1
|
Gopinath VK, Mohammad MG, Sheela S. Immunomodulatory effect of IL-1RA in LPS-activated macrophage/dental pulp stem cells co-culture. Int Endod J 2023; 56:27-38. [PMID: 36190353 DOI: 10.1111/iej.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
AIMS Lipopolysaccharides (LPS)-activated human dental pulp stem cells (hDPSCs) and macrophage co-cultures showed downregulated TNF-α secretion that is modulated by hDPSCs through IDO axis, whereas the secretory levels of IL-1β remained unchanged. Therefore, sustained production of IL-1β could contribute to progressive dental pulp inflammation. However, the role of interleukin-1 receptor antagonist (IL-1RA) in downregulating the secretion of IL-1β and TNF-α in LPS-activated M0/M1/M2 macrophage and hDPSCs co-culture has not been studied yet. Therefore, the aim of the present study was to determine the immunomodulatory role of blocking IL-1 receptors in DPSCs macrophage co-culture activated with LPS. METHODOLOGY Human monocytic cell line THP-1 was polarized to M0, M1 and M2 macrophages and co-cultured with hDPSCs. The viability of the co-cultured cells was assessed by apoptosis assay. Co-cultures were activated with LPS followed by the assessment of gene expression and protein levels of IL-1β and TNF-α with and without IL-1RA blocking via qRT-PCR and cytokine flex assay by flow cytometry. Data from three separate experiments were analysed using one-way anova followed by Tukey's post hoc test and a p-value of <.05 was considered statistically significant. RESULTS THP-1-derived M0, M1 and M2 macrophages co-cultured with hDPSCs showed spindle and round-shaped cells, with >90% viability when assessed by apoptosis assay. Inflammatory TNF-α and IL-1β profiles in stimulated co-cultures showed upregulated IL-1β, whereas TNF-α was downregulated (p < .05). Anti-inflammatory gene expression levels of IL-10 and TGF-β were downregulated (p < .05). Blocking with IL-1RA resulted in a remarkable decrease in IL-1β at the gene expression and protein production levels whilst TNF-α levels remained low (p < .05). Levels of anti-inflammatory cytokine IL-10 showed no significant difference. CONCLUSION Blocking the IL-1 receptor in hDPSCs and macrophage (M0, M1, M2) co-cultures activated with LPS resulted in downregulation of inflammatory cytokines IL-1β and TNF-α. These findings highlight the immunomodulatory effect of IL-1RA in inflammatory conditions of dental pulp infections.
Collapse
Affiliation(s)
- Vellore Kannan Gopinath
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Mohammad G Mohammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| |
Collapse
|
2
|
Treatment of Periodontal Inflammation in Diabetic Rats with IL-1ra Thermosensitive Hydrogel. Int J Mol Sci 2022; 23:ijms232213939. [PMID: 36430410 PMCID: PMC9693501 DOI: 10.3390/ijms232213939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that is considered to be the main cause of adult tooth loss. Diabetes mellitus (DM) has a bidirectional relationship with periodontitis. Interleukin-1β (IL-1β) is an important pre-inflammatory factor, which participates in the pathophysiological process of periodontitis and diabetes. The interleukin-1 receptor antagonist (IL-1ra) is a natural inhibitor of IL-1, and the balance between IL-1ra and IL-1β is one of the main factors affecting chronic periodontitis (CP) and diabetes. The purpose of this study is to develop a drug carrier that is safe and nontoxic and can effectively release IL-1ra, which can effectively slow down the inflammation of periodontal tissues with diabetes, and explore the possibility of lowering the blood sugar of this drug carrier. Therefore, in this experiment, a temperature-sensitive hydrogel loaded with IL-1ra was prepared and characterized, and its anti-inflammatory effect in high-sugar environments in vivo and in vitro was evaluated. The results showed that the hydrogel could gel after 5 min at 37 °C, the pore size was 5-70 μm, and the cumulative release of IL-1ra reached 83.23% on the 21st day. Real-time polymerase chain reaction (qRT-PCR) showed that the expression of IL-1β, Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) inflammatory factors decreased after the treatment with IL-1ra-loaded thermosensitive hydrogel. Histological evaluation and micro-computed tomography (Micro-CT) showed that IL-1ra-loaded thermosensitive hydrogel could effectively inhibit periodontal inflammation and reduce alveolar bone absorption in rats with diabetic periodontitis. It is worth mentioning that this hydrogel also plays a role in relieving hyperglycemia. Therefore, the temperature-sensitive hydrogel loaded with IL-1ra may be an effective method to treat periodontitis with diabetes.
Collapse
|
3
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
4
|
Chen R, Zhai YY, Sun L, Wang Z, Xia X, Yao Q, Kou L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J Pharm Sci 2022; 17:268-283. [PMID: 35582636 PMCID: PMC9091614 DOI: 10.1016/j.ajps.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
|
5
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
6
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
7
|
He J, Yang J, Shen T, He J. Overexpression of long non-coding RNA XIST promotes IL-1β-induced degeneration of nucleus pulposus cells through targeting miR-499a-5p. Mol Cell Probes 2021; 57:101711. [PMID: 33722663 DOI: 10.1016/j.mcp.2021.101711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Long non-coding RNA X-interactive specific transcript (XIST) is implicated in many diseases. However, its role and interaction with microRNA (miR)-499a-5p in intervertebral disc degeneration (IDD) remained unclear. METHODS Nucleus pulposus (NP) tissue samples were collected and nucleus pulposus cells (NPCs) were isolated for Interleukin-1β (IL-1β) treatment and identification. XIST and miR-499a-5p expressions in the tissue were measured with quantitative real-time polymerase chain reaction (qRT-PCR). After IL-1β treatment, NPC apoptosis was detected by flow cytometry. The potential binding sites of XIST and miR-499a-5p were predicted by starBase and confirmed by dual-luciferase reporter assay. Relative expressions of tissue inhibitor of metalloproteinases-3 (TIMP-3), Matrix metalloproteinases-3 (MMP-3), MMP-13, Collagen II, Aggrecan and apoptosis-related proteins (Bcl-2 associated X protein, Bax; B-cell lymphoma 2, Bcl-2; cleaved caspase-3) were measured by qRT-PCR and Western blot as needed. RESULTS XIST expression was upregulated in the NP tissues of patients with IDD, and IL-1β treatment resulted in a degradation of NPCs. Overexpressed XIST promoted the effects of IL-1β on increasing NPC apoptosis and expressions of XIST, MMP-3, MMP-13, Bax and Cleaved caspase-3, but down-regulated TIMP-3, Collagen II, Aggrecan and Bcl-2 expressions. Silencing XIST, however, showed the opposite effects to its overexpression. MiR-499a-5p expression was downregulated in NP tissues of IDD patients and could bind with XIST, while its upregulation reversed the effects of overexpressed XIST in the IL-1β-treated NPCs. CONCLUSION Overexpressed XIST caused NPC degeneration through promoting apoptosis and extracellular matrix degradation of IL-1β-treated NPCs through targeting miR-499a-5p, and therefore can serve as a potential treatment for IDD.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jing Yang
- Department of Cardiology, Zhejiang Hospital, Xihu District, Hangzhou, Zhejiang, 310013, China
| | - Tulan Shen
- Outpatient Department, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China.
| |
Collapse
|
8
|
Corrigendum to "Controlled Release of Interleukin-1 Receptor Antagonist from Hyaluronic Acid-Chitosan Microspheres Attenuates Interleukin-1 β-Induced Inflammation and Apoptosis in Chondrocytes". BIOMED RESEARCH INTERNATIONAL 2020; 2020:6942710. [PMID: 33029521 PMCID: PMC7533790 DOI: 10.1155/2020/6942710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022]
|
9
|
Fei Z, Xin X, Fei H, Yuechong C. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur J Obstet Gynecol Reprod Biol 2019; 244:1-4. [PMID: 31731019 DOI: 10.1016/j.ejogrb.2019.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Intrauterine adhesions are a severe complication after miscarriage. Hyaluronic acid gel has been used to prevent intrauterine adhesions after miscarriage. OBJECTIVE To systematically evaluate the efficacy of adjuvant therapy with hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. SEARCH STRATEGY The Cochrane Library, Embase and PubMed databases were searched for articles published before 31 July 2018 using the terms: ('hyaluronic acid gel' or 'gel') and ('dilatation and curettage' or 'D&C' or 'abortion' or 'miscarriage' or 'hysteroscopic') and ('intrauterine adhesions' or 'Asherman syndrome' or 'IUA' or 'endometrial injury' or 'intrauterine adhesion'). SELECTION CRITERIA Randomized controlled trials of hyaluronic acid gel therapy after miscarriage. DATA COLLECTION AND ANALYSIS Four studies were included in the meta-analysis (625 patients in total). Dichotomous outcomes were expressed as relative risk (RR) with 95 % confidence intervals (CI). Continuous variables were expressed as standardized mean differences (SMD). MAIN RESULTS Hyaluronic acid gel reduced the intrauterine adhesion scores after miscarriage (SMD -0.68, 95 % CI -1.08~-0.28; p = 0.0008) and the incidence of postoperative intrauterine adhesions after miscarriage (RR 0.44, 95 % CI 0.29~0.67; p = 0.0001). Subgroup analysis found that hyaluronic acid gel reduced the incidence of moderate and severe intrauterine adhesions after miscarriage (RR 0.18, 95 % CI: 0.07~0.47; p = 0.0004), but had no effect on the incidence of mild intrauterine adhesions (RR 0.77, 95 % CI 0.42~1.19; p = 0.19). Hyaluronic acid gel also improved the pregnancy rate after miscarriage (RR 1.94, 95 % CI 1.46~2.60; p < 0.00001). CONCLUSION Hyaluronic acid gel significantly reduced the incidence of moderate and severe intrauterine adhesions and significantly improved the pregnancy rate after miscarriage.
Collapse
Affiliation(s)
- Zheng Fei
- Department of Obstetrics and Gynaecology, Yiwu Maternity and Children Hospital, Jinhua, China
| | - Xin Xin
- Department of Obstetrics and Gynaecology, Benxi Central Hospital, Benxi, China
| | - He Fei
- Department of Obstetrics and Gynaecology, Yiwu Maternity and Children Hospital, Jinhua, China
| | - Cui Yuechong
- Department of Human Health and Human Services, Yiwu Maternity and Children's Hospital, Jinhua, China.
| |
Collapse
|
10
|
Injectable biomaterials for delivery of interleukin-1 receptor antagonist: Toward improving its therapeutic effect. Acta Biomater 2019; 93:123-134. [PMID: 31029831 DOI: 10.1016/j.actbio.2019.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/31/2023]
Abstract
Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring anti-inflammatory cytokine that inhibits IL-1 activity and has been proposed to treat a wide variety of systemic and local inflammatory pathologies for multiple decades. However, the short half-life and high concentration required to inhibit IL-1 activity has limited its use in clinical applications. Many strategies have been developed with the goal of improving the therapeutic efficacy of IL-1Ra for a variety of pathologies, including fusing IL-1Ra to protein/peptide/polymer partners, releasing IL-1Ra from injectable polymer or mineral particles, and release of IL-1Ra from injectable coacervates and gels. This literature review examines injectable biomaterials engineered to improve IL-1Ra delivery, both locally and systemically, to increase its efficacy and ease of use in clinic. STATEMENT OF SIGNIFICANCE: Interleukin-1 receptor antagonist (IL-1Ra) is a therapeutic protein with the potential to treat numerous inflammatory conditions and diseases. However, its short biological half-life and high therapeutic concentration may limit its utility in all but a few clinical scenarios. In this review, we present the biomaterial based delivery strategies which have been explored to deliver IL-1Ra to improve its efficacy and applicability to treat inflammation.
Collapse
|
11
|
Qiu B, Xu XF, Deng RH, Xia GQ, Shang XF, Zhou PH. Hyaluronic acid-chitosan nanoparticles encoding CrmA attenuate interleukin-1β induced inflammation in synoviocytes in vitro. Int J Mol Med 2018; 43:1076-1084. [PMID: 30483733 DOI: 10.3892/ijmm.2018.3997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/16/2018] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by inflammation of synoviocytes and degradation of cartilage. In the present study, hyaluronic acid/chitosan (HA/CS) nanoparticles were used as a vehicle for gene therapy of OA, and the cytokine response modifier A (CrmA) pDNA was proposed as the target gene. The HA/CS/pCrmA nanoparticles were prepared and the characteristics of the nanoparticles were examined. The nanoparticles were spherical, and the smallest size was obtained with the HA:CS weight ratio of 1:4. The release analysis exhibited a constant release over 29 days. The pDNA was completely combined with HA/CS nanoparticles and the HA/CS nanoparticles protected pDNA from degradation. Subsequently, rat synoviocytes were transfected with HA/CS/pDNA nanoparticles, and the results demonstrated that the HA/CS nanoparticles were able to improve the transfection capacity of pDNA. The cytotoxicity of the HA/CS/pDNA nanoparticles was additionally detected using a MTS assay to ensure that the HA/CS nanoparticle was a safe carrier. To additionally investigate the effects of HA/CS/pCrmA nanoparticles on synoviocytes in OA, the MMP‑3 and MMP‑13 gene expression levels were detected at the gene and protein expression levels. These results indicated that the HA/CS/pCrmA nanoparticles attenuated interleukin‑1β‑mediated inflammation in synoviocytes. It was concluded that the HA/CS/pCrmA nanoparticles may provide a novel approach to the treatment of OA.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiong-Feng Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rong-Hui Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gan-Qing Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi-Fu Shang
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230000, P.R. China
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Deng RH, Qiu B, Zhou PH. Chitosan/hyaluronic acid/plasmid-DNA nanoparticles encoding interleukin-1 receptor antagonist attenuate inflammation in synoviocytes induced by interleukin-1 beta. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:155. [PMID: 30276528 PMCID: PMC6182723 DOI: 10.1007/s10856-018-6160-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 09/18/2018] [Indexed: 05/16/2023]
Abstract
Synovial inflammation mainly resulting from interleukin-1 beta (IL-1β) plays a crucial role in the early and late stage of osteoarthritis. Recent progress in therapeutic gene delivery systems has led to promising strategies for local sustained target gene expression. The aim of this study was to design a nanoparticle made of chitosan (CS)/hyaluronic acid (HA)/plasmid-DNA (pDNA) encoding IL-1 receptor antagonist gene (pIL-1Ra) and furtherly use it to transfect the primary synoviocytes, and then investigate whether CS/HA/pIL-1Ra nanoparticles could make the synoviocytes overexpress functional IL-1Ra to attenuate inflammation induced by IL-1β. In this study, CS was modified with HA to generate CS/HA nanoparticles and then combined with pIL-1Ra to form CS/HA/pIL-1Ra nanoparticles. The physicochemical characteristics results showed that CS/HA nanoparticles exhibited an appropriate particle size (144.9 ± 2.8 nm) and positive zeta potential ( + 28 mV). The gel retardation assay revealed that pDNA was effectively protected and released in a sustained manner more than 15 days. Cytotoxicity results showed that CS/HA/pIL-1Ra nanoparticles had a safe range (0-80 μg/ml) for the application to synoviocytes. RT-qPCR and western blot analysis demonstrated that CS/HA/pIL-1Ra nanoparticles were able to increase IL-1Ra expression in primary synoviocytes, and reduce the mRNA and protein levels of matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-13 (MMP-13), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in IL-1β-induced synoviocytes. Our findings indicated that CS/HA/pIL-1Ra nanoparticles efficiently transfected synoviocytes and attenuated synovitis induced by IL-1β, which will provide a potential strategy for OA synovitis.
Collapse
Affiliation(s)
- Rong-Hui Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Ziyang Road 99, Wuhan, 430060, China
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Ziyang Road 99, Wuhan, 430060, China
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Ziyang Road 99, Wuhan, 430060, China.
| |
Collapse
|
13
|
Sun Q, Zhang L, Xu T, Ying J, Xia B, Jing H, Tong P. Combined use of adipose derived stem cells and TGF-β3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 2018; 93:168-176. [PMID: 29393693 DOI: 10.1080/10520295.2017.1401663] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated enhancement of articular cartilage regeneration using a combination of human adipose derived stem cells (hADSCs) and TGF-β3 microspheres (MS) in vivo. Poly-lactic-co-glycolic acid (PLGA)MS were prepared using a solid/oil/water emulsion solvent evaporation-extraction method. The morphology of the MS was evaluated by scanning electron microscopy (SEM). The release characteristic of the TGF-β3 MS was evaluated. A New Zealand rabbit model for experimental osteoarthritis (OA) was established using the anterior medial meniscus excision method. Thirty OA rabbits were divided randomly into three groups according to different treatments of the right knee joints on day 7 after surgery: hADSCs/MS group received injection of both hADSCs and TGF-β3 MS; hADSCs group was injected with hADSCs; control group was injected with normal saline. Gross observation, histological staining and RT-PCR for collagen II and aggrecan) were used to assess the severity of OA and for evaluating the effect of combined use of hADSCs and TGF-β3 MS on articular cartilage regeneration in vivo. The MS were spherical with a smooth surface and the average diameter was 28 ± 2.3 µm. The encapsulation efficiency test showed that 73.8 ± 2.9% of TGF-β3 were encapsulated in the MS. The release of TGF- β3 lasted for at least 30 days. At both 6 and 12 weeks after injection, three groups exhibited different degrees of OA. Histological analysis showed that the hADSCs/MS group exhibited less OA than the hADSCs group, and the control group exhibited the most severe OA. Real-time RT-PCR showed that the gene expression of both collagen II and aggrecan were significantly up-regulated in the hADSCs/MS group. At 12 weeks after injection, the hADSCs/MS group also exhibited less OA than the other two groups. Combined use of hADSCs and TGF-β3 MS promoted articular cartilage regeneration in rabbit OA models.
Collapse
Affiliation(s)
- Q Sun
- a Department of Orthopaedic Surgery , Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou.,b Zhejiang Chinese Medical University , Hangzhou
| | - L Zhang
- b Zhejiang Chinese Medical University , Hangzhou
| | - T Xu
- b Zhejiang Chinese Medical University , Hangzhou
| | - J Ying
- b Zhejiang Chinese Medical University , Hangzhou
| | - B Xia
- d Shaoxing Chinese Medical Hospital , Shaoxing , China
| | - H Jing
- b Zhejiang Chinese Medical University , Hangzhou
| | - P Tong
- c Department of Orthopaedic Surgery , The First Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou
| |
Collapse
|
14
|
Koizumi R, Azuma K, Izawa H, Morimoto M, Ochi K, Tsuka T, Imagawa T, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S. Oral Administration of Surface-Deacetylated Chitin Nanofibers and Chitosan Inhibit 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Int J Mol Sci 2017; 18:ijms18020279. [PMID: 28134832 PMCID: PMC5343815 DOI: 10.3390/ijms18020279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/24/2017] [Indexed: 01/27/2023] Open
Abstract
This study investigated the prophylactic effects of orally administered surface-deacetylated chitin nanofibers (SDACNFs) and chitosan against 5-fluorouracil (5-FU)-induced intestinal mucositis, which is a common side effect of 5-FU chemotherapy. SDACNFs and chitosan abolished histological abnormalities associated with intestinal mucositis and suppressed hypoproliferation and apoptosis of intestinal crypt cells. These results indicate that SDACNF and chitosan are useful agents for preventing mucositis induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Ryo Koizumi
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Kazuo Azuma
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Hironori Izawa
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Minoru Morimoto
- Division of Instrumental Analysis, Research Center for Bioscience and Technology, Tottori University, Tottori 680-8550, Japan.
| | - Kosuke Ochi
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Takeshi Tsuka
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Tomohiro Imagawa
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Norihiko Ito
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Hiroyuki Saimoto
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| |
Collapse
|