1
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
2
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
3
|
Arnold F, Mahaddalkar PU, Kraus JM, Zhong X, Bergmann W, Srinivasan D, Gout J, Roger E, Beutel AK, Zizer E, Tharehalli U, Daiss N, Russell R, Perkhofer L, Oellinger R, Lin Q, Azoitei N, Weiss F, Lerch MM, Liebau S, Katz S, Lechel A, Rad R, Seufferlein T, Kestler HA, Ott M, Sharma AD, Hermann PC, Kleger A. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100626. [PMID: 34306986 PMCID: PMC8292873 DOI: 10.1002/advs.202100626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Somatic cell reprogramming and tissue repair share relevant factors and molecular programs. Here, Dickkopf-3 (DKK3) is identified as novel factor for organ regeneration using combined transcription-factor-induced reprogramming and RNA-interference techniques. Loss of Dkk3 enhances the generation of induced pluripotent stem cells but does not affect de novo derivation of embryonic stem cells, three-germ-layer differentiation or colony formation capacity of liver and pancreatic organoids. However, DKK3 expression levels in wildtype animals and serum levels in human patients are elevated upon injury. Accordingly, Dkk3-null mice display less liver damage upon acute and chronic failure mediated by increased proliferation in hepatocytes and LGR5+ liver progenitor cell population, respectively. Similarly, recovery from experimental pancreatitis is accelerated. Regeneration onset occurs in the acinar compartment accompanied by virtually abolished canonical-Wnt-signaling in Dkk3-null animals. This results in reduced expression of the Hedgehog repressor Gli3 and increased Hedgehog-signaling activity upon Dkk3 loss. Collectively, these data reveal Dkk3 as a key regulator of organ regeneration via a direct, previously unacknowledged link between DKK3, canonical-Wnt-, and Hedgehog-signaling.
Collapse
Affiliation(s)
- Frank Arnold
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Pallavi U Mahaddalkar
- Institute for Diabetes and RegenerationHelmholtz Zentrum MünchenIngolstädter Landstraße 185764 NeuherbergGermany
| | - Johann M. Kraus
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Xiaowei Zhong
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell AnalysisUniversity Medical Center RostockSchillingallee 7018057 RostockGermany
| | - Dharini Srinivasan
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Johann Gout
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Elodie Roger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alica K. Beutel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Eugen Zizer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Umesh Tharehalli
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Nora Daiss
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Ronan Russell
- Diabetes CenterUniversity of CaliforniaSan FranciscoCA94143USA
| | - Lukas Perkhofer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Qiong Lin
- Bayer AG Research & DevelopmentPharmaceuticalsMüllerstraße 17813353 BerlinGermany
| | - Ninel Azoitei
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Frank‐Ulrich Weiss
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
| | - Markus M. Lerch
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
- Klinikum der Ludwig‐Maximilians‐Universität München‐GroßhadernMarchioninistraße 1581377 MünchenGermany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology INDBEberhard Karls University TübingenÖsterbergstr. 372074 TübingenGermany
| | - Sarah‐Fee Katz
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - André Lechel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Thomas Seufferlein
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Michael Ott
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Amar Deep Sharma
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Patrick C. Hermann
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alexander Kleger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| |
Collapse
|
4
|
Can Human Oral Mucosa Stem Cells Differentiate to Corneal Epithelia? Int J Mol Sci 2021; 22:ijms22115976. [PMID: 34205905 PMCID: PMC8198937 DOI: 10.3390/ijms22115976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as—Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell’s capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers—CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.
Collapse
|
5
|
Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T. Molecular signature and colony morphology affect in vitro pluripotency of porcine induced pluripotent stem cells. Reprod Domest Anim 2021; 56:1104-1116. [PMID: 34013645 DOI: 10.1111/rda.13954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Mekhemar M, Tölle J, Dörfer C, Fawzy El‐Sayed K. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J Clin Periodontol 2020; 47:991-1005. [DOI: 10.1111/jcpe.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Universitätsklinikum SchleswigȐHolstein Ȑ Campus, Kiel
| | - Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Karim Fawzy El‐Sayed
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Oral Medicine and Periodontology Department Faculty of Oral and Dental Medicine Cairo University Cairo Egypt
| |
Collapse
|
7
|
The N-end rule pathway enzyme Naa10 supports epiblast specification in mouse embryonic stem cells by modulating FGF/MAPK. In Vitro Cell Dev Biol Anim 2019; 55:355-367. [PMID: 30993557 DOI: 10.1007/s11626-019-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
N-terminal acetylation (Nt-acetylation) refers to the acetylation of the free α-amino group at the N-terminus of a polypeptide. While the effects of Nt-acetylation are multifaceted, its most known function is in the acetylation-dependent N-end rule protein degradation pathway (Ac/N-end rule pathway), where Nt-acetylation is recognized as a degron by designated E3 ligases, eventually leading to target degradation by the ubiquitin-proteasome system. Naa10 is the catalytic subunit of the major Nt-acetylation enzyme NatA, which Nt-acetylates proteins whose second amino acid has a small side chain. In humans, NAA10 is the responsible mutated gene in Ogden syndrome and is thought to play important roles in development. However, it is unclear how the Ac/N-end rule pathway affects the differentiation ability of mouse embryonic stem cells (mESCs). We hypothesized that the balance of pluripotency factors may be maintained by the Ac/N-end rule pathway. Thus, we established Naa10 knockout mESCs to test this hypothesis. We found that Naa10 deficiency attenuated differentiation towards the epiblast lineage, deviating towards primitive endoderm. However, this was not caused by disturbing the balance of pluripotency factors, rather by augmenting FGF/MAPK signaling.
Collapse
|
8
|
A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nat Commun 2018; 9:4384. [PMID: 30349051 PMCID: PMC6197280 DOI: 10.1038/s41467-018-06908-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Self-renewal and pluripotency in human embryonic stem cells (hESCs) depends upon the function of a remarkably small number of master transcription factors (TFs) that include OCT4, SOX2, and NANOG. Endogenous factors that regulate and maintain the expression of master TFs in hESCs remain largely unknown and/or uncharacterized. Here, we use a genome-wide, proteomics approach to identify proteins associated with the OCT4 enhancer. We identify known OCT4 regulators, plus a subset of potential regulators including a zinc finger protein, ZNF207, that plays diverse roles during development. In hESCs, ZNF207 partners with master pluripotency TFs to govern self-renewal and pluripotency while simultaneously controlling commitment of cells towards ectoderm through direct regulation of neuronal TFs, including OTX2. The distinct roles of ZNF207 during differentiation occur via isoform switching. Thus, a distinct isoform of ZNF207 functions in hESCs at the nexus that balances pluripotency and differentiation to ectoderm.
Collapse
|
9
|
Pfeuty B, Kress C, Pain B. Network Features and Dynamical Landscape of Naive and Primed Pluripotency. Biophys J 2018; 114:237-248. [PMID: 29320691 PMCID: PMC5773751 DOI: 10.1016/j.bpj.2017.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Although the broad and unique differentiation potential of pluripotent stem cells relies on a complex transcriptional network centered around Oct4, Sox2, and Nanog, two well-distinct pluripotent states, called "naive" and "primed", have been described in vitro and markedly differ in their developmental potential, their expression profiles, their signaling requirements, and their reciprocal conversion. Aiming to determine the key features that segregate and coordinate these two states, data-driven optimization of network models is performed to identify relevant parameter regimes and reduce network complexity to its core structure. Decision dynamics of optimized networks is characterized by signal-dependent multistability and strongly asymmetric transitions among naive, primed, and nonpluripotent states. Further model perturbation and reduction approaches reveal that such a dynamical landscape of pluripotency involves a functional partitioning of the regulatory network. Specifically, two overlapping positive feedback modules, Klf4/Esrrb/Nanog and Oct4/Nanog, stabilize the naive or the primed state, respectively. In turn, their incoherent feedforward and negative feedback coupling mediated by the Erk/Gsk3 module is critical for robust segregation and sequential progression between naive and primed states before irreversible exit from pluripotency.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes et Molécules, Université de Lille, CNRS, Villeneuve d'Ascq, France.
| | - Clémence Kress
- Stem Cell and Brain Research Institute, Univ. Lyon, Université Claude Bernard Lyon 1, INSERM, INRA, U1208, USC1361, Bron, France
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, Univ. Lyon, Université Claude Bernard Lyon 1, INSERM, INRA, U1208, USC1361, Bron, France
| |
Collapse
|
10
|
Tumorigenic and Differentiation Potentials of Embryonic Stem Cells Depend on TGF β Family Signaling: Lessons from Teratocarcinoma Cells Stimulated to Differentiate with Retinoic Acid. Stem Cells Int 2017; 2017:7284872. [PMID: 28798778 PMCID: PMC5534322 DOI: 10.1155/2017/7284872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
A significant challenge for the development of safe pluripotent stem cell-based therapies is the incomplete in vitro differentiation of the pluripotent stem cells and the presence of residual undifferentiated cells initiating teratoma development after transplantation in recipients. To understand the mechanisms of incomplete differentiation, a comparative study of retinoic acid-induced differentiation of mouse embryonic stem (ES) and teratocarcinoma (EC) cells was conducted. The present study identified differences in proliferative activity, differentiation, and tumorigenic potentials between ES and EC cells. Higher expression of Nanog and Mvh, as well as Activin A and BMP4, was found in undifferentiated ES cells than in EC cells. However, the expression levels of Activin A and BMP4 increased more sharply in the EC cells during retinoic acid-induced differentiation. Stimulation of the Activin/Nodal and BMP signaling cascades and inhibition of the MEK/ERK and PI3K/Act signaling pathways resulted in a significant decrease in the number of Oct4-expressing ES cells and a loss of tumorigenicity, similar to retinoic acid-stimulated EC cells. Thus, this study demonstrates that a differentiation strategy that modulates prodifferentiation and antiproliferative signaling in ES cells may be effective for eliminating tumorigenic cells and may represent a valuable tool for the development of safe stem cell therapeutics.
Collapse
|
11
|
Zinovyeva MV, Kostina MB, Chernov IP, Kondratyeva LG, Sverdlov ED. KLF5, a new player and new target in the permanently changing set of pancreatic cancer molecular drivers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Perkhofer L, Walter K, Costa IG, Carrasco MCR, Eiseler T, Hafner S, Genze F, Zenke M, Bergmann W, Illing A, Hohwieler M, Köhntop R, Lin Q, Holzmann KH, Seufferlein T, Wagner M, Liebau S, Hermann PC, Kleger A, Müller M. Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Res 2016; 17:367-378. [DOI: 10.1016/j.scr.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/05/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
|