1
|
Orján EM, Kormányos ES, Fűr GM, Dombi Á, Bálint ER, Balla Z, Balog BA, Dágó Á, Totonji A, Bátai ZI, Jurányi EP, Ditrói T, Al-Omari A, Pozsgai G, Kormos V, Nagy P, Pintér E, Rakonczay Z, Kiss L. The anti-inflammatory effect of dimethyl trisulfide in experimental acute pancreatitis. Sci Rep 2023; 13:16813. [PMID: 37798377 PMCID: PMC10556037 DOI: 10.1038/s41598-023-43692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Various organosulfur compounds, such as dimethyl trisulfide (DMTS), display anti-inflammatory properties. We aimed to examine the effects of DMTS on acute pancreatitis (AP) and its mechanism of action in both in vivo and in vitro studies. AP was induced in FVB/n mice or Wistar rats by caerulein, ethanol-palmitoleic acid, or L-ornithine-HCl. DMTS treatments were administered subcutaneously. AP severity was assessed by pancreatic histological scoring, pancreatic water content, and myeloperoxidase activity measurements. The behaviour of animals was followed. Pancreatic heat shock protein 72 (HSP72) expression, sulfide, and protein persulfidation were measured. In vitro acinar viability, intracellular Ca2+ concentration, and reactive oxygen species production were determined. DMTS dose-dependently decreased the severity of AP. It declined the pancreatic infiltration of leukocytes and cellular damage in mice. DMTS upregulated the HSP72 expression during AP and elevated serum sulfide and low molecular weight persulfide levels. DMTS exhibited cytoprotection against hydrogen peroxide and AP-inducing agents. It has antioxidant properties and modulates physiological but not pathophysiological Ca2+ signalling. Generally, DMTS ameliorated AP severity and protected pancreatic acinar cells. Our findings indicate that DMTS is a sulfur donor with anti-inflammatory and antioxidant effects, and organosulfur compounds require further investigation into this potentially lethal disease.
Collapse
Affiliation(s)
- Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Eszter Sára Kormányos
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | | | - Ágnes Dombi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Beáta Adél Balog
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Ágnes Dágó
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Ahmad Totonji
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Zoárd István Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Ammar Al-Omari
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
- Chemistry Institute, University of Debrecen, Debrecen, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary.
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary.
| |
Collapse
|
2
|
Investigation of the Role of the TRPA1 Ion Channel in Conveying the Effect of Dimethyl Trisulfide on Vascular and Histological Changes in Serum-Transfer Arthritis. Pharmaceuticals (Basel) 2022; 15:ph15060671. [PMID: 35745590 PMCID: PMC9229242 DOI: 10.3390/ph15060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases. Its therapy is often challenging, even in the era of biologicals. Previously, we observed the anti-inflammatory effects of garlic-derived organic polysulfide dimethyl trisulfide (DMTS). Some of these effects were mediated by activation of the TRPA1 ion channel. TRPA1 was mostly expressed in a subset of nociceptor neurons. We decided to investigate the action of DMTS in K/BxN serum-transfer arthritis, which is a relevant model of RA. TRPA1 gene knockout (KO) and wild-type (WT) mice were used. The interaction of DMTS and TRPA1 was examined using a patch clamp in CHO cells. Arthritis was characterized by mechanical hyperalgesia, paw swelling, movement range of the ankle joint, hanging performance, plasma extravasation rate, myeloperoxidase activity, and histological changes in the tibiotarsal joint. DMTS activated TRPA1 channels dose-dependently. DMTS treatment reduced paw swelling and plasma extravasation in both TRPA1 WT and KO animals. DMTS-treated TRPA1 KO animals developed milder collagen deposition in the inflamed joints than WT ones. TRPA1 WT mice did not exhibit significant cartilage damage compared to ones administered a vehicle. We concluded that DMTS and related substances might evolve into novel complementary therapeutic aids for RA patients.
Collapse
|
3
|
Dimethyl Trisulfide Diminishes Traumatic Neuropathic Pain Acting on TRPA1 Receptors in Mice. Int J Mol Sci 2021; 22:ijms22073363. [PMID: 33806000 PMCID: PMC8036544 DOI: 10.3390/ijms22073363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.
Collapse
|
5
|
Petrikovics I, Kiss L, Chou CE, Ebrahimpour A, Kovács K, Kiss M, Logue B, Chan A, Manage ABW, Budai M, Boss GR, Rockwood GA. Antidotal efficacies of the cyanide antidote candidate dimethyl trisulfide alone and in combination with cobinamide derivatives. Toxicol Mech Methods 2019; 29:438-444. [DOI: 10.1080/15376516.2019.1585504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Lóránd Kiss
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Ching-En Chou
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Afshin Ebrahimpour
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Kristóf Kovács
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Márton Kiss
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Brian Logue
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Ananda B. W. Manage
- Department of Mathematics and Statistics, Sam Houston State University, Huntsville, TX, USA
| | - Marianna Budai
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, CA, USA
| | - Gary A. Rockwood
- US Army Medical Research Institute of Chemical Defense, APG, MD, USA
| |
Collapse
|
6
|
Abstract
Dimethyl trisulfide (DMTS) is a natural organic trisulfide that has been patented as a promising antidotal candidate against cyanide (CN). The primary mode of action of DMTS is as a sulfur donor that enables the conversion of CN to thiocyanate. Recently, it was discovered that DMTS is capable of oxidizing hemoglobin (Hb) to methemoglobin (MetHb) in vitro. The goal of these experiments was to measure the extent of DMTS-induced MetHb formation in vivo. In these experiments, intramuscular (IM) injections of formulated DMTS were administered to mice. Following the IM injection, blood was drawn and analyzed for MetHb using a rapid spectrophotometric method. Methemoglobin levels peaked in a dose-dependent manner between 20 and 30 min., and then began dropping. The highest MetHb levels measured for the 50, 100, 200 and 250 mg/kg doses of DMTS were respectively 3.28, 6.12, 9.69, and 10.76% MetHb. These experiments provide the first experimental evidence that IM administered DMTS generates MetHb in vivo and provide additional evidence for the presence of a secondary therapeutic pathway for DMTS - CN scavenging by DMTS-generated MetHb.
Collapse
Affiliation(s)
- Márton Kiss
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA
| | - Ilona Petrikovics
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA
| | - David E Thompson
- a Department of Chemistry , Sam Houston State University , Huntsville , TX , USA
| |
Collapse
|