials of each MWL per participant. Real-time four-level MWL states are assessed using fNIRS system, and initial classification is performed using three strong machine learning (ML) techniques, support vector machine (SVM), k-nearest neighbor (k-NN), and artificial neural network (ANN) with obtained average accuracies of 54.33, 54.31, and 69.36%, respectively. In this study, novel deep learning (DL) frameworks are proposed, which utilizes convolutional neural network (CNN) and LSTM with 87.45 and 89.31% average accuracies, respectively, to solve high-dimensional four-level cognitive states classification problem. Statistical analysis, t-test, and one-way F-test (ANOVA) are also performed on accuracies obtained through ML and DL algorithms. Results show that the proposed DL (LSTM and CNN) algorithms significantly improve classification performance as compared with ML (SVM, ANN, and k-NN) algorithms.
Collapse
Affiliation(s)
- Umer Asgher
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Khurram Khalil
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Jawad Khan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Riaz Ahmad
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Directorate of Quality Assurance and International Collaboration, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Shahid Ikramullah Butt
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yasar Ayaz
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- National Center of Artificial Intelligence (NCAI) – NUST, Islamabad, Pakistan
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Salman Nazir
- Training and Assessment Research Group, Department of Maritime Operations, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
26
|
Cortical Tasks-Based Optimal Filter Selection: An fNIRS Study. JOURNAL OF HEALTHCARE ENGINEERING 2020. [DOI: 10.1155/2020/9152369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is one of the latest noninvasive brain function measuring technique that has been used for the purpose of brain-computer interfacing (BCI). In this paper, we compare and analyze the effect of six most commonly used filtering techniques (i.e., Gaussian, Butterworth, Kalman, hemodynamic response filter (hrf), Wiener, and finite impulse response) on classification accuracies of fNIRS-BCI. To conclude with the best optimal filter for a specific cortical task owing to a specific cortical region, we divided our experimental tasks according to the three main cortical regions: prefrontal, motor, and visual cortex. Three different experiments were performed for prefrontal and motor execution tasks while one for visual stimuli. The tasks performed for prefrontal include rest (R) vs mental arithmetic (MA), R vs object rotation (OB), and OB vs MA. Similarly, for motor execution, R vs left finger tapping (LFT), R vs right finger tapping (RFT), and LFT vs RFT. Likewise, for the visual cortex, R vs visual stimuli (VS) task. These experiments were performed for ten trials with five subjects. For consistency among extracted data, six statistical features were evaluated using oxygenated hemoglobin, namely, slope, mean, peak, kurtosis, skewness, and variance. Combination of these six features was used to classify data by the nonlinear support vector machine (SVM). The classification accuracies obtained from SVM by using hrf and Gaussian were significantly higher for R vs MA, R vs OB, R vs RFT, and R vs VS and Wiener filter for OB vs MA. Similarly, for R vs LFT and LFT vs RFT, hrf was found to be significant p<0.05. These results show the feasibility of using hrf for effective removal of noises from fNIRS data.
Collapse
|
27
|
Bi XA, Liu Y, Xie Y, Hu X, Jiang Q. Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment. Bioinformatics 2020; 36:2561-2568. [PMID: 31971559 PMCID: PMC7178433 DOI: 10.1093/bioinformatics/btz967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION The multimodal data fusion analysis becomes another important field for brain disease detection and increasing researches concentrate on using neural network algorithms to solve a range of problems. However, most current neural network optimizing strategies focus on internal nodes or hidden layer numbers, while ignoring the advantages of external optimization. Additionally, in the multimodal data fusion analysis of brain science, the problems of small sample size and high-dimensional data are often encountered due to the difficulty of data collection and the specialization of brain science data, which may result in the lower generalization performance of neural network. RESULTS We propose a genetically evolved random neural network cluster (GERNNC) model. Specifically, the fusion characteristics are first constructed to be taken as the input and the best type of neural network is selected as the base classifier to form the initial random neural network cluster. Second, the cluster is adaptively genetically evolved. Based on the GERNNC model, we further construct a multi-tasking framework for the classification of patients with brain disease and the extraction of significant characteristics. In a study of genetic data and functional magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative, the framework exhibits great classification performance and strong morbigenous factor detection ability. This work demonstrates that how to effectively detect pathogenic components of the brain disease on the high-dimensional medical data and small samples. AVAILABILITY AND IMPLEMENTATION The Matlab code is available at https://github.com/lizi1234560/GERNNC.git.
Collapse
Affiliation(s)
- Xia-an Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yingchao Liu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yiming Xie
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xi Hu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
28
|
Zhu L, Haghani S, Najafizadeh L. On fractality of functional near-infrared spectroscopy signals: analysis and applications. NEUROPHOTONICS 2020; 7:025001. [PMID: 32377544 PMCID: PMC7189210 DOI: 10.1117/1.nph.7.2.025001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Significance: The human brain is a highly complex system with nonlinear, dynamic behavior. A majority of brain imaging studies employing functional near-infrared spectroscopy (fNIRS), however, have considered only the spatial domain and have ignored the temporal properties of fNIRS recordings. Methods capable of revealing nonlinearities in fNIRS recordings can provide new insights about how the brain functions. Aim: The temporal characteristics of fNIRS signals are explored by comprehensively investigating their fractal properties. Approach: Fractality of fNIRS signals is analyzed using scaled windowed variance (SWV), as well as using visibility graph (VG), a method which converts a given time series into a graph. Additionally, the fractality of fNIRS signals obtained under resting-state and task-based conditions is compared, and the application of fractality in differentiating brain states is demonstrated for the first time via various classification approaches. Results: Results from SWV analysis show the existence of high fractality in fNIRS recordings. It is shown that differences in the temporal characteristics of fNIRS signals related to task-based and resting-state conditions can be revealed via the VGs constructed for each case. Conclusions: fNIRS recordings, regardless of the experimental conditions, exhibit high fractality. Furthermore, VG-based metrics can be employed to differentiate rest and task-execution brain states.
Collapse
Affiliation(s)
- Li Zhu
- Rutgers University, Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Piscataway, New Jersey, United States
| | - Sasan Haghani
- University of The District of Columbia, Department of Electrical and Computer Engineering, Washington DC, United States
| | - Laleh Najafizadeh
- Rutgers University, Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Piscataway, New Jersey, United States
| |
Collapse
|
29
|
Borgheai SB, McLinden J, Zisk AH, Hosni SI, Deligani RJ, Abtahi M, Mankodiya K, Shahriari Y. Enhancing Communication for People in Late-Stage ALS Using an fNIRS-Based BCI System. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1198-1207. [PMID: 32175867 DOI: 10.1109/tnsre.2020.2980772] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Brain-computer interface (BCI) based communication remains a challenge for people with later-stage amyotrophic lateral sclerosis (ALS) who lose all voluntary muscle control. Although recent studies have demonstrated the feasibility of functional near-infrared spectroscopy (fNIRS) to successfully control BCIs primarily for healthy cohorts, these systems are yet inefficient for people with severe motor disabilities like ALS. In this study, we developed a new fNIRS-based BCI system in concert with a single-trial Visuo-Mental (VM) paradigm to investigate the feasibility of enhanced communication for ALS patients, particularly those in the later stages of the disease. METHODS In the first part of the study, we recorded data from six ALS patients using our proposed protocol (fNIRS-VM) and compared the results with the conventional electroencephalography (EEG)-based multi-trial P3Speller (P3S). In the second part, we recorded longitudinal data from one patient in the late locked-in state (LIS) who had fully lost eye-gaze control. Using statistical parametric mapping (SPM) and correlation analysis, the optimal channels and hemodynamic features were selected and used in linear discriminant analysis (LDA). RESULTS Over all the subjects, we obtained an average accuracy of 81.3%±5.7% within comparatively short times (< 4 sec) in the fNIRS-VM protocol relative to an average accuracy of 74.0%±8.9% in the P3S, though not competitive in patients with no substantial visual problems. Our longitudinal analysis showed substantially superior accuracy using the proposed fNIRS-VM protocol (73.2%±2.0%) over the P3S (61.8%±1.5%). SIGNIFICANCE Our findings indicate the potential efficacy of our proposed system for communication and control for late-stage ALS patients.
Collapse
|
30
|
Brain–machine interfaces using functional near-infrared spectroscopy: a review. ARTIFICIAL LIFE AND ROBOTICS 2020. [DOI: 10.1007/s10015-020-00592-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Kim H, Yoshimura N, Koike Y. Characteristics of Kinematic Parameters in Decoding Intended Reaching Movements Using Electroencephalography (EEG). Front Neurosci 2019; 13:1148. [PMID: 31736690 PMCID: PMC6838638 DOI: 10.3389/fnins.2019.01148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
The utility of premovement electroencephalography (EEG) for decoding movement intention during a reaching task has been demonstrated. However, the kind of information the brain represents regarding the intended target during movement preparation remains unknown. In the present study, we investigated which movement parameters (i.e., direction, distance, and positions for reaching) can be decoded in premovement EEG decoding. Eight participants performed 30 types of reaching movements that consisted of 1 of 24 movement directions, 7 movement distances, 5 horizontal target positions, and 5 vertical target positions. Event-related spectral perturbations were extracted using independent components, some of which were selected via an analysis of variance for further binary classification analysis using a support vector machine. When each parameter was used for class labeling, all possible binary classifications were performed. Classification accuracies for direction and distance were significantly higher than chance level, although no significant differences were observed for position. For the classification in which each movement was considered as a different class, the parameters comprising two vectors representing each movement were analyzed. In this case, classification accuracies were high when differences in distance were high, the sum of distances was high, angular differences were large, and differences in the target positions were high. The findings further revealed that direction and distance may provide the largest contributions to movement. In addition, regardless of the parameter, useful features for classification are easily found over the parietal and occipital areas.
Collapse
Affiliation(s)
- Hyeonseok Kim
- Department of Information and Communications Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Natsue Yoshimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
32
|
Erdoĝan SB, Özsarfati E, Dilek B, Kadak KS, Hanoĝlu L, Akın A. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng 2019; 16:026029. [PMID: 30634177 DOI: 10.1088/1741-2552/aafdca] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of this study was to introduce a novel methodology for classification of brain hemodynamic responses collected via functional near infrared spectroscopy (fNIRS) during rest, motor imagery (MI) and motor execution (ME) tasks which involves generating population-level training sets. APPROACH A 48-channel fNIRS system was utilized to obtain hemodynamic signals from the frontal (FC), primary motor (PMC) and somatosensory cortex (SMC) of ten subjects during an experimental paradigm consisting of MI and ME of various right hand movements. Classification accuracies of random forest (RF), support vector machines (SVM), and artificial neural networks (ANN) were computed at the single subject level by training each classifier with subject specific features, and at the group level by training with features from all subjects for ME versus Rest, MI versus Rest and MI versus ME conditions. The performances were also computed for channel data restricted to FC, PMC and SMC regions separately to determine optimal probe location. MAIN RESULTS RF, SVM and ANN had comparably high classification accuracies for ME versus Rest (%94, %96 and %98 respectively) and for MI versus Rest (%95, %95 and %98 respectively) when fed with group level feature sets. The accuracy performance of each algorithm in localized brain regions were comparable (>%93) to the accuracy performance obtained with whole brain channels (>%94) for both ME versus Rest and MI versus Rest conditions. SIGNIFICANCE By demonstrating the feasibility of generating a population level training set with a high classification performance for three different classification algorithms, the findings pave the path for removing the necessity to acquire subject specific training data and hold promise for a novel, real-time fNIRS based BCI system design which will be most effective for application to disease populations for whom obtaining data to train a classification algorithm is not possible.
Collapse
Affiliation(s)
- Sinem Burcu Erdoĝan
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | | | | | | | | | | |
Collapse
|
33
|
Khan MJ, Ghafoor U, Hong KS. Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study. Front Hum Neurosci 2018; 12:479. [PMID: 30555313 PMCID: PMC6281984 DOI: 10.3389/fnhum.2018.00479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023] Open
Abstract
Enhanced classification accuracy and a sufficient number of commands are highly demanding in brain computer interfaces (BCIs). For a successful BCI, early detection of brain commands in time is essential. In this paper, we propose a novel classifier using a modified vector phase diagram and the power of electroencephalography (EEG) signal for early prediction of hemodynamic responses. EEG and functional near-infrared spectroscopy (fNIRS) signals for a motor task (thumb tapping) were obtained concurrently. Upon the resting state threshold circle in the vector phase diagram that uses the maximum values of oxy- and deoxy-hemoglobin (ΔHbO and ΔHbR) during the resting state, we introduce a secondary (inner) threshold circle using the ΔHbO and ΔHbR magnitudes during the time window of 1 s where an EEG activity is noticeable. If the trajectory of ΔHbO and ΔHbR touches the resting state threshold circle after passing through the inner circle, this indicates that ΔHbO was increasing and ΔHbR was decreasing (i.e., the start of a hemodynamic response). It takes about 0.5 s for an fNIRS signal to cross the resting state threshold circle after crossing the EEG-based circle. Thus, an fNIRS-based BCI command can be generated in 1.5 s. We achieved an improved accuracy of 86.0% using the proposed method in comparison with the 63.8% accuracy obtained using linear discriminant analysis in a window of 0~1.5 s. Moreover, the active brain locations (identified using the proposed scheme) were spatially specific when a t-map was made after 10 s of stimulation. These results demonstrate the possibility of enhancing the classification accuracy for a brain-computer interface with a time window of 1.5 s using the proposed method.
Collapse
Affiliation(s)
- M Jawad Khan
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
34
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
35
|
Lin X, Sai L, Yuan Z. Detecting Concealed Information with Fused Electroencephalography and Functional Near-infrared Spectroscopy. Neuroscience 2018; 386:284-294. [PMID: 30004008 DOI: 10.1016/j.neuroscience.2018.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
In this study, fused electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) techniques were utilized to examine the relationship between the ERP (event-related potential) component P300 and fNIRS hemodynamic signals for high-accuracy deception detection. During the performance of a modified concealed information test (CIT) task, a series of Chinese names were presented, which served as the target, irrelevant, or the probe stimuli for both the guilty and innocent groups. For participants in the guilty group, the probe stimulus was their individual name, whereas for the innocent group, the probe stimulus was one irrelevant name. In particular, data from concurrent fNIRS and ERP recordings were carefully inspected for participants from the two groups. Interestingly, we discovered that for the guilty group, the probe stimulus elicited significantly higher P300 amplitude at parietal site and also evoked significantly stronger oxyhemoglobin (HbO) concentration changes in the bilateral superior frontal gyrus and bilateral middle frontal gyrus than the irrelevant stimuli. However, this is not the case for the innocent group, in which participants exhibited no significant differences in both ERP and fNIRS measures between the probe and irrelevant stimuli. More importantly, our findings also demonstrated that the combined ERP and fNIRS feature was able to differentiate the guilty and innocent groups with enhanced sensitivity, in which AUC (the area under Receiver Operating Characteristic curve) is 0.94 for deception detection based on the combined indicator, much higher than that based on the ERP component P300 only (0.85) or HbO measure only (0.84).
Collapse
Affiliation(s)
- Xiaohong Lin
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Liyang Sai
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
36
|
Trambaiolli LR, Biazoli CE, Cravo AM, Falk TH, Sato JR. Functional near-infrared spectroscopy-based affective neurofeedback: feedback effect, illiteracy phenomena, and whole-connectivity profiles. NEUROPHOTONICS 2018; 5:035009. [PMID: 30689679 PMCID: PMC6156400 DOI: 10.1117/1.nph.5.3.035009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/10/2018] [Indexed: 05/11/2023]
Abstract
Background: Affective neurofeedback constitutes a suitable approach to control abnormal neural activities associated with psychiatric disorders and might consequently relief symptom severity. However, different aspects of neurofeedback remain unclear, such as its neural basis, the performance variation, the feedback effect, among others. Aim: First, we aimed to propose a functional near-infrared spectroscopy (fNIRS)-based affective neurofeedback based on the self-regulation of frontal and occipital networks. Second, we evaluated three different feedback approaches on performance: real, fixed, and random feedback. Third, we investigated different demographic, psychological, and physiological predictors of performance. Approach: Thirty-three healthy participants performed a task whereby an amorphous figure changed its shape according to the elicited affect (positive or neutral). During the task, the participants randomly received three different feedback approaches: real feedback, with no change of the classifier output; fixed feedback, keeping the feedback figure unmodified; and random feedback, where the classifier output was multiplied by an arbitrary value, causing a feedback different than expected by the subject. Then, we applied a multivariate comparison of the whole-connectivity profiles according to the affective states and feedback approaches, as well as during a pretask resting-state block, to predict performance. Results: Participants were able to control this feedback system with 70.00 % ± 24.43 % ( p < 0.01 ) of performance during the real feedback trials. No significant differences were found when comparing the average performances of the feedback approaches. However, the whole functional connectivity profiles presented significant Mahalanobis distances ( p ≪ 0.001 ) when comparing both affective states and all feedback approaches. Finally, task performance was positively correlated to the pretask resting-state whole functional connectivity ( r = 0.512 , p = 0.009 ). Conclusions: Our results suggest that fNIRS might be a feasible tool to develop a neurofeedback system based on the self-regulation of affective networks. This finding enables future investigations using an fNIRS-based affective neurofeedback in psychiatric populations. Furthermore, functional connectivity profiles proved to be a good predictor of performance and suggested an increased effort to maintain task control in the presence of feedback distractors.
Collapse
Affiliation(s)
- Lucas R. Trambaiolli
- Universidade Federal do ABC, Mathematics, Computation and Cognition Center, Santo André, São Paulo, Brazil
- University of Quebec, Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, Montreal, Quebec, Canada
- Address all correspondence to: Lucas R. Trambaiolli, E-mail:
| | - Claudinei E. Biazoli
- Universidade Federal do ABC, Mathematics, Computation and Cognition Center, Santo André, São Paulo, Brazil
| | - André M. Cravo
- Universidade Federal do ABC, Mathematics, Computation and Cognition Center, Santo André, São Paulo, Brazil
| | - Tiago H. Falk
- University of Quebec, Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, Montreal, Quebec, Canada
| | - João R. Sato
- Universidade Federal do ABC, Mathematics, Computation and Cognition Center, Santo André, São Paulo, Brazil
| |
Collapse
|
37
|
Hong KS, Khan MJ, Hong MJ. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Front Hum Neurosci 2018; 12:246. [PMID: 30002623 PMCID: PMC6032997 DOI: 10.3389/fnhum.2018.00246] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Abstract
In this study, a brain-computer interface (BCI) framework for hybrid functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for locked-in syndrome (LIS) patients is investigated. Brain tasks, channel selection methods, and feature extraction and classification algorithms available in the literature are reviewed. First, we categorize various types of patients with cognitive and motor impairments to assess the suitability of BCI for each of them. The prefrontal cortex is identified as a suitable brain region for imaging. Second, the brain activity that contributes to the generation of hemodynamic signals is reviewed. Mental arithmetic and word formation tasks are found to be suitable for use with LIS patients. Third, since a specific targeted brain region is needed for BCI, methods for determining the region of interest are reviewed. The combination of a bundled-optode configuration and threshold-integrated vector phase analysis turns out to be a promising solution. Fourth, the usable fNIRS features and EEG features are reviewed. For hybrid BCI, a combination of the signal peak and mean fNIRS signals and the highest band powers of EEG signals is promising. For classification, linear discriminant analysis has been most widely used. However, further research on vector phase analysis as a classifier for multiple commands is desirable. Overall, proper brain region identification and proper selection of features will improve classification accuracy. In conclusion, five future research issues are identified, and a new BCI scheme, including brain therapy for LIS patients and using the framework of hybrid fNIRS-EEG BCI, is provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea.,School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - M Jawad Khan
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Melissa J Hong
- Early Learning, FIRST 5 Santa Clara County, San Jose, CA, United States
| |
Collapse
|
38
|
Rupawala M, Dehghani H, Lucas SJE, Tino P, Cruse D. Shining a Light on Awareness: A Review of Functional Near-Infrared Spectroscopy for Prolonged Disorders of Consciousness. Front Neurol 2018; 9:350. [PMID: 29872420 PMCID: PMC5972220 DOI: 10.3389/fneur.2018.00350] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Qualitative clinical assessments of the recovery of awareness after severe brain injury require an assessor to differentiate purposeful behavior from spontaneous behavior. As many such behaviors are minimal and inconsistent, behavioral assessments are susceptible to diagnostic errors. Advanced neuroimaging tools can bypass behavioral responsiveness and reveal evidence of covert awareness and cognition within the brains of some patients, thus providing a means for more accurate diagnoses, more accurate prognoses, and, in some instances, facilitated communication. The majority of reports to date have employed the neuroimaging methods of functional magnetic resonance imaging, positron emission tomography, and electroencephalography (EEG). However, each neuroimaging method has its own advantages and disadvantages (e.g., signal resolution, accessibility, etc.). Here, we describe a burgeoning technique of non-invasive optical neuroimaging—functional near-infrared spectroscopy (fNIRS)—and review its potential to address the clinical challenges of prolonged disorders of consciousness. We also outline the potential for simultaneous EEG to complement the fNIRS signal and suggest the future directions of research that are required in order to realize its clinical potential.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom
| | - Hamid Dehghani
- Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom.,School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Tino
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Kanakaraj BN, Narayanan Unni S. Model-based quantitative optical biopsy in multilayer in vitro soft tissue models for whole field assessment of nonmelanoma skin cancer. J Med Imaging (Bellingham) 2018; 5:014506. [PMID: 29594182 DOI: 10.1117/1.jmi.5.1.014506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 11/14/2022] Open
Abstract
Optical techniques such as fluorescence and diffuse reflectance spectroscopy are proven to have the potential to provide tissue discrimination during the development of malignancies and hence treated as potential tools for noninvasive optical biopsy in clinical diagnostics. Quantitative optical biopsy is challenging and hence the majority of the existing strategies are based on a qualitative assessment of the concerned tissue. Light-tissue interaction models as well as precise optical phantoms can greatly help in the former and here we present a pilot study to assess the optical properties of a multilayer tissue-specific optical phantom with the help of a database generated using multilayer-Monte Carlo (MCML) models. A set of optical models mimicking the properties of actual and diseased conditions of tissues associated with nonmelanoma skin cancer (NMSC) were devised and MCML simulations of fluorescence and diffuse reflectance were performed on these models to generate the spectral signature of identified biomarkers of NMSC such as hemoglobin, flavin adenine dinucleotide, and collagen. A model library was generated and with the extracted features from modeled spectra, classification of normal and NMSC conditions were tested using the [Formula: see text]-nearest neighbor (KNN) classifier. Using an in-house assembled scan-based automated bimodal spectral imaging system with reflectance and fluorescence modalities of operation, a layered, thin, tissue equivalent phantom, fabricated with controlled optical properties mimicking normal and NMSC conditions were tested. The spectral signatures corresponding to the NMSC biomarkers were acquired from this phantom and extracted features from the spectra were tested using the KNN classifier and classification accuracy of 100% was achieved. For further quantitative analysis, the experimental and simulated spectra were compared with respect to the light intensity at the emission peak or absorption dips, spectral line width, and average intensity over a range of wavelength of interest and observed to be analogous within specified and systematic error limits. This methodology is expected to give a better quantitative approach for estimation of tissue properties by correlating the experimental and simulated data.
Collapse
Affiliation(s)
- Bala Nivetha Kanakaraj
- Indian Institute of Technology Madras, Biophotonics Laboratory, Department of Applied Mechanics, Chennai, Tamil Nadu, India
| | - Sujatha Narayanan Unni
- Indian Institute of Technology Madras, Biophotonics Laboratory, Department of Applied Mechanics, Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Li F, Zhu H, Xu J, Gao Q, Guo H, Wu S, Li X, He S. Lie Detection Using fNIRS Monitoring of Inhibition-Related Brain Regions Discriminates Infrequent but not Frequent Liars. Front Hum Neurosci 2018; 12:71. [PMID: 29593514 PMCID: PMC5859104 DOI: 10.3389/fnhum.2018.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/08/2018] [Indexed: 11/24/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) was used to test whether monitoring inhibition-related brain regions is a feasible method for detecting both infrequent liars and frequent liars. Thirty-two participants were divided into two groups: the deceptive group (liars) and the non-deceptive group (ND group, innocents). All the participants were required to undergo a simulated interrogation by a computer. The participants from the deceptive group were instructed to tell a mix of lies and truths and those of the ND group were instructed always to tell the truth. Based on the number of deceptions, the participants of the deceptive group were further divided into a infrequently deceptive group (IFD group, infrequent liars) and a frequently deceptive group (FD group, frequent liars). The infrequent liars exhibited greater neural activities than the frequent liars and the innocents in the left middle frontal gyrus (MFG) when performing the deception detection tasks. While performing deception detection tasks, infrequent liars showed significantly greater neural activation in the left MFG than the baseline, but frequent liars and innocents did not exhibit this pattern of neural activation in any area of inhibition-related brain regions. The results of individual analysis showed an acceptable accuracy of detecting infrequent liars, but an unacceptable accuracy of detecting frequent liars. These results suggest that using fNIRS monitoring of inhibition-related brain regions is feasible for detecting infrequent liars, for whom deception may be more effortful and therefore more physiologically marked, but not frequent liars.
Collapse
Affiliation(s)
- Fang Li
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China.,College of Teacher Education and Psychology, Sichuan Normal University, Chengdu, China.,School of Psychology, South China Normal University (SCNU), Guangzhou, China
| | - Huilin Zhu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Jie Xu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Qianqian Gao
- Guangdong Dance and Drama College, Foshan, China
| | - Huan Guo
- School of Psychology, South China Normal University (SCNU), Guangzhou, China
| | - Shijing Wu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Xinge Li
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China.,School of Psychology, South China Normal University (SCNU), Guangzhou, China
| | - Sailing He
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China.,Department of Electromagnetic Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
41
|
Khan RA, Naseer N, Qureshi NK, Noori FM, Nazeer H, Khan MU. fNIRS-based Neurorobotic Interface for gait rehabilitation. J Neuroeng Rehabil 2018; 15:7. [PMID: 29402310 PMCID: PMC5800280 DOI: 10.1186/s12984-018-0346-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this paper, a novel functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI) framework for control of prosthetic legs and rehabilitation of patients suffering from locomotive disorders is presented. METHODS fNIRS signals are used to initiate and stop the gait cycle, while a nonlinear proportional derivative computed torque controller (PD-CTC) with gravity compensation is used to control the torques of hip and knee joints for minimization of position error. In the present study, the brain signals of walking intention and rest tasks were acquired from the left hemisphere's primary motor cortex for nine subjects. Thereafter, for removal of motion artifacts and physiological noises, the performances of six different filters (i.e. Kalman, Wiener, Gaussian, hemodynamic response filter (hrf), Band-pass, finite impulse response) were evaluated. Then, six different features were extracted from oxygenated hemoglobin signals, and their different combinations were used for classification. Also, the classification performances of five different classifiers (i.e. k-Nearest Neighbour, quadratic discriminant analysis, linear discriminant analysis (LDA), Naïve Bayes, support vector machine (SVM)) were tested. RESULTS The classification accuracies obtained from SVM using the hrf were significantly higher (p < 0.01) than those of the other classifier/ filter combinations. Those accuracies were 77.5, 72.5, 68.3, 74.2, 73.3, 80.8, 65, 76.7, and 86.7% for the nine subjects, respectively. CONCLUSION The control commands generated using the classifiers initiated and stopped the gait cycle of the prosthetic leg, the knee and hip torques of which were controlled using the PD-CTC to minimize the position error. The proposed scheme can be effectively used for neurofeedback training and rehabilitation of lower-limb amputees and paralyzed patients.
Collapse
Affiliation(s)
- Rayyan Azam Khan
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Nauman Khalid Qureshi
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Farzan Majeed Noori
- Department of Electrical and Computer Engineering, Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal
| | - Hammad Nazeer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Muhammad Umer Khan
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| |
Collapse
|
42
|
Efficient FIR Filter Implementations for Multichannel BCIs Using Xilinx System Generator. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9861350. [PMID: 29568777 PMCID: PMC5820672 DOI: 10.1155/2018/9861350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/17/2022]
Abstract
Background. Brain computer interface (BCI) is a combination of software and hardware communication protocols that allow brain to control external devices. Main purpose of BCI controlled external devices is to provide communication medium for disabled persons. Now these devices are considered as a new way to rehabilitate patients with impunities. There are certain potentials present in electroencephalogram (EEG) that correspond to specific event. Main issue is to detect such event related potentials online in such a low signal to noise ratio (SNR). In this paper we propose a method that will facilitate the concept of online processing by providing an efficient filtering implementation in a hardware friendly environment by switching to finite impulse response (FIR). Main focus of this research is to minimize latency and computational delay of preprocessing related to any BCI application. Four different finite impulse response (FIR) implementations along with large Laplacian filter are implemented in Xilinx System Generator. Efficiency of 25% is achieved in terms of reduced number of coefficients and multiplications which in turn reduce computational delays accordingly.
Collapse
|
43
|
Trakoolwilaiwan T, Behboodi B, Lee J, Kim K, Choi JW. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution. NEUROPHOTONICS 2018; 5:011008. [PMID: 28924568 PMCID: PMC5599227 DOI: 10.1117/1.nph.5.1.011008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/17/2017] [Indexed: 05/25/2023]
Abstract
The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.
Collapse
Affiliation(s)
- Thanawin Trakoolwilaiwan
- Daegu Gyeongbuk Institute of Science and Technology, Department of Information and Communication Engineering, Daegu, Republic of Korea
| | - Bahareh Behboodi
- Daegu Gyeongbuk Institute of Science and Technology, Department of Information and Communication Engineering, Daegu, Republic of Korea
| | - Jaeseok Lee
- Daegu Gyeongbuk Institute of Science and Technology, Department of Information and Communication Engineering, Daegu, Republic of Korea
| | - Kyungsoo Kim
- Daegu Gyeongbuk Institute of Science and Technology, Department of Information and Communication Engineering, Daegu, Republic of Korea
| | - Ji-Woong Choi
- Daegu Gyeongbuk Institute of Science and Technology, Department of Information and Communication Engineering, Daegu, Republic of Korea
| |
Collapse
|
44
|
Hong KS, Khan MJ. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review. Front Neurorobot 2017; 11:35. [PMID: 28790910 PMCID: PMC5522881 DOI: 10.3389/fnbot.2017.00035] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Muhammad Jawad Khan
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
45
|
Qureshi NK, Naseer N, Noori FM, Nazeer H, Khan RA, Saleem S. Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain-Computer Interface Using Adaptive Estimation of General Linear Model Coefficients. Front Neurorobot 2017; 11:33. [PMID: 28769781 PMCID: PMC5512010 DOI: 10.3389/fnbot.2017.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022] Open
Abstract
In this paper, a novel methodology for enhanced classification of functional near-infrared spectroscopy (fNIRS) signals utilizable in a two-class [motor imagery (MI) and rest; mental rotation (MR) and rest] brain–computer interface (BCI) is presented. First, fNIRS signals corresponding to MI and MR are acquired from the motor and prefrontal cortex, respectively, afterward, filtered to remove physiological noises. Then, the signals are modeled using the general linear model, the coefficients of which are adaptively estimated using the least squares technique. Subsequently, multiple feature combinations of estimated coefficients were used for classification. The best classification accuracies achieved for five subjects, for MI versus rest are 79.5, 83.7, 82.6, 81.4, and 84.1% whereas those for MR versus rest are 85.5, 85.2, 87.8, 83.7, and 84.8%, respectively, using support vector machine. These results are compared with the best classification accuracies obtained using the conventional hemodynamic response. By means of the proposed methodology, the average classification accuracy obtained was significantly higher (p < 0.05). These results serve to demonstrate the feasibility of developing a high-classification-performance fNIRS-BCI.
Collapse
Affiliation(s)
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Farzan Majeed Noori
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan.,Department of Electrical and Computer Engineering, Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal
| | - Hammad Nazeer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Rayyan Azam Khan
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Sajid Saleem
- Faculty of Engineering and Computer Sciences, National University of Modern Languages, Islamabad, Pakistan
| |
Collapse
|
46
|
Aghajani H, Garbey M, Omurtag A. Measuring Mental Workload with EEG+fNIRS. Front Hum Neurosci 2017; 11:359. [PMID: 28769775 PMCID: PMC5509792 DOI: 10.3389/fnhum.2017.00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/23/2017] [Indexed: 01/21/2023] Open
Abstract
We studied the capability of a Hybrid functional neuroimaging technique to quantify human mental workload (MWL). We have used electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) as imaging modalities with 17 healthy subjects performing the letter n-back task, a standard experimental paradigm related to working memory (WM). The level of MWL was parametrically changed by variation of n from 0 to 3. Nineteen EEG channels were covering the whole-head and 19 fNIRS channels were located on the forehead to cover the most dominant brain region involved in WM. Grand block averaging of recorded signals revealed specific behaviors of oxygenated-hemoglobin level during changes in the level of MWL. A machine learning approach has been utilized for detection of the level of MWL. We extracted different features from EEG, fNIRS, and EEG+fNIRS signals as the biomarkers of MWL and fed them to a linear support vector machine (SVM) as train and test sets. These features were selected based on their sensitivity to the changes in the level of MWL according to the literature. We introduced a new category of features within fNIRS and EEG+fNIRS systems. In addition, the performance level of each feature category was systematically assessed. We also assessed the effect of number of features and window size in classification performance. SVM classifier used in order to discriminate between different combinations of cognitive states from binary- and multi-class states. In addition to the cross-validated performance level of the classifier other metrics such as sensitivity, specificity, and predictive values were calculated for a comprehensive assessment of the classification system. The Hybrid (EEG+fNIRS) system had an accuracy that was significantly higher than that of either EEG or fNIRS. Our results suggest that EEG+fNIRS features combined with a classifier are capable of robustly discriminating among various levels of MWL. Results suggest that EEG+fNIRS should be preferred to only EEG or fNIRS, in developing passive BCIs and other applications which need to monitor users' MWL.
Collapse
Affiliation(s)
- Haleh Aghajani
- Department of Biomedical Engineering, University of HoustonHouston, TX, United States
| | - Marc Garbey
- Center for Computational Surgery, Department of Surgery, Research Institute, Houston MethodistHouston, TX, United States
| | - Ahmet Omurtag
- Department of Biomedical Engineering, University of HoustonHouston, TX, United States
| |
Collapse
|
47
|
Characterizing Computer Access Using a One-Channel EEG Wireless Sensor. SENSORS 2017; 17:s17071525. [PMID: 28661425 PMCID: PMC5539498 DOI: 10.3390/s17071525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022]
Abstract
This work studies the feasibility of using mental attention to access a computer. Brain activity was measured with an electrode placed at the Fp1 position and the reference on the left ear; seven normally developed people and three subjects with cerebral palsy (CP) took part in the experimentation. They were asked to keep their attention high and low for as long as possible during several trials. We recorded attention levels and power bands conveyed by the sensor, but only the first was used for feedback purposes. All of the information was statistically analyzed to find the most significant parameters and a classifier based on linear discriminant analysis (LDA) was also set up. In addition, 60% of the participants were potential users of this technology with an accuracy of over 70%. Including power bands in the classifier did not improve the accuracy in discriminating between the two attentional states. For most people, the best results were obtained by using only the attention indicator in classification. Tiredness was higher in the group with disabilities (2.7 in a scale of 3) than in the other (1.5 in the same scale); and modulating the attention to access a communication board requires that it does not contain many pictograms (between 4 and 7) on screen and has a scanning period of a relatively high tscan≈ 10 s. The information transfer rate (ITR) is similar to the one obtained by other brain computer interfaces (BCI), like those based on sensorimotor rhythms (SMR) or slow cortical potentials (SCP), and makes it suitable as an eye-gaze independent BCI.
Collapse
|
48
|
Li L, Xu G, Zhang F, Xie J, Li M. Relevant Feature Integration and Extraction for Single-Trial Motor Imagery Classification. Front Neurosci 2017; 11:371. [PMID: 28706472 PMCID: PMC5489604 DOI: 10.3389/fnins.2017.00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
Abstract
Brain computer interfaces provide a novel channel for the communication between brain and output devices. The effectiveness of the brain computer interface is based on the classification accuracy of single trial brain signals. The common spatial pattern (CSP) algorithm is believed to be an effective algorithm for the classification of single trial brain signals. As the amplitude feature for spatial projection applied by this algorithm is based on a broad frequency bandpass filter (mainly 5–30 Hz) in which the frequency band is often selected by experience, the CSP is sensitive to noise and the influence of other irrelevant information in the selected broad frequency band. In this paper, to improve the CSP, a novel relevant feature integration and extraction algorithm is proposed. Before projecting, we integrated the motor relevant information to suppress the interference of noise and irrelevant information, as well as to improve the spatial difference for projection. The algorithm was evaluated with public datasets. It showed significantly better classification performance with single trial electroencephalography (EEG) data, increasing by 6.8% compared with the CSP.
Collapse
Affiliation(s)
- Lili Li
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China.,State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Feng Zhang
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Jun Xie
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Min Li
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| |
Collapse
|
49
|
Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neurosci Lett 2017; 647:61-66. [DOI: 10.1016/j.neulet.2017.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/18/2022]
|
50
|
Khan MJ, Hong KS. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control. Front Neurorobot 2017; 11:6. [PMID: 28261084 PMCID: PMC5314821 DOI: 10.3389/fnbot.2017.00006] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/24/2017] [Indexed: 01/27/2023] Open
Abstract
In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain–computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface.
Collapse
Affiliation(s)
- Muhammad Jawad Khan
- School of Mechanical Engineering, Pusan National University , Busan , South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|