1
|
Sheffield WP, Bhakta V, Howell A, Jenkins C, Serrano K, Johnson N, Lin YCJ, Colwill K, Rathod B, Greenberg B, Gingras AC, Evans DH, Flaumenhaft E, Beckett A, Drews SJ, Devine DV. Retention of hemostatic and immunological properties of frozen plasma and COVID-19 convalescent apheresis fresh-frozen plasma produced and freeze-dried in Canada. Transfusion 2021; 62:418-428. [PMID: 34907536 DOI: 10.1111/trf.16772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Randomized clinical trial data show that early plasma transfusion may save lives among trauma patients. Supplying plasma in remote environments is logistically challenging. Freeze-dried plasma (FDP) offers a possible solution. STUDY DESIGN AND METHODS A Terumo BCT plasma freeze-drying system was evaluated. We compared pooled frozen plasma (FP) units with derived Terumo BCT FDP (TFDP) units and pooled COVID-19 convalescent apheresis fresh-frozen plasma (CC-AFFP) with derived CC-TFDP units. Parameters measured were: coagulation factors (F) II; V; VII; VIII; IX; XI; XIII; fibrinogen; Proteins C (PC) and S (PS); antithrombin (AT); α2 -antiplasmin (α2 AP); ADAMTS13; von Willebrand Factor (vWF); thrombin-antithrombin (TAT); D-dimer; activated complement factors 3 (C3a) and 5 (C5a); pH; osmolality; prothrombin time (PT); and activated partial thromboplastin time (aPTT). Antibodies to SARS-CoV-2 in CC-AFFP and CC-TFDP units were compared by plaque reduction assays and viral protein immunoassays. RESULTS Most parameters were unchanged in TFDP versus FP or differed ≤15%. Mean aPTT, PT, C3a, and pH were elevated 5.9%, 6.9%, 64%, and 0.28 units, respectively, versus FP. CC-TFDP showed no loss of SARS-CoV-2 neutralization titer versus CC-AFFP and no mean signal loss in most pools by viral protein immunoassays. CONCLUSION Changes in protein activities or clotting times arising from freeze-drying were <15%. Although C3a levels in TFDP were elevated, they were less than literature values for transfusable plasma. SARS-CoV-2-neutralizing antibody titers and viral protein binding levels were largely unaffected by freeze-drying. In vitro characteristics of TFDP or CC-TFDP were comparable to their originating plasma, making future clinical studies appropriate.
Collapse
Affiliation(s)
- William P Sheffield
- Centre for Innovation, Canadian Blood Services, Edmonton, Hamilton, Ottawa, and Vancouver, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Edmonton, Hamilton, Ottawa, and Vancouver, Canada
| | - Anita Howell
- Centre for Innovation, Canadian Blood Services, Edmonton, Hamilton, Ottawa, and Vancouver, Canada
| | - Craig Jenkins
- Centre for Innovation, Canadian Blood Services, Edmonton, Hamilton, Ottawa, and Vancouver, Canada
| | - Katherine Serrano
- Centre for Innovation, Canadian Blood Services, Edmonton, Hamilton, Ottawa, and Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Yi-Chan J Lin
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David H Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | | | | | - Steven J Drews
- Microbiology, Canadian Blood Services, Edmonton, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Dana V Devine
- Centre for Innovation, Canadian Blood Services, Edmonton, Hamilton, Ottawa, and Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Schubert P, Chen Z, Bhakta V, Culibrk B, Wambolt R, Sheffield WP, Devine DV, McTaggart K. Cold-stored leukoreduced whole blood: Extending the time between donation and filtration has minimal impact on in vitro quality. Transfusion 2021; 61 Suppl 1:S131-S143. [PMID: 34269454 DOI: 10.1111/trf.16540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Leukoreduced whole blood (LR-WB) has received renewed attention as alternative to component-based transfusion in trauma. According to the manufacturer's instructions, leukoreduction should be carried out within 8 h after collection. This study assessed impact of (1) WB collection bag, (2) LR filtration, and (3) timing of filtration on in vitro quality. STUDY DESIGN AND METHODS WB collected into different vendor bags was held at room temperature for <8 h or >16 h but <24 h prior to LR. In vitro quality was assessed before and after filtration, and throughout 3 weeks of storage at 4°C. Cell count and hemoglobin levels were determined by hematology analyzer, platelet activation, and responsiveness to ADP by surface expression of P-selectin by flow cytometry, hemolysis by HemoCue, and metabolic parameters by blood gas analyzer. Hemostatic properties were assessed by rotational thromboelastometry. Plasma protein activities and clotting times were determined by automated coagulation analyzer or quantitative immunoblotting. RESULTS Bag type had no impact on WB in vitro quality. LR by filtration had some impact, but is aligned with data in the literature. The time between donation and filtration resulted in some statistically significant differences in metabolic activity, platelet yield, platelet activation, and factor protein activity initially; however, these differences in in vitro quality attributes decreased throughout 21-day cold storage. CONCLUSION WB hold time showed only a minor impact on WB in vitro quality, so it may be possible for blood processing facilities to explore extended hold times prior to filtration in order to provide greater operational flexibility.
Collapse
Affiliation(s)
- Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zhongming Chen
- Centre for Innovation, Canadian Blood Services, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Hamilton, Canada
| | - Brankica Culibrk
- Centre for Innovation, Canadian Blood Services, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Richard Wambolt
- Centre for Innovation, Canadian Blood Services, Vancouver, Canada
| | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Dana V Devine
- Centre for Innovation, Canadian Blood Services, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ken McTaggart
- Centre for Innovation, Canadian Blood Services, Ottawa, Canada
| |
Collapse
|
3
|
Racine-Brzostek SE, Canver MC, DeSimone RA, Zdravkova M, Lo DT, Crowley KM, Hsu YMS, Vasovic LV, Hill SS, Cushing MM. Thawed solvent/detergent-treated plasma demonstrates comparable clinical efficacy to thawed plasma. Transfusion 2020; 60:1940-1949. [PMID: 32720432 DOI: 10.1111/trf.15948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thawed Plasma (TP), plasma thawed and refrigerated for up to 5 days, is a commonly transfused plasma product. This pilot study was conducted to determine whether Thawed Solvent/Detergent-treated Plasma stored refrigerated for up to 5-days post-thaw (T-S/D) was as efficacious as TP. STUDY DESIGN AND METHODS This single institution retrospective cohort analysis evaluated the efficacy of T-S/D in reversing coagulopathies in comparison to TP. Utilizing the institution's electronic medical records, transfusion data were collected in adult patients who received either TP or T-S/D. The primary outcome was the incidence of subsequent transfusions within 24 hours after first dose of either type of plasma. Secondary outcomes included the number of blood products transfused within 24 hours of first-dose plasma, correction of pre-transfusion coagulation laboratory values, volume transfused, and clinical outcomes. RESULTS TP was received by 301 patients and 137 received T-S/D during the first 32 months post-implementation of T-S/D. There was no difference in incidence of subsequent transfusions or number of blood products given. The median pre-INR of both the TP and T-S/D cohorts was 1.9, with a similar decrease in INR of 0.2 and 0.3 (p = 0.36), respectively, post plasma transfusion. There was no difference in correction of PT/aPTT, mortality, transfusion reactions, readmission rates, length of stay, or inpatient deep venous thrombosis. The median volume of T-S/D plasma transfused for the first dose was 126 mL less than TP (p = .0001). CONCLUSION T-S/D was as efficacious as TP for the treatment of coagulopathies and the reversal of coagulation laboratory values.
Collapse
Affiliation(s)
- Sabrina E Racine-Brzostek
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA.,New York Blood Center, New York, New York, USA
| | - Matthew C Canver
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Robert A DeSimone
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Milena Zdravkova
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Dian T Lo
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kathleen M Crowley
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Yen-Michael S Hsu
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Ljiljana V Vasovic
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Shanna Sykes Hill
- Department of Anesthesiology, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Melissa M Cushing
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Rijnhout TWH, Noorman F, De Kort B, Zoodsma M, Hoencamp R. Prolonged (post-thaw) shelf life of -80°C frozen AB apheresis plasma. Transfusion 2020; 60:1846-1855. [PMID: 32692441 PMCID: PMC7497178 DOI: 10.1111/trf.15963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Early plasma transfusion is important in the treatment of patients with major hemorrhage. Prolonged shelf life of AB type frozen −80°C and cold‐stored (4°C) deep frozen plasma (DFP) will improve strategic stock management, minimize need for resupply, and make pre‐hospital implementation more feasible. METHODS AND MATERIALS Plasma products type AB of different age and origin (−30°C Fresh Frozen [(FFP], −80°C DFP [short (±1 year) and long (±7 year)] stored) were thawed (Day 0), stored at 4°C, and sampled on Days 7 and 14. Additionally, samples of plasma containing blood products (Octaplas LG®, whole blood and platelets) were compared for coagulation factor activity, phospholipid clotting time (PPL), and kaolin TEG during 4°C or 22°C storage. RESULTS Coagulation profiles of FFP, short‐ and long‐stored −80°C DFP were not significantly different after thaw. Cold storage did not affect fibrinogen, Protein C, and Antithrombin III activities whereas factor V, VII, VIII, and Protein S decreased in all blood products. After 14 days DFP still meets the guidelines for clinical use, except for Protein S (0.4 IU/mL). With exception of Octaplas LG®, phospholipid activity and TEG coagulation were similar between plasma containing blood components during storage. CONCLUSION AB DFP quality was unaffected by almost 7 years of frozen storage. Quality of thawed 14‐day stored AB DFP met, with exception of Protein S, all minimal guidelines which implies that its quality is sufficient for use in the (pre)‐hospital (military) environment for treatment of major hemorrhage.
Collapse
Affiliation(s)
- Tim W H Rijnhout
- Department of Surgery, Alrijne Medical Center, Leiderdorp, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Femke Noorman
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Bob De Kort
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Margreet Zoodsma
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Medical Center, Leiderdorp, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Surgery, Defense Healthcare Organization, Ministry of Defense, Utrecht, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Ng MSY, Hay K, Choy J, Middelburg RA, Tung JP, Fraser JF. Fresh frozen plasma and platelet concentrate storage duration not associated with in hospital mortality risk. Vox Sang 2019; 114:835-841. [PMID: 31452207 DOI: 10.1111/vox.12838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES To date, the effects of FFP and PC storage duration on mortality have only been studied in a few studies in limited patient subpopulations. The aim of the current study was to determine whether FFP and PC storage duration is associated with increased in hospital mortality risk across cardiac surgery, acute medicine, ICU and orthopaedic surgery patients. MATERIALS AND METHODS Two-stage individual patient data meta-analyses were performed to determine the effects of FFP and PC storage duration on in hospital mortality. Preset random effects models were used to determine pooled unadjusted and adjusted (adjusted for age, gender and units of product transfused) effect estimates. RESULTS The FFP storage duration analysis included 3625 patients across four studies. No significant association was observed between duration of storage and in hospital mortality in unadjusted analysis, but after adjusting for patient age, gender and units of product a small increased risk of in hospital mortality was observed for each additional month of storage (OR: 1·05, 95% CI: 1·01-1·08). This effect was no longer statistically significant when donor ABO blood group was incorporated into the random effects model on post hoc analyses. A total of 547 patients across five studies were incorporated in the PC storage duration analysis. No association was observed between PC storage duration and odds of in hospital morality (adjusted OR: 0·94, 95% CI: 0·79-1·11). CONCLUSIONS There is insufficient evidence to support shortening FFP or PC shelf life based on in hospital mortality.
Collapse
Affiliation(s)
- Monica Suet Ying Ng
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, Oral Health Centre, University of Queensland, Herston, QLD, Australia.,Research and Development, Australian Red Cross Blood Service, Kelvin Grove, QLD, Australia
| | - Karen Hay
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joleen Choy
- Faculty of Medicine, Oral Health Centre, University of Queensland, Herston, QLD, Australia.,Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Rutger A Middelburg
- Centre for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - John-Paul Tung
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, Oral Health Centre, University of Queensland, Herston, QLD, Australia.,Research and Development, Australian Red Cross Blood Service, Kelvin Grove, QLD, Australia
| | - John Francis Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, Oral Health Centre, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
6
|
Ang AL, Wong WH, Tan J, Ng HJ, Tan CW, Kuperan P, Lam S, Tan HH, Chua SS. Ex vivo haemostatic capacity of plasma upon thawing and beyond: a comparison between fresh frozen plasma (FFP) and frozen plasma prepared from whole blood stored at room temperature up to 24 hours postcollection (RTFP24). Vox Sang 2019; 114:198-206. [DOI: 10.1111/vox.12749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/16/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ai Leen Ang
- Blood Services Group; Health Sciences Authority; Singapore Singapore
- Department of Haematology; Singapore General Hospital; Singapore Singapore
| | - Wan Hui Wong
- Department of Haematology; Singapore General Hospital; Singapore Singapore
| | - Jeslyn Tan
- Blood Services Group; Health Sciences Authority; Singapore Singapore
| | - Heng Joo Ng
- Blood Services Group; Health Sciences Authority; Singapore Singapore
- Department of Haematology; Singapore General Hospital; Singapore Singapore
| | - Chuen Wen Tan
- Department of Haematology; Singapore General Hospital; Singapore Singapore
| | - Ponnudurai Kuperan
- Blood Services Group; Health Sciences Authority; Singapore Singapore
- Department of Haematology; Tan Tock Seng Hospital; Singapore Singapore
| | - Sally Lam
- Blood Services Group; Health Sciences Authority; Singapore Singapore
| | - Hwee Huang Tan
- Blood Services Group; Health Sciences Authority; Singapore Singapore
| | - Sze Sze Chua
- Blood Services Group; Health Sciences Authority; Singapore Singapore
| |
Collapse
|
7
|
Sheffield WP, Bhakta V, Jenkins C. Extending the pre-processing holding time of whole blood beyond 48 h reduces coagulation FVIII activity and immunoglobulin G content of recovered plasma. Transfus Apher Sci 2018; 57:768-772. [PMID: 30266202 DOI: 10.1016/j.transci.2018.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Plasma obtained via whole blood (WB) donation may be used either for transfusion or as recovered plasma (RP) for pooling and fractionation. In Canada, transfusable plasma must be processed within 24 h of phlebotomy, while the limit for RP processing is 72 h. We assessed the quality of RP produced by two WB processing methods and as a function of processing time. STUDY DESIGN AND METHODS RP units produced via the buffy coat method (BCM, n = 26) or whole blood filtration (WBF, n = 52) were tested for: the activities of prothrombin, fibrinogen, von Willebrand Factor (VWF), FV, FVII, and FVIII; the prothrombin time (PT); and total protein and IgG concentration. WBF RP units were evenly divided between those processed <48 h of phlebotomy (shorter-processed) or 48-72 h after phlebotomy (longer-processed). RESULTS WBF-RP did not differ significantly from BCM-RP in any tested parameter except for FV and FVIII, which exhibited mean reductions of 10.2% and 20%, respectively. Longer-processed WBF-RP did not differ significantly from shorter-processed WBF-RP in any tested parameter except for FVIII activity and IgG concentration, which exhibited mean reductions of 30.1% and 14.3%, respectively. CONCLUSIONS Canadian RP is currently fractionated into IgG, albumin, fibrinogen, and FVII/VWF concentrates irrespective of its method or time of processing. Our results supported the current approach of fractionating both BCM- and WBF-derived RP, but suggest that greater yields of immunoglobulin and FVIII/VWF products could be obtained if the maximum processing time was reduced from 72 h to 48 h.
Collapse
Affiliation(s)
- William P Sheffield
- From the Centre for Innovation of Canadian Blood Services, Hamilton, Ontario, Canada; From the Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Varsha Bhakta
- From the Centre for Innovation of Canadian Blood Services, Hamilton, Ontario, Canada
| | - Craig Jenkins
- From the Centre for Innovation of Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Heger A, Neisser-Svae A, Trawnicek L, Triulzi D. Thrombin generation potential and clot-forming capacity of thawed fresh-frozen plasma, plasma frozen within 24 h and solvent/detergent-treated plasma (octaplasLG ® ), during 5-day storage at 1-6°C. Vox Sang 2018; 113:485-488. [PMID: 29687444 DOI: 10.1111/vox.12656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 03/31/2018] [Indexed: 11/28/2022]
Abstract
To enable rapid availability of plasma in emergency situations, the shelf-life of thawed fresh-frozen plasma (FFP) has been extended from 24 h to 5 days. The aim of this study was to evaluate the thrombin generation (TG) potential and clot-forming ability during 5 days of refrigerated storage of thawed FFP, plasma frozen within 24 h and solvent/detergent-treated plasma octaplasLG® . During storage for 5 days, TG capacity decreased significantly over time, and rotational thromboelastometry showed significantly prolonged clotting times. However, the stability studies confirmed comparable in vitro haemostatic potentials of all three thawed plasma products at day 5.
Collapse
Affiliation(s)
- A Heger
- Octapharma Pharmazeutika Produktionsges.m.b.H, Plasma Research & Development, Vienna, Austria
| | - A Neisser-Svae
- Octapharma Pharmazeutika Produktionsges.m.b.H, Medical Affairs, Vienna, Austria
| | - L Trawnicek
- Octapharma Pharmazeutika Produktionsges.m.b.H, Clinical Research & Development, Vienna, Austria
| | - D Triulzi
- Institute for Transfusion Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Characteristics of thawed pooled cryoprecipitate stored at refrigerated temperature for 24 hours. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 16:443-446. [PMID: 29106354 DOI: 10.2450/2017.0133-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The need for thawed cryoprecipitate is growing. However, according to current guidelines, the shelf-life of pooled thawed cryoprecipitate at room temperature is limited because of possible bacterial contamination and loss of clotting factor activity. Here we assessed microbial growth and retention of clotting activity in cryoprecipitate stored at 4 °C after thawing to see whether its shelf life could be safely extended. MATERIALS AND METHODS Pooled thawed cryoprecipitate units (n=10) were maintained at room temperature for 6 hours and then placed at 1-6 °C for 18 hours after thawing. We examined the cryoprecipitate pools for fibrinogen, factor VIII, and von Willebrand factor activity at the following time points: 0 hours (immediately after thawing), after 6 hours at room temperature, and after 24 hours at 1-6 °C. A 5-mL aliquot from each pool was collected for aerobic and anaerobic bacterial cultures at the 24-hour time point. RESULTS Mean fibrinogen concentration and von Willebrand factor activity were similar at each time point, but factor VIII activity decreased significantly over the storage period. Bacterial growth was not detected in any cultured pooled sample. DISCUSSION Extended storing of thawed cryoprecipitate at 1-6 °C does not appear to increase the risk of bacterial contamination or affect coagulation factor activity.
Collapse
|