1
|
Ofori B, Agoha RK, Bokoe EK, Armah ENA, Misita Morang'a C, Sarpong KAN. Leveraging wastewater-based epidemiology to monitor the spread of neglected tropical diseases in African communities. Infect Dis (Lond) 2024; 56:697-711. [PMID: 38922811 DOI: 10.1080/23744235.2024.2369177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Neglected tropical diseases continue to cause a significant burden worldwide, with Africa accounting for more than one-third of the global burden. Over the past decade, progress has been made in eliminating, controlling, and eradicating these diseases in Africa. By December 2022, 47 out of 54 African countries had eliminated at least one neglected tropical disease, and more countries were close to achieving this milestone. Between 2020 and 2021, there was an 80 million reduction in people requiring intervention. However, continued efforts are needed to manage neglected tropical diseases and address their social and economic burden, as they deepen marginalisation and stigmatisation. Wastewater-based epidemiology involves analyzing wastewater to detect and quantify biomarkers of disease-causing pathogens. This approach can complement current disease surveillance systems in Africa and provide an additional layer of information for monitoring disease spread and detecting outbreaks. This is particularly important in Africa due to limited traditional surveillance methods. Wastewater-based epidemiology also provides a tsunami-like warning system for neglected tropical disease outbreaks and can facilitate timely intervention and optimised resource allocation, providing an unbiased reflection of the community's health compared to traditional surveillance systems. In this review, we highlight the potential of wastewater-based epidemiology as an innovative approach for monitoring neglected tropical disease transmission within African communities and improving existing surveillance systems. Our analysis shows that wastewater-based epidemiology can enhance surveillance of neglected tropical diseases in Africa, improving early detection and management of Buruli ulcers, hookworm infections, ascariasis, schistosomiasis, dengue, chikungunya, echinococcosis, rabies, and cysticercosis for better disease control.
Collapse
Affiliation(s)
- Benedict Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Righteous Kwaku Agoha
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Edem Kwame Bokoe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | | | - Collins Misita Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Kwabena Amofa Nketia Sarpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Oyeyemi OT, Ogundahunsi O, Schunk M, Fatem RG, Shollenberger LM. Neglected tropical disease (NTD) diagnostics: current development and operations to advance control. Pathog Glob Health 2024; 118:1-24. [PMID: 37872790 PMCID: PMC10769148 DOI: 10.1080/20477724.2023.2272095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Neglected tropical diseases (NTDs) have become important public health threats that require multi-faceted control interventions. As late treatment and management of NTDs contribute significantly to the associated burdens, early diagnosis becomes an important component for surveillance and planning effective interventions. This review identifies common NTDs and highlights the progress in the development of diagnostics for these NTDs. Leveraging existing technologies to improve NTD diagnosis and improving current operational approaches for deployment of developed diagnostics are crucial to achieving the 2030 NTD elimination target. Point-of-care NTD (POC-NTD) diagnostic tools are recommended preferred diagnostic options in resource-constrained areas for mapping risk zones and monitoring treatment efficacy. However, few are currently available commercially. Technical training of remote health care workers on the use of POC-NTD diagnostics, and training of health workers on the psychosocial consequences of these diagnostics are critical in harnessing POC-NTD diagnostic potential. While the COVID-19 pandemic has challenged the possibility of achieving NTD elimination in 2030 due to the disruption of healthcare services and dwindling financial support for NTDs, the possible contribution of NTDs in exacerbating COVID-19 pandemic should motivate NTD health system strengthening.
Collapse
Affiliation(s)
- Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
- Department of Biological Sciences, Old Dominion University, Virginia, USA
| | - Olumide Ogundahunsi
- The Central Office for Research and Development (CORD), University of Medical Sciences, Ondo, Nigeria
| | - Mirjam Schunk
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU) institution, Munich, Germany
| | - Ramzy G. Fatem
- Schistosome Biological Supply Center, Theodor Bilharz Research Institute, Giza, Egypt
| | | |
Collapse
|
3
|
Advantages and Limitations of Microscopy and Molecular Detections for Diagnosis of Soil-transmitted Helminths: An Overview. Helminthologia 2022; 59:321-340. [PMID: 36875683 PMCID: PMC9979072 DOI: 10.2478/helm-2022-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/31/2022] [Indexed: 02/05/2023] Open
Abstract
World Health Organization (WHO) reported that over 1.5 billion people are infected by soil-transmitted helminths (STH) worldwide in sub-Saharan Africa, the United States of America, China, and East Asia. Heavy infections and polyparasitism are associated with higher morbidity rates, and the patients are exposed to increased vulnerability to other diseases. Therefore, accurate diagnosis followed by mass treatment for morbidity control is necessary.STH diagnosis commonly involves the microscopic observation of the presence of the STH eggs and larvae in the faecal samples. Furthermore, molecular approaches are increasingly utilised in monitoring and surveillance as they show higher sensitivity. Their capability to differentiate hookworm species is an advantage over the Kato-Katz technique. This review discusses the advantages and limitations of microscopy and various molecular tools used for STH detection.
Collapse
|
4
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Cantera JL, White HN, Forrest MS, Stringer OW, Belizario VY, Storey HL, de Hostos EL, de los Santos T. Sensitive and semiquantitative detection of soil-transmitted helminth infection in stool using a recombinase polymerase amplification-based assay. PLoS Negl Trop Dis 2021; 15:e0009782. [PMID: 34516554 PMCID: PMC8459997 DOI: 10.1371/journal.pntd.0009782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 09/23/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Background Soil-transmitted helminths (STHs) are parasitic nematodes that inhabit the human intestine. They affect more than 1.5 billion people worldwide, causing physical and cognitive impairment in children. The global strategy to control STH infection includes periodic mass drug administration (MDA) based on the results of diagnostic testing among populations at risk, but the current microscopy method for detecting infection has diminished sensitivity as the intensity of infection decreases. Thus, improved diagnostic tools are needed to support decision-making for STH control programs. Methodology We developed a nucleic acid amplification test based on recombinase polymerase amplification (RPA) technology to detect STH in stool. We designed primers and probes for each of the four STH species, optimized the assay, and then verified its performance using clinical stool samples. Principal findings Each RPA assay was as sensitive as a real-time polymerase chain reaction (PCR) assay in detecting copies of cloned target DNA sequences. The RPA assay amplified the target in DNA extracted from human stool samples that were positive for STH based on the Kato-Katz method, with no cross-reactivity of the non-target genomic DNA. When tested with clinical stool samples from patients with infections of light, moderate, and heavy intensity, the RPA assays demonstrated performance comparable to that of real-time PCR, with better results than Kato-Katz. This new rapid, sensitive and field-deployable method for detecting STH infections can help STH control programs achieve their goals. Conclusions Semi-quantitation of target by RPA assay is possible and is comparable to real-time PCR. With proper instrumentation, RPA assays can provide robust, semi-quantification of STH DNA targets as an alternative field-deployable indicator to counts of helminth eggs for assessing infection intensity. More than 1.5 billion people are infected with parasitic intestinal worms called soil-transmitted helminths. Infection is transmitted by helminth eggs in human feces, which contaminate soil in areas with poor sanitation. Adverse health effects include physical and cognitive impairment in children. A key strategy to control infection is periodic mass drug administration for populations with a high prevalence of disease based on the results of diagnostic testing. The current microscopy method for detecting infection, however, has limited ability to detect disease as the intensity of infection decreases with repeated mass drug administration. To address limitations of current diagnostic methods, we developed a novel technique to diagnose infections, including those at very low levels of intensity, by detecting helminth DNA in stool samples. Our initial studies suggest that the new diagnostic technique reliably detects the presence of intestinal worms, even at low intensities of infection, and may be more useful than currently available diagnostic tools for guiding the use of periodic mass drug administration to eliminate disease in low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - Vicente Y. Belizario
- Department of Parasitology, College of Public Health, University of the Philippines, Ermita, Manila, Philippines
| | | | | | | |
Collapse
|
6
|
Khurana S, Singh S, Mewara A. Diagnostic Techniques for Soil-Transmitted Helminths - Recent Advances. Res Rep Trop Med 2021; 12:181-196. [PMID: 34377048 PMCID: PMC8349539 DOI: 10.2147/rrtm.s278140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Soil-transmitted helminth (STH) infections (hookworms, Trichuris, Ascaris) and Strongyloides spp. are associated with a substantial global burden and high morbidity. Sensitive and specific methods for diagnosis of these infections are essential for mapping the burden in communities, accurate assessment of infection levels, to guide interventions and monitoring the success of STH control programs. Despite considerable progress to control STH over several decades, we are still far from identifying a fully adequate diagnostic test. Conventional microscopy-based methods such as direct Kato–Katz smear or mounts after stool centrifugation/flotation-based concentration techniques have been the mainstay of diagnosis, especially in resource-poor countries where these infections abound. However, recently, these are being adapted to closed, easy to perform, digital formats, thereby improving the sensitivity as well as applicability in a remote, resource-limited setting. The use of image analysis systems to identify and quantify helminth eggs, with potential adaptation to smartphones, is also promising. Antibody detection tests have a limited role mostly in the case of Strongyloides hyperinfection. Coproantigen detection tests have been developed and used in veterinary practice for detection of STH, but these have not been evaluated for use in humans. More sensitive molecular diagnostics, including assays developed with new bioinformatic tools and techniques such as polymerase chain reaction (PCR), quantitative PCR (qPCR) and loop-mediated amplification assay, can help in the clear and precise assessment of STH burden during elimination phase and are of immense value for diagnosis in areas with low endemicity and in travelers to endemic regions. Moreover, the molecular techniques will help detect new species that may emerge. Sample preservation and efficient DNA extraction are critical and significantly affect the efficiency of molecular diagnostic tests. In addition to the diagnosis of clinical or asymptomatic infection in humans, detection of STH eggs in environmental samples is imperative to boost STH control efforts. Overall the diagnostic performance, cost-effectiveness, ease of performance, rapidity and in-field applicability of any test should be considered when choosing from the various diagnostic assays in areas with different endemicity, in addition to striving towards the development of novel technologies and optimization of existing methods.
Collapse
Affiliation(s)
- Sumeeta Khurana
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Mewara
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Costa-Junior LM, Chaudhry UN, Skuce PJ, Stack S, Sargison ND. A loop-mediated isothermal amplification (LAMP) assay to identify isotype 1 β-tubulin locus SNPs in synthetic double-stranded Haemonchus contortus DNA. J Parasit Dis 2021; 46:47-55. [PMID: 35295940 PMCID: PMC8901900 DOI: 10.1007/s12639-021-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
Development of sustainable gastrointestinal nematode (GIN) control strategies depends on the ability to identify the frequencies of drug-susceptible and resistant genotypes in GIN populations arising from management practices undertaken on individual farms. Resistance to BZ drugs in GINs has been shown to be conferred by the presence of defined SNPs in the isotype 1 β-tubulin locus. Loop-mediated isothermal amplification (LAMP) assays are amenable to use on a range of DNA templates and are potentially adaptable to use in practical, cost-effective, pen-side diagnostic platforms that are needed to detect anthelmintic resistance in the field. In this study, we designed primers and examined LAMP assays to detect each of the three major isotype 1 β-tubulin SNPs conferring genetic susceptibility to BZ drugs. We used artificial pools of synthetic DNA, containing different proportions of susceptible and resistant SNPs to determine reproducibility of the assays. We demonstrated the detection of each of the isotype 1 β-tubulin SNPs conferring susceptibility to BZ drugs using the optimal LAMP assay. Isotype 1 β-tubulin SNP typing was effective in detecting BZ susceptibility, but the accuracy was reduced in samples with less than 60 % susceptible DNA. Our results show the potential for LAMP SNP typing to detect genetic susceptibility or resistance to anthelmintic drugs in livestock GINs, and some of the limitations in our approach that will need to be overcome in order to evaluate this assay using field samples.
Collapse
Affiliation(s)
| | - Umer N. Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG UK
| | - Philip J. Skuce
- Moredun Research Institute, Pentlands Science Park, Edinburgh, Midlothian, EH26 0PZ Scotland, UK
| | - Seamus Stack
- Mast Group, Mast House, Derby Road, Bootle Merseyside, L20 1EA UK
| | - Neil D. Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG UK
| |
Collapse
|
8
|
Deep Learning Approach for Ascaris lumbricoides Parasite Egg Classification. J Parasitol Res 2021; 2021:6648038. [PMID: 33996149 PMCID: PMC8096572 DOI: 10.1155/2021/6648038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
A. lumbricoides infection affects up to 1/3 of the world population (approximately 1.4 billion people worldwide). It has been estimated that 1.5 billion cases of infection globally and 65,000 deaths occur due to A. lumbricoides. Generally, allied health classifies parasite egg type by using on microscopy-based methods that are laborious, are limited by low sensitivity, and require high expertise. However, misclassification may occur due to their heterogeneous experience. For their reason, computer technology is considered to aid humans. With the benefit of speed and ability of computer technology, image recognition is adopted to recognize images much more quickly and precisely than human beings. This research proposes deep learning for A. lumbricoides's egg image recognition to be used as a prototype tool for parasite egg detection in medical diagnosis. The challenge is to recognize 3 types of eggs of A. lumbricoides with the optimal architecture of deep learning. The results showed that the classification accuracy of the parasite eggs is up to 93.33%. This great effectiveness of the proposed model could help reduce the time-consuming image classification of parasite egg.
Collapse
|
9
|
García-Bernalt Diego J, Fernández-Soto P, Muro A. LAMP in Neglected Tropical Diseases: A Focus on Parasites. Diagnostics (Basel) 2021; 11:diagnostics11030521. [PMID: 33804255 PMCID: PMC8000616 DOI: 10.3390/diagnostics11030521] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Neglected Tropical Diseases (NTDs), particularly those caused by parasites, remain a major Public Health problem in tropical and subtropical regions, with 10% of the world population being infected. Their management and control have been traditionally hampered, among other factors, by the difficulty to deploy rapid, specific, and affordable diagnostic tools in low resource settings. This is especially true for complex PCR-based methods. Isothermal nucleic acid amplification techniques, particularly loop-mediated isothermal amplification (LAMP), appeared in the early 21st century as an alternative to PCR, allowing for a much more affordable molecular diagnostic. Here, we present the status of LAMP assays development in parasite-caused NTDs. We address the progress made in different research applications of the technique: xenomonitoring, epidemiological studies, work in animal models and clinical application both for diagnosis and evaluation of treatment success. Finally, we try to shed a light on the improvements needed to achieve a true point-of-care test and the future perspectives in this field.
Collapse
|
10
|
Fernández-Soto P, Fernández-Medina C, Cruz-Fernández S, Crego-Vicente B, Febrer-Sendra B, García-Bernalt Diego J, Gorgojo-Galindo Ó, López-Abán J, Vicente Santiago B, Muro Álvarez A. Whip-LAMP: a novel LAMP assay for the detection of Trichuris muris-derived DNA in stool and urine samples in a murine experimental infection model. Parasit Vectors 2020; 13:552. [PMID: 33160406 PMCID: PMC7648965 DOI: 10.1186/s13071-020-04435-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background Trichuris trichiura (human whipworm) infects an estimated 477 million individuals worldwide. In addition to T. trichiura, other Trichuris species can cause an uncommon zoonosis and a number of human cases have been reported. The diagnosis of trichuriasis has relied traditionally on microscopy. Recently, there is an effort to use molecular diagnostic methods, mainly qPCR. LAMP technology could be an alternative for qPCR especially in low-income endemic areas. Trichuris muris, the causative agent of trichuriasis in mice, is of great importance as a model for human trichuriasis. Here, we evaluate the diagnostic utility of a new LAMP assay in an active experimental mouse trichuriasis in parallel with parasitological method by using stool and, for the first time, urine samples. Methods Stool and urine samples were collected from mice infected with eggs of T. muris. The dynamics of infection was determined by counting the number of eggs per gram of faeces. A LAMP based on the 18S rRNA gene from T. muris was designed. Sensitivity and specificity of LAMP was tested and compared with PCR. Stool and urine samples were analysed by both LAMP and PCR techniques. Results Trichuris muris eggs were detected for the first time in faeces 35 days post-infection. LAMP resulted specific and no cross-reactions were found when using 18 DNA samples from different parasites. The detection limit of the LAMP assay was 2 pg of T. muris DNA. When testing stool samples by LAMP we obtained positive results on day 35 p.i. and urine samples showed amplification results on day 20 p.i., i.e. 15 days before the onset of T. muris eggs in faeces. Conclusions To the best of our knowledge, we report, for the first time, a novel LAMP assay (Whip-LAMP) for sensitive detection of T. muris DNA in both stool and urine samples in a well-established mice experimental infection model. Considering the advantages of urine in molecular diagnosis in comparison to stool samples, should make us consider the possibility of starting the use urine specimens in molecular diagnosis and for field-based studies of human trichuriasis where possible. Further studies with clinical samples are still needed.![]()
Collapse
Affiliation(s)
- Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| | - Carlos Fernández-Medina
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Susana Cruz-Fernández
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Óscar Gorgojo-Galindo
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Belén Vicente Santiago
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro Álvarez
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
11
|
Nieuwkerk DM, Korajkic A, Valdespino EL, Herrmann MP, Harwood VJ. Critical review of methods for isothermal amplification of nucleic acids for environmental analysis. J Microbiol Methods 2020; 179:106099. [PMID: 33159993 DOI: 10.1016/j.mimet.2020.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
The past 30 years have seen the emergence and proliferation of isothermal amplification methods (IAMs) for rapid, sensitive detection and quantification of nucleic acids in a variety of sample types. These methods share dependence on primers and probes with quantitative PCR, but they differ in the specific enzymes and instruments employed, and are frequently conducted in a binary, rather than quantitative format. IAMs typically rely on simpler instruments than PCR analyses due to the maintenance of a single temperature throughout the amplification reaction, which could facilitate deployment of IAMs in a variety of environmental and field settings. This review summarizes the mechanisms of the most common IAM methods and their use in studies of pathogens, harmful algae and fecal indicators in environmental waters, feces, wastewater, reclaimed water, and tissues of aquatic animals. Performance metrics of sensitivity, specificity and limit of detection are highlighted, and the potential for use in monitoring and regulatory contexts is discussed.
Collapse
Affiliation(s)
- Dana M Nieuwkerk
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Asja Korajkic
- US Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Erika L Valdespino
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Michael P Herrmann
- US Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Valerie J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
12
|
Wong LW, Ong KS, Khoo JR, Goh CBS, Hor JW, Lee SM. Human intestinal parasitic infection: a narrative review on global prevalence and epidemiological insights on preventive, therapeutic and diagnostic strategies for future perspectives. Expert Rev Gastroenterol Hepatol 2020; 14:1093-1105. [PMID: 32755242 DOI: 10.1080/17474124.2020.1806711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Intestinal parasitic infection (IPI) is a global health concern among socioeconomically deprived communities in many developing countries. Many preventative strategies have been deployed to control IPI, however, there is a lack in standards on the techniques used to diagnose and monitor the prevalence of IPI. AREAS COVERED The present article will review the diseases associated with IPI and discuss the current IPI control strategies such as the water, sanitation, and hygiene (WASH) interventions, community-led total sanitation (CLTS) approach, and regular anthelminthic treatments. For the first time, this review will also evaluate all currently practised diagnostic techniques for the detection of intestinal parasites and provide insights on future IPI control strategies. EXPERT OPINION Advanced and improved diagnostic methods such as qPCR coupled with a high-resolution melting curve, aptamers, biosensors, and detection of extracellular vesicles can be used for detection of IPI. Vaccination against intestinal parasites can be made available to increase antibodies to interfere with the blood-feeding process by the parasites, which subsequently reduces the reproductive rates of the parasites. These methods collectively can serve as future management strategies for intestinal parasitic infections.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Kuan Shion Ong
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Jun Rong Khoo
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Jia Wei Hor
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia , Bandar Sunway, Malaysia
| |
Collapse
|
13
|
Avendaño C, Patarroyo MA. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int J Mol Sci 2020; 21:ijms21217981. [PMID: 33126446 PMCID: PMC7662217 DOI: 10.3390/ijms21217981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The World Health Organisation (WHO) has placed twenty diseases into a group known as neglected tropical diseases (NTDs), twelve of them being parasitic diseases: Chagas’ disease, cysticercosis/taeniasis, echinococcosis, food-borne trematodiasis, human African trypanosomiasis (sleeping sickness), leishmaniasis, lymphatic filariasis, onchocerciasis (river blindness), schistosomiasis, soil-transmitted helminthiasis (ascariasis, hookworm, trichuriasis), guinea-worm and scabies. Such diseases affect millions of people in developing countries where one of the main problems concerning the control of these diseases is diagnosis-based due to the most affected areas usually being far from laboratories having suitable infrastructure and/or being equipped with sophisticated equipment. Advances have been made during the last two decades regarding standardising and introducing techniques enabling diagnoses to be made in remote places, i.e., the loop-mediated isothermal amplification (LAMP) technique. This technique’s advantages include being able to perform it using simple equipment, diagnosis made directly in the field, low cost of each test and the technique’s high specificity. Using this technique could thus contribute toward neglected parasite infection (NPI) control and eradication programmes. This review describes the advances made to date regarding LAMP tests, as it has been found that even though several studies have been conducted concerning most NPI, information is scarce for others.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: ; Tel.: +57-1-3244672
| |
Collapse
|
14
|
Else KJ, Keiser J, Holland CV, Grencis RK, Sattelle DB, Fujiwara RT, Bueno LL, Asaolu SO, Sowemimo OA, Cooper PJ. Whipworm and roundworm infections. Nat Rev Dis Primers 2020; 6:44. [PMID: 32467581 DOI: 10.1038/s41572-020-0171-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Trichuriasis and ascariasis are neglected tropical diseases caused by the gastrointestinal dwelling nematodes Trichuris trichiura (a whipworm) and Ascaris lumbricoides (a roundworm), respectively. Both parasites are staggeringly prevalent, particularly in tropical and subtropical areas, and are associated with substantial morbidity. Infection is initiated by ingestion of infective eggs, which hatch in the intestine. Thereafter, T. trichiura larvae moult within intestinal epithelial cells, with adult worms embedded in a partially intracellular niche in the large intestine, whereas A. lumbricoides larvae penetrate the gut mucosa and migrate through the liver and lungs before returning to the lumen of the small intestine, where adult worms dwell. Both species elicit type 2 anti-parasite immunity. Diagnosis is typically based on clinical presentation (gastrointestinal symptoms and inflammation) and the detection of eggs or parasite DNA in the faeces. Prevention and treatment strategies rely on periodic mass drug administration (generally with albendazole or mebendazole) to at-risk populations and improvements in water, sanitation and hygiene. The effectiveness of drug treatment is very high for A. lumbricoides infections, whereas cure rates for T. trichiura infections are low. Novel anthelminthic drugs are needed, together with vaccine development and tools for diagnosis and assessment of parasite control in the field.
Collapse
Affiliation(s)
- Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London, UK
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel O Asaolu
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oluyomi A Sowemimo
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
15
|
Development and evaluation of a loop-mediated isothermal amplification (LAMP) diagnostic test for detection of whipworm, Trichuris trichiura, in faecal samples. J Helminthol 2020; 94:e142. [PMID: 32238209 DOI: 10.1017/s0022149x2000022x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whipworm infection or trichuriasis caused by Trichuris trichiura is of major public health concern in sub-Saharan Africa, particularly among pre-school and school-going children. It is among the neglected tropical diseases targeted for elimination through mass drug administration (MDA). One of the outcomes of MDA is a rapid decline in levels of infection intensity, making it difficult to monitor effectiveness of control measures using the conventional Kato-Katz procedure, which relies on the microscopic detection of parasite ova in faecal samples. In the present study, a loop-mediated isothermal amplification (LAMP) test was developed for the detection of T. trichiura infection in faecal samples. LAMP technology offers greater sensitivity and specificity than the microscopy-based tests. A set of four specific primers targeting the internal transcribed spacer 2 region of the ribosomal DNA were designed using Primer Explorer software. DNA was extracted from faecal samples using the alkaline lysis method (HotSHOT) and the LAMP reaction performed at 63°C for 1 h. The amplicons were visualized by both gel electrophoresis and with the naked eye following staining with SYBR green dye. Sensitivity and specificity tests were determined using the standard Kato-Katz diagnostic procedure as a reference test. The developed LAMP assay reliably detected T. trichiura DNA in faecal samples, with a specificity and sensitivity of 88% and 77%, respectively. No cross-reactivity was observed with several common helminth parasites. The developed LAMP assay is an appropriate diagnostic method for the detection of T. trichiura DNA in human faecal samples due to its simplicity, low cost, high sensitivity and specificity.
Collapse
|
16
|
Detection of Helminth Ova in Wastewater Using Recombinase Polymerase Amplification Coupled to Lateral Flow Strips. WATER 2020. [DOI: 10.3390/w12030691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ascaris lumbricoides is a major soil-transmitted helminth that is highly infective to humans. The ova of A. lumbricoides are able to survive wastewater treatment, thus making it an indicator organism for effective water treatment and sanitation. Hence, Ascaris ova must be removed from wastewater matrices for the safe use of recycled water. Current microscopic techniques for identification and enumeration of Ascaris ova are laborious and cumbersome. Polymerase chain reaction (PCR)-based techniques are sensitive and specific, however, major constraints lie in having to transport samples to a centralised laboratory, the requirement for sophisticated instrumentation and skilled personnel. To address this issue, a rapid, highly specific, sensitive, and affordable method for the detection of helminth ova was developed utilising recombinase polymerase amplification (RPA) coupled with lateral flow (LF) strips. In this study, Ascaris suum ova were used to demonstrate the potential use of the RPA-LF assay. The method was faster (< 30 min) with optimal temperature at 37 °C and greater sensitivity than PCR-based approaches with detection as low as 2 femtograms of DNA. Furthermore, ova from two different helminth genera were able to be detected as a multiplex assay using a single lateral flow strip, which could significantly reduce the time and the cost of helminth identification. The RPA-LF system represents an accurate, rapid, and cost-effective technology that could replace the existing detection methods, which are technically challenged and not ideal for on-site detection in wastewater treatment plants.
Collapse
|
17
|
Wang L, Chen G, Zhang C, Wang Y, Sun R. Application of loop-mediated isothermal amplification combined with lateral flow dipstick to rapid and sensitive detection of Alexandrium catenella. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4246-4257. [PMID: 31828710 DOI: 10.1007/s11356-019-06889-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Alexandrium catenella is one of the globally distributed toxic marine microalgae to cause paralytic shellfish poisoning that poses a great threat to marine fisheries, economy, and public health. Development of efficient and sensitive methods for accurate identification of A. catenella to minimize its damage is therefore necessary. In this study, a novel method referred to as loop-mediated isothermal amplification (LAMP) combined with lateral flow dipstick (LFD) (LAMP-LFD) was established for rapid and sensitive detection of A. catenella. The internal transcribed spacer (ITS) gene of A. catenella was cloned for sequencing and used as target for LAMP-LFD. Three sets of LAMP primers (AcLF1, AcLF2, and AcLF3) targeting the ITS were successfully designed, among which AcLF2 displaying the best performance was used in the subsequent tests. A specific LFD probe targeting the amplification region of AcLF2 was further designed. The LAMP-LFD detection system was established and the amplification conditions were optimized. Cross-reactivity tests with common marine microalgae showed that the LAMP-LFD was exclusively specific for A. catenella. The detection limits of LAMP-LFD for A. catenella genomic DNA and the plasmid containing the ITS were 4.63 × 10-4 ng μL-1 and 1.26 × 104 copies μL-1, displaying a sensitivity that is 10 times higher than that of SYBR Green I assay and 100 times higher than that of conventional PCR, respectively. Finally, the practicability of LAMP-LFD was confirmed by test with spiked samples. LAMP-LFD revealed a detection limit of approximately 0.1 cell mL-1, which was 100 times more sensitive than conventional PCR. The optimized LAMP-LFD protocol can be completed within 75 min. Therefore, the established LAMP-LFD is a specific, sensitive, and rapid method that is possibly applicable to the field monitoring of A. catenella.
Collapse
Affiliation(s)
- Liang Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China.
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Rui Sun
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| |
Collapse
|
18
|
Waema MW, Misinzo G, Kagira JM, Agola EL, Ngowi HA. DNA-Detection Based Diagnostics for Taenia solium Cysticercosis in Porcine. J Parasitol Res 2020; 2020:5706981. [PMID: 32395335 PMCID: PMC7199576 DOI: 10.1155/2020/5706981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/02/2019] [Indexed: 11/17/2022] Open
Abstract
Porcine cysticercosis is a neglected and underestimated disease caused by metacestode stage of the tapeworm, Taenia solium (T. solium). Pigs are the intermediate hosts of T. solium while human are the only known definitive host. The disease has an economic consequence because the affected farmers lose 50-100 percent of the value of pigs if they are infected. Lack of affordable, easy to use, sensitive, and specific molecular diagnostic tools for detection of infections at the farm level hinders the control of porcine cysticercosis in endemic areas. A number of DNA based diagnostic assays for the detection of T. solium infections in pigs have been developed and evaluated but none is applicable at low-resource areas where this disease is an endemic. This review focuses mainly on DNA based diagnostic methods, their sensitivity, specificity, and utilization at low-resource areas. We summarized data from 65 studies on the current DNA-detection based diagnostic techniques for T. solium cysticercosis in porcine, published in English between the years 2000-2018, identified through PubMed search engine. Of the different polymerase chain reaction (PCR) assays developed for identification of T. solium, the most sensitive (97-100%) and specific (100%) one is nested PCR. One study utilized loop-mediated isothermal amplification (LAMP) as a diagnostic tool for the detection of T. solium infections though its field use was never determined. Recombinase polymerase amplification (RPA) has been evaluated as a diagnostic tool for a variety of diseases, but has never been exploited for the diagnosis of cysticercosis/taeniasis. In conclusion, several molecular methods have been developed and evaluated in lab settings. However, there is need to validate these methods as a diagnostic tool to diagnose porcine cysticercosis in low-resource areas.
Collapse
Affiliation(s)
- Maxwell W. Waema
- Southern African Centre for Infectious Disease Surveillance (SACIDS), Sokoine University of Agriculture, P.O Box 3297, Chuo Kikuu, Morogoro, Tanzania
| | - Gerald Misinzo
- Southern African Centre for Infectious Disease Surveillance (SACIDS), Sokoine University of Agriculture, P.O Box 3297, Chuo Kikuu, Morogoro, Tanzania
| | - John M. Kagira
- Department of Animal Health and Production, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Eric L. Agola
- Centre of Biotechnology Research and Development, Kenya Medical Research Institute, P.O Box 3297, Nairobi, Kenya
| | - Helena A. Ngowi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O Box 3021, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
19
|
Betson M, Alonte AJI, Ancog RC, Aquino AMO, Belizario VY, Bordado AMD, Clark J, Corales MCG, Dacuma MG, Divina BP, Dixon MA, Gourley SA, Jimenez JRD, Jones BP, Manalo SMP, Prada JM, van Vliet AHM, Whatley KCL, Paller VGV. Zoonotic transmission of intestinal helminths in southeast Asia: Implications for control and elimination. ADVANCES IN PARASITOLOGY 2020; 108:47-131. [PMID: 32291086 DOI: 10.1016/bs.apar.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal helminths are extremely widespread and highly prevalent infections of humans, particularly in rural and poor urban areas of low and middle-income countries. These parasites have chronic and often insidious effects on human health and child development including abdominal problems, anaemia, stunting and wasting. Certain animals play a fundamental role in the transmission of many intestinal helminths to humans. However, the contribution of zoonotic transmission to the overall burden of human intestinal helminth infection and the relative importance of different animal reservoirs remains incomplete. Moreover, control programmes and transmission models for intestinal helminths often do not consider the role of zoonotic reservoirs of infection. Such reservoirs will become increasingly important as control is scaled up and there is a move towards interruption and even elimination of parasite transmission. With a focus on southeast Asia, and the Philippines in particular, this review summarises the major zoonotic intestinal helminths, risk factors for infection and highlights knowledge gaps related to their epidemiology and transmission. Various methodologies are discussed, including parasite genomics, mathematical modelling and socio-economic analysis, that could be employed to improve understanding of intestinal helminth spread, reservoir attribution and the burden associated with infection, as well as assess effectiveness of interventions. For sustainable control and ultimately elimination of intestinal helminths, there is a need to move beyond scheduled mass deworming and to consider animal and environmental reservoirs. A One Health approach to control of intestinal helminths is proposed, integrating interventions targeting humans, animals and the environment, including improved access to water, hygiene and sanitation. This will require coordination and collaboration across different sectors to achieve best health outcomes for all.
Collapse
Affiliation(s)
- Martha Betson
- University of Surrey, Guildford, Surrey, United Kingdom.
| | | | - Rico C Ancog
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Jessica Clark
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | - Billy P Divina
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Ben P Jones
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
An update on non-invasive urine diagnostics for human-infecting parasitic helminths: what more could be done and how? Parasitology 2019; 147:873-888. [PMID: 31831084 PMCID: PMC7284843 DOI: 10.1017/s0031182019001732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reliable diagnosis of human helminth infection(s) is essential for ongoing disease surveillance and disease elimination. Current WHO-recommended diagnostic assays are unreliable in low-endemic near-elimination settings and typically involve the invasive, onerous and potentially hazardous sampling of bodily fluids such as stool and blood, as well as tissue via biopsy. In contrast, diagnosis by use of non-invasive urine sampling is generally painless, more convenient and low risk. It negates the need for specialist staff, can usually be obtained immediately upon request and is better accepted by patients. In some instances, urine-based diagnostic assays have also been shown to provide a more reliable diagnosis of infection when compared to traditional methods that require alternative and more invasive bodily samples, particularly in low-endemicity settings. Given these relative benefits, we identify and review current research literature to evaluate whether non-invasive urine sampling is currently exploited to its full potential in the development of diagnostic tools for human helminthiases. Though further development, assessment and validation are needed before their routine use in control programmes, low-cost, rapid and reliable assays capable of detecting transrenal helminth-derived antigens and cell-free DNA show excellent promise for future use at the point-of-care in high-, medium- and even low-endemicity elimination settings.
Collapse
|
21
|
A Review on the Current Knowledge and Prospects for the Development of Improved Detection Methods for Soil-Transmitted Helminth Ova for the Safe Reuse of Wastewater and Mitigation of Public Health Risks. WATER 2019. [DOI: 10.3390/w11061212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change, increase in population and scarcity of freshwater have led to a global demand for wastewater reuse in irrigation. However, wastewater has to be treated in order to minimize the presence of pathogens, in particular, the ova of soil-transmitted helminthes (STHs). Limiting the transmission via removal of STH ova, accurate assessment of risks and minimizing the exposure to the public have been recommended by health regulators. The World Health Organization (WHO) guideline specifies a limit of ≤1 ova/L for safe wastewater reuse. Additionally, the Australian Guidelines for Water recycling (AGWR) recommend a hydraulic retention time of over 25 days in a lagoon or stabilization pond to ensure a 4 log reduction value of helminth ova and to mitigate soil-transmitted helminths associated risks to humans. However, the lack of fast and sensitive methods for assessing the concentration of STH ova in wastewater poses a considerable challenge for an accurate risk assessment. Consequently, it has been difficult to control soil-transmitted helminthiasis despite effective mass drug administration. This limitation can be overcome with the advent of novel techniques for the detection of helminth ova. Therefore, this review presents an assessment of the current methods to detect the viable ova of soil-transmitted helminths in wastewater. Furthermore, the review focuses on the perspectives for the emerging state-of-the-art research and developments that have the potential to replace currently available conventional and polymerase chain reaction based methods and achieve the guidelines of the WHO in order to allow the safe reuse of wastewater for non-potable applications, thereby minimizing public health risks.
Collapse
|
22
|
Deng MH, Zhong LY, Kamolnetr O, Limpanont Y, Lv ZY. Detection of helminths by loop-mediated isothermal amplification assay: a review of updated technology and future outlook. Infect Dis Poverty 2019; 8:20. [PMID: 30905322 PMCID: PMC6432754 DOI: 10.1186/s40249-019-0530-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helminths are endemic in more than half of the world's countries, raising serious public health concerns. Accurate diagnosis of helminth infection is crucial to control strategies. Traditional parasitological methods, serological tests and PCR-based assays are the major means of the diagnosis of helminth infection, but they are time-consuming and/or expensive, and sometimes provide inaccurate results. Loop mediated isothermal amplification (LAMP) assay, a sensitive, simple and rapid method was therefore developed for detection of helminths. This study aims to discuss the current status of application of LAMP on helminths detection and to make a comprehensive evaluation about this updated technology and its future outlook by comparing with several other diagnostic methods. MAIN BODY This review summarizes LAMP assay applied for helminth detection and helminthiasis surveillance. The basic principle of LAMP is introduced to help better understand its characteristics and each reported assay is assessed mainly based on its detection sensitivity, specificity and limitations, in comparison with other common diagnostic tests. Moreover, we discuss the limitations of the assays so as to clarify some potential ways of improvement. CONCLUSIONS Here, we summarize and discuss the advantages, disadvantages and promising future of LAMP in heliminth detection, which is expected to help update current knowledge and future perspectives of LAMP in highly sensitive and specific diagnosis and surveillance of helminthiasis and other parasitic diseases, and can contribute to the elimination of the diseases from endemic areas.
Collapse
Affiliation(s)
- Miao-Han Deng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
| | - Lan-Yi Zhong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
| | - Okanurak Kamolnetr
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
- Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 519000 China
| |
Collapse
|
23
|
Mutombo PN, Man NWY, Nejsum P, Ricketson R, Gordon CA, Robertson G, Clements ACA, Chacón-Fonseca N, Nissapatorn V, Webster JP, McLaws ML. Diagnosis and drug resistance of human soil-transmitted helminth infections: A public health perspective. ADVANCES IN PARASITOLOGY 2019; 104:247-326. [PMID: 31030770 DOI: 10.1016/bs.apar.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil-transmitted helminth (STH) infections represent a major public health problem globally, particularly among socio-economically disadvantaged populations. Detection of STH infections is often challenging, requiring a combination of diagnostic techniques to achieve acceptable sensitivity and specificity, particularly in low infection-intensity situations. The microscopy-based Kato-Katz remains the most widely used method but has low sensitivity in the detection of, for instance, Strongyloides spp. infections, among others. Antigen/antibody assays can be more sensitive but are parasite species-specific. Highly sensitive PCR methods have been developed to be multiplexed to allow multi-species detection. Novel diagnostic tests for all STH species are needed for effective monitoring, evaluation of chemotherapy programmes, and to assess the potential emergence of parasite resistance. This review discusses available diagnostic methods for the different stages of STH control programmes, which vary in sensitivity and spectrum of detection requirements, and tools to evaluate drug efficacy and resistance.
Collapse
Affiliation(s)
- Polydor Ngoy Mutombo
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.
| | - Nicola W Y Man
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Robert Ricketson
- Hale O'mana'o Biomedical Research, Division of Emerging Pathogens, Edmond, OK, United States
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gemma Robertson
- Public and Environmental Health, Forensic and Scientific Services, Department of Health, Brisbane, QLD, Australia
| | | | - Nathalie Chacón-Fonseca
- Soil-Transmitted Helminths Section, Tropical Medicine Institute, Tropical Medicine Department, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Mary-Louise McLaws
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Development and Evaluation of a Loop-Mediated Isothermal Amplification Assay for Diagnosis of Schistosoma mansoni Infection in Faecal Samples. J Parasitol Res 2018; 2018:1267826. [PMID: 30013798 PMCID: PMC6022337 DOI: 10.1155/2018/1267826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022] Open
Abstract
Human intestinal schistosomiasis is caused by the blood fluke, Schistosoma mansoni. With intensified efforts to control schistosomiasis by mass drug administration using praziquantel (PZQ), there is an urgent need to have accessible, quality-assured diagnostic tests for case detection and disease surveillance and for monitoring efficacy of treatment and other interventions. Current diagnostic tools are limited by suboptimal sensitivity, slow turn-around-time, affordability, and inability to distinguish current from past infections. We describe a simple and rapid diagnostic assay, based on the loop-mediated isothermal amplification (LAMP) technology for diagnosis of S. mansoni infection in human faecal samples. The LAMP primers used in this assay were previously described and they target a 121-bp DNA repeat sequence in S. mansoni. The LAMP assay was optimized at an isothermal temperature of 63°C for 1 hour. The amplified DNA was either visualized under ultraviolet light after electrophoresis or by directly observing the color change after staining the amplicons with CYBR Green dye. The LAMP assay was evaluated against the microscopy-based procedure and the results were analysed using Cohen's kappa coefficient to determine the degree of agreement between the two techniques. The LAMP assay reliably detected S. mansoni ova DNA in faecal samples and parasite DNA in amounts as low as 32fg. When the assay was tested for specificity against other faecal-based soil-transmitted helminths (STH), no cross-reactivity was observed. The LAMP assay was superior to the Kato-Katz assay with a 97% specificity; a high positivity score reliably detecting S. mansoni and a Kappa Coefficient of 0.9 suggested an exceptional agreement between the two techniques. The LAMP assay developed has great potential for application in field settings to support S. mansoni control and elimination campaigns.
Collapse
|
25
|
Kaur H, Sehgal R, Bansal D, Sultan AA, Bhalla A, Singhi SC. Development of Visually Improved Loop Mediated Isothermal Amplification for the Diagnosis of Plasmodium vivax Malaria in a Tertiary Hospital in Chandigarh, North India. Am J Trop Med Hyg 2018; 98:1374-1381. [PMID: 29557335 DOI: 10.4269/ajtmh.17-0857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
More than 80% of the global burden of the Plasmodium vivax is contributed by mainly three countries (India, Indonesia, and Pakistan). Reports from last decades have highlighted the occurrence of severe P. vivax malaria which was earlier considered to be benign. The recent trends of increasing P. vivax-associated morbidity and mortality emphasizes the need for early and accurate diagnosis of P. vivax malaria for the timely management of patients. Microscopy is considered a gold standard but needs experienced laboratory technologists. Over the last few years, Polymerase chain reaction (PCR) is being used as a highly sensitive and specific test but it requires expensive equipment which limits its use in the field. Therefore, in the present study, utility of visually improved loop-mediated isothermal amplification (LAMP) for the detection of P. vivax was evaluated targeting 18SrRNA gene in 145 microscopically confirmed P. vivax and 20 P. vivax negative patients. Sensitivity and specificity of LAMP was assessed with respect to microscopy and multiplex nested PCR (nPCR). Results of the LAMP assay was also correlated with rapid diagnostic test, multiplex nPCR and real-time PCR results. Overall, sensitivity and specificity of P. vivax-specific LAMP compared with microscopy were found to be 100% and 85%, respectively. Furthermore, detection limit for LAMP was found to be 0.8 copies/μL and it was also able to detect three complicated cases of P. vivax which were missed by microscopy. This study showed a LAMP assay to be a rapid and very sensitive method for the early diagnosis of both complicated and uncomplicated P. vivax malaria.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunit C Singhi
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
26
|
Lateral Flow Loop-Mediated Isothermal Amplification Test with Stem Primers: Detection of Cryptosporidium Species in Kenyan Children Presenting with Diarrhea. J Trop Med 2018; 2018:7659730. [PMID: 29681951 PMCID: PMC5846371 DOI: 10.1155/2018/7659730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background. Cryptosporidium is a protozoan parasite and a major cause of diarrhea in children and immunocompromised patients. Current diagnostic methods for cryptosporidiosis such as microscopy have low sensitivity while techniques such as PCR indicate higher sensitivity levels but are seldom used in developing countries due to their associated cost. A loop-mediated isothermal amplification (LAMP) technique, a method with shorter time to result and with equal or higher sensitivity compared to PCR, has been developed and applied in the detection of Cryptosporidium species. The test has a detection limit of 10 pg/µl (~100 oocysts/ml) indicating a need for more sensitive diagnostic tools. This study developed a more sensitive lateral flow dipstick (LFD) LAMP test based on SAM-1 gene and with the addition of a second set of reaction accelerating primers (stem primers). Results. The stem LFD LAMP test showed analytical sensitivity of 10 oocysts/ml compared to 100 oocysts/ml (10 pg/ul) for each of the SAM-1 LAMP test and nested PCR. The stem LFD LAMP and nested PCR detected 29/39 and 25/39 positive samples of previously identified C. parvum and C. hominis DNA, respectively. The SAM-1 LAMP detected 27/39. On detection of Cryptosporidium DNA in 67 clinical samples, the stem LFD LAMP detected 16 samples and SAM-2 LAMP 14 and nested PCR identified 11. Preheating the templates increased detection by stem LFD LAMP to 19 samples. Time to results from master mix preparation step took ~80 minutes. The test was specific, and no cross-amplification was recorded with nontarget DNA. Conclusion. The developed stem LFD LAMP test is an appropriate method for the detection of C. hominis, C. parvum, and C. meleagridis DNA in human stool samples. It can be used in algorithm with other diagnostic tests and may offer promise as an effective diagnostic tool in the control of cryptosporidiosis.
Collapse
|
27
|
Rashwan N, Diawara A, Scott ME, Prichard RK. Isothermal diagnostic assays for the detection of soil-transmitted helminths based on the SmartAmp2 method. Parasit Vectors 2017; 10:496. [PMID: 29047387 PMCID: PMC5648480 DOI: 10.1186/s13071-017-2420-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022] Open
Abstract
Background Diagnosis of soil-transmitted helminths (STHs) has traditionally relied on stool microscopy, which has a number of critical deficiencies. Molecular diagnostics are powerful tools to identify closely related species, but the requirement for costly equipment makes their implementation difficult in low-resource or field settings. Rapid, sensitive and cost-effective diagnostic tools are crucial for accurate estimation of STH infection intensity in MDA programmes in which the goal is to reduce morbidity following repeated rounds of chemotherapy. Results In this study, colourimetric isothermal assays were developed using SmartAmp2 primer sets and reagents in loop-mediated amplification (LAMP) assays. Species-specific primer sets, designed on a specific target sequence in the β-tubulin gene, were used to identify Necator americanus, Trichuris trichiura and Ascaris lumbricoides. After initial optimization on control plasmids and genomic DNA from adult worms, assays were evaluated on field samples. Assays showed high sensitivity and demonstrated high tolerance to inhibitors in spiked faecal samples. Rapid and sensitive colourimetric assays were successfully developed to identify the STHs in field samples using hydroxy napthol blue (HNB) dye. Conclusions Rapid and simple colourimetric diagnostic assays, using the SmartAmp2 method, were developed, with the potential to be applied in the field for detection of STH infections and the estimation of response to treatment. However, further validation on large numbers of field samples is needed. Electronic supplementary material The online version of this article (10.1186/s13071-017-2420-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nour Rashwan
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald College, McGill University, Ste Anne de Bellevue, QC, Canada.,Department of Medical Parasitology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aïssatou Diawara
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marilyn E Scott
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald College, McGill University, Ste Anne de Bellevue, QC, Canada
| | - Roger K Prichard
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald College, McGill University, Ste Anne de Bellevue, QC, Canada.
| |
Collapse
|
28
|
Mwendwa F, Mbae CK, Kinyua J, Mulinge E, Mburugu GN, Njiru ZK. Stem loop-mediated isothermal amplification test: comparative analysis with classical LAMP and PCR in detection of Entamoeba histolytica in Kenya. BMC Res Notes 2017; 10:142. [PMID: 28359328 PMCID: PMC5374617 DOI: 10.1186/s13104-017-2466-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entamoeba histolytica, the causative agent for amoebiasis is a considerable burden to population in the developing countries where it accounts for over 50 million infections. The tools for detection of amoebiasis are inadequate and diagnosis relies on microscopy which means a significant percent of cases remain undiagnosed. Moreover, tests formats that can be rapidly applied in rural endemic areas are not available. METHODS In this study, a loop-mediated isothermal test (LAMP) based on 18S small subunit ribosomal RNA gene was designed with extra reaction accelerating primers (stem primers) and compared with the published LAMP and PCR tests in detection of E. histolytica DNA in clinical samples. RESULTS The stem LAMP test indicated shorter time to results by an average 11 min and analytical sensitivity of 10-7 (~30 pg/ml) compared to the standard LAMP and PCR which showed sensitivities levels of 10-5 (~3 ng/ml) and 10-4 (~30 ng/ml) respectively using tenfold serial dilution of DNA. In the analysis of clinical specimens positive for Entamoeba spp. trophozoites and cysts using microscopy, the stem LAMP test detected E. histolytica DNA in 36/126, standard LAMP test 20/126 and PCR 17/126 cases respectively. There was 100% agreement in detection of the stem LAMP test product using fluorescence of SYTO-9 dye in real time machine, through addition of 1/10 dilution of SYBR® Green I and electrophoresis in 2% agarose gel stained with ethidium bromide. CONCLUSION The stem LAMP test developed in this study indicates potential towards detection of E. histolytica.
Collapse
Affiliation(s)
- Fridah Mwendwa
- Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-0200, Nairobi, Kenya.
| | - Cecilia K Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, P.O Box 19464-00202, Nairobi, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-0200, Nairobi, Kenya
| | - Erastus Mulinge
- Centre for Microbiology Research, Kenya Medical Research Institute, P.O Box 19464-00202, Nairobi, Kenya
| | | | - Zablon K Njiru
- Meru University of Science and Technology, P. O. Box 972-60200, Meru, Kenya.,School of Health Professions, Mandurah Campus, Murdoch University, Murdoch, WA, 6210, Australia
| |
Collapse
|