1
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
3
|
Pattanaik S, Arbra C, Bainbridge H, Dennis SG, Fann SA, Yost MJ. Vascular Tissue Engineering Using Scaffold-Free Prevascular Endothelial-Fibroblast Constructs. Biores Open Access 2019; 8:1-15. [PMID: 30637179 PMCID: PMC6327854 DOI: 10.1089/biores.2018.0039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascularization remains a substantial limitation to the viability of engineered tissue. By comparing in vivo vascularization dynamics of a self-assembled prevascular endothelial–fibroblast model to avascular grafts, we explore the vascularization rate limitations in implants at early time intervals, during which tissue hypoxia begins to affect cell viability. Scaffold-free prevascular endothelial–fibroblast constructs (SPECs) may serve as a modular and reshapable vascular bed in replacement tissues. SPECs, fibroblast-only spheroids (FOS), and silicone implants were implanted in 54 Sprague Dawley rats and harvested at 6, 12, and 24 h (n = 5 per time point and implant type). We hypothesized that the primary endothelial networks of the SPECs allow earlier anastomosis and increased vessel formation in the interior of the implant compared to FOS and silicone implants within a 24 h window. All constructs were encapsulated by an endothelial lining at 6 h postimplantation and SPEC internal cords inosculated with the host vascular network by this time point. SPECs had a significantly higher microvascular area fraction and branch/junction density of penetrating cords at 6–12 h compared with other constructs. In addition, SPECs demonstrated perivascular cell recruitment, lumen formation, and network remodeling consistent with vessel maturation at 12–24 h; however, these implants were poorly perfused within our observation window, suggesting poor lumen patency. FOS vascular characteristics (microvessel area and penetrating cord density) increased within the 12–24 h period to represent those of the SPEC implants, suggesting a 12 h latency in host response to avascular grafts compared to prevascular grafts. Knowledge of this temporal advantage in in vitro prevascular network self-assembly as well as an understanding of the current limitations of SPEC engraftment builds on our theoretical temporal model of tissue graft vascularization and suggests a crucial time window, during which technological improvements and vascular therapy can improve engineered tissue survival.
Collapse
Affiliation(s)
- Sanket Pattanaik
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chase Arbra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Heather Bainbridge
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah Grace Dennis
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen A. Fann
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Michael J. Yost
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Address correspondence to: Michael J. Yost, PhD, Department of Surgery, Medical University of South Carolina, 173 Ashley Avenue, Room 605, Charleston, SC 29425,
| |
Collapse
|
4
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Arbra CA, Nadig SN, Dennis SG, Pattanaik S, Bainbridge HA, Rhett JM, Fann SA, Atkinson C, Yost MJ. Microdissection of Primary Renal Tissue Segments and Incorporation with Novel Scaffold-free Construct Technology. J Vis Exp 2018. [PMID: 29658916 DOI: 10.3791/57358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Kidney transplantation is now a mainstream therapy for end-stage renal disease. However, with approximately 96,000 people on the waiting list and only one-fourth of these patients achieving transplantation, there is a dire need for alternatives for those with failing organs. In order to decrease the harmful consequences of dialysis along with the overall healthcare costs it incurs, active investigation is ongoing in search of alternative solutions to organ transplantation. Implantable tissue-engineered renal cellular constructs are one such feasible approach to replacing lost renal functionality. Here, described for the first time, is the microdissection of murine kidneys for isolation of living corticomedullary renal segments. These segments are capable of rapid incorporation within scaffold-free endothelial-fibroblast constructs which may enable rapid connection with host vasculature once implanted. Adult mouse kidneys were procured from living donors, followed by stereoscope microdissection to obtain renal segments 200 - 300 µm in diameter. Multiple renal constructs were fabricated using primary renal segments harvested from only one kidney. This method demonstrates a procedure which could salvage functional renal tissue from organs that would otherwise be discarded.
Collapse
Affiliation(s)
- Chase A Arbra
- Department of Surgery, Medical University of South Carolina
| | - Satish N Nadig
- Department of Surgery, Medical University of South Carolina
| | | | | | | | | | - Stephen A Fann
- Department of Surgery, Medical University of South Carolina
| | - Carl Atkinson
- Department of Surgery, Medical University of South Carolina
| | - Michael J Yost
- Department of Surgery, Medical University of South Carolina;
| |
Collapse
|
6
|
Tarzemany R, Jiang G, Jiang JX, Larjava H, Häkkinen L. Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci Rep 2017; 7:14157. [PMID: 29074845 PMCID: PMC5658368 DOI: 10.1038/s41598-017-12672-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) is the most ubiquitous connexin in various cells, and presents as hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We have recently shown that Cx43 abundance was strongly reduced in fibroblasts of human gingival wounds, and blocking Cx43 function in cultured human gingival fibroblasts (GFBLs) strongly regulated the expression of wound healing-related genes. However, it is not known whether these responses involved Cx43 HCs or GJs. Here we show that Cx43 assembled into distinct GJ and HC plaques in GFBLs both in vivo and in vitro. Specific blockage of Cx43 HC function by TAT-Gap19, a Cx43 mimetic peptide, significantly upregulated the expression of several MMPs, TGF-β signaling molecules, Tenascin-C, and VEGF-A, while pro-fibrotic molecules, including several extracellular matrix proteins and myofibroblast and cell contractility-related molecules, were significantly downregulated. These changes were linked with TAT-Gap19-induced suppression of ATP signaling and activation of the ERK1/2 signaling pathway. Collectively, our data suggest that reduced Cx43 HC function could promote fast and scarless gingival wound healing. Thus, selective suppression of Cx43 HCs may provide a novel target to modulate wound healing.
Collapse
Affiliation(s)
- Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3900, USA
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|