1
|
Mazumder K, Aktar A, Kerr PG, Dash R, Blanchard CL, Gulzarul Aziz M, Farahnaky A. Insights into seed coats of nine cultivars of Australian lupin: Unravelling LC-QTOF MS-based biochemical profiles, nutritional, functional, antioxidant, and antidiabetic properties together with rationalizing antidiabetic mechanism by in silico approaches. Food Res Int 2024; 195:114970. [PMID: 39277267 DOI: 10.1016/j.foodres.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Lupins, and other legumes, have attained international interest due to their reported remarkable health benefits. Currently, the seed coats are discarded as waste or animal feed. The research presented here summarizes the potential for incorporating the seed coats into 'whole grain' foods. We aimed to identify metabolites found in the seed coats of nine commercial Australian cultivars of lupin (Lupinus angustifolius and L. albus species), and to evaluate and compare their functional, nutritional, antioxidant, and antidiabetic properties, along with in silico exploration of mechanisms of action for selected identified secondary metabolites. The seed coats were found to contain 79 to 90% dietary fibers and substantial quantity of essential macrometals. LC-QTOF MS-based, untargeted bioactive metabolite profiling explored a total of 673 chemical entities, and identified 63 bioactive secondary metabolites including: biophenols, unsaturated fatty acids, triterpenoids, alkaloids, and dietary prebiotics (insoluble fibers). The seed coats from these nine cultivars show substantial antioxidant activity. The cultivars of L. angustifolius inhibit α-amylase and α-glucosidase significantly in vitro. Moreover, in silico docking and dynamic simulation along with ADME/T analysis suggest that quercetin 3-methyl ether and 8-C-methylquercetin 3-methyl ether as molecules, novel in lupin seed coats, are responsible for the α-amylase and α-glucosidase inhibition. The findings indicated that lupin seed coats might be beneficial food components, rather than be discarded as 'mill waste'.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408 Jashore, Bangladesh; School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW, Australia.
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408 Jashore, Bangladesh
| | - Philip G Kerr
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Christopher L Blanchard
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Mohammad Gulzarul Aziz
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
2
|
Paździora W, Paśko P, Grabowska K, Galanty A. Can Isoflavone-Rich Legume Plants Be Useful in the Chemoprevention of Hormone-Dependent Cancers?-A Systematic Review. Int J Mol Sci 2024; 25:7389. [PMID: 39000493 PMCID: PMC11242776 DOI: 10.3390/ijms25137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Plants from the Fabaceae family are widely distributed around the world, especially in Europe, Asia and North America. They are a rich source of isoflavones, compounds with estrogen-like activity, which are suspected of having a chemopreventive effect against hormone-dependent cancers. Following the PRISMA guidelines, we conducted a systematic review aimed at assessing the impact of Fabaceae plant extracts on hormone-dependent cancer cells and the content of active compounds in plant raw materials. We analyzed the results of 63 articles from in vitro and in vivo studies describing the effect of plant extracts containing isoflavones on cancer cells, along with their anti-inflammatory and antioxidant potential. In the process, we determined the research limitations and future research directions. The collected results indicate the plant species with potentially high contents of phytoestrogens and anti-inflammatory, antioxidant and cytotoxic properties. They point to the potential use of plants in the diet as a source of compounds offering cancer prevention.
Collapse
Affiliation(s)
- Wojciech Paździora
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Str., 31-530 Cracow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
| |
Collapse
|
3
|
Wójcik M, Grabowski S, Jarosz ŁS, Szymczak B, Longo V, della Croce CM, Hejdysz M, Cieślak A, Gruszczyński K, Marek A. Liver Antioxidant Capacity and Steatosis in Laying Hens Exposed to Various Quantities of Lupin ( Lupinus angustifolius) Seeds in the Diet. Antioxidants (Basel) 2024; 13:251. [PMID: 38397849 PMCID: PMC10886069 DOI: 10.3390/antiox13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the many beneficial properties of legume plants, their use in diets for poultry is limited by the presence of antinutritional factors. The aim of the study was to determine the activity of DT-diaphorase, ethoxycoumarin O-deethylase, and catalase, and the concentration of malondialdehyde in liver tissue, as well as the activity of SOD and CAT in the serum of Hy-line Brown hens fed a diet supplemented with various doses of Lupinus angustifolius seeds. The results indicate that the use of large amounts of lupin in the diet resulted in an increase in MDA concentration in the liver and the lipid vacuolization of hepatocytes. A significant increase in DTD activity was observed in chickens receiving 15% lupin. Regardless of lupin dose, no increase in SOD activity was observed in chicken serum after 33 days of the experiment. From the 66th day of the experiment, an increase in catalase activity in the serum of laying hens was observed, while low activity of this enzyme was found in the liver. It can be concluded that the short-term use of lupin in the diet of laying hens does not affect the activity of antioxidant enzymes and, therefore, does not affect the oxidative-antioxidant balance of their body.
Collapse
Affiliation(s)
- Marta Wójcik
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.W.); (B.S.); (K.G.)
| | - Sebastian Grabowski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.W.); (B.S.); (K.G.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (C.M.d.C.)
| | - Clara Maria della Croce
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (C.M.d.C.)
| | - Marcin Hejdysz
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Wołynska 33, 60-637 Poznań, Poland;
| | - Adam Cieślak
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| | - Kamil Gruszczyński
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.W.); (B.S.); (K.G.)
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
4
|
Estivi L, Brandolini A, Gasparini A, Hidalgo A. Lupin as a Source of Bioactive Antioxidant Compounds for Food Products. Molecules 2023; 28:7529. [PMID: 38005249 PMCID: PMC10673580 DOI: 10.3390/molecules28227529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Four species of lupin (white lupin, yellow lupin, blue lupin and Andean lupin) are widely cropped thanks to the excellent nutritional composition of their seeds: high protein content (28-48 g/100 g); good lipid content (4.6-13.5 g/100 g, but up to 20.0 g/100 g in Andean lupin), especially unsaturated triacylglycerols; and richness in antioxidant compounds like carotenoids, tocols and phenolics. Particularly relevant is the amount of free phenolics, highly bioaccessible in the small intestine. However, the typical bitter and toxic alkaloids must be eliminated before lupin consumption, hindering its diffusion and affecting its nutritional value. This review summarises the results of recent research in lupin composition for the above-mentioned three classes of antioxidant compounds, both in non-debittered and debittered seeds. Additionally, the influence of technological processes to further increase their nutritional value as well as the effects of food manufacturing on antioxidant content were scrutinised. Lupin has been demonstrated to be an outstanding raw material source, superior to most crops and suitable for manufacturing foods with good antioxidant and nutritional properties. The bioaccessibility of lupin antioxidants after digestion of ready-to-eat products still emerges as a dearth in current research.
Collapse
Affiliation(s)
- Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.E.); (A.H.)
| | - Andrea Brandolini
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Piacenza 29, 26900 Lodi, Italy;
| | - Andrea Gasparini
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Piacenza 29, 26900 Lodi, Italy;
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.E.); (A.H.)
| |
Collapse
|
5
|
Mazumder K, Aktar A, Ramasamy S, Biswas B, Kerr PG, Blanchard C. Attenuating Colorectal Cancer Using Nine Cultivars of Australian Lupin Seeds: Apoptosis Induction Triggered by Mitochondrial Reactive Oxygen Species Generation and Caspases-3/7 Activation. Cells 2023; 12:2557. [PMID: 37947635 PMCID: PMC10647522 DOI: 10.3390/cells12212557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
As Australian lupin cultivars are rich sources of polyphenols, dietary fibers, high-quality proteins, and abundant bioactive compounds with significant antioxidant, antidiabetic, and anticancer activities, this research work is aimed at investigating the colon cancer alleviation activity of nine cultivars of lupin seeds on HCT116 and HT29 colon carcinoma cell lines through anti-proliferation assay, measurement of apoptosis, and identification of the mechanism of apoptosis. Nine cultivars were pre-screened for anti-proliferation of HCT116 and HT29 cells along with consideration of the impact of heat processing on cancer cell viability. Mandelup and Jurien showed significant inhibition of HCT116 cells, whereas the highest inhibition of HT29 cell proliferation was attained by Jurien and Mandelup. Processing decreased the anti-proliferation activity drastically. Lupin cultivars Mandelup, Barlock, and Jurien (dose: 300 μg/mL) induced early and late apoptosis of colon cancer cells in Annexin V-FITC assay. The mechanism of apoptosis was explored, which involves boosting of caspases-3/7 activation and intracellular reactive oxygen species (ROS) generation in HCT116 cells (Mandelup and Barlock) and HT29 cells (Jurien and Mandelup). Thus, the findings showed that lupin cultivars arrest cell cycles by inducing apoptosis of colorectal carcinoma cells triggered by elevated ROS generation and caspases-3/7 activation.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Dhaka International University, Dhaka 1212, Bangladesh
| | - Sujatha Ramasamy
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Institute for Molecular Bioscience, Queensland University, Brisbane, QLD 4072, Australia
| | - Philip G. Kerr
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St., Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St., Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
6
|
Castillo RF, García Pérez R, González Díaz A, Liñán González A. Therapeutic Applications and Effects of Lupinus angustifolius (Blue Lupin) and Its Components: A Systematic Review and Meta-Analysis. Foods 2023; 12:2749. [PMID: 37509841 PMCID: PMC10378960 DOI: 10.3390/foods12142749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Lupinus angustifolius has a unique nutrient profile among legumes and may have beneficial health effects when included in the diet. The aim of this study was to investigate the biological properties of blue lupin (Lupinus angustifolius), its chemical components, and their relevance for monitoring biological and anthropometric health markers, including triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), BMI, weight, and glycemia, compared with control groups with other kinds of diets. PubMed, Web of Science, and Scopus databases, updated to December 2023, were searched. Out of the 194 studies identified, a total of 7 randomized controlled trials (RCTs) comprising 302 participants met the eligibility criteria. The results of our study indicated that the blue lupin diet has a direct relationship with parameters such as blood glucose, weight, and LDL-C but not with TGs or BMI. In conclusion, the research described in this review clearly indicates that L. angustifolius may play an important role in the dietary prevention of hyperlipidemia and hypertension. Therefore, it would be highly advisable to increase its consumption in diets. However, further studies, ideally in humans, are required to truly establish L. angustifolius's health-promoting properties.
Collapse
Affiliation(s)
- Rafael Fernández Castillo
- Faculty of Health Sciences, University of Granada, Parque Tecnológico de Ciencias de la Salud, Avd. de la Ilustración, 60, 18016 Granada, Spain
| | - Raquel García Pérez
- Faculty of Health Sciences, University of Granada, Parque Tecnológico de Ciencias de la Salud, Avd. de la Ilustración, 60, 18016 Granada, Spain
| | - Ana González Díaz
- Faculty of Health Sciences, University of Granada, C/Cortadura del Valle s/n, 51001 Ceuta, Spain
| | - Antonio Liñán González
- Faculty of Health Sciences, University of Granada, Parque Tecnológico de Ciencias de la Salud, Avd. de la Ilustración, 60, 18016 Granada, Spain
| |
Collapse
|
7
|
Lemus-Conejo A, Rivero-Pino F, Montserrat-de la Paz S, Millan-Linares MC. Nutritional composition and biological activity of narrow-leafed lupins (Lupinus angustifolius L.) hydrolysates and seeds. Food Chem 2023; 420:136104. [PMID: 37059020 DOI: 10.1016/j.foodchem.2023.136104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Lupins are an interesting source of nutrients, part of the Fabaceae family. More specifically, narrow-leafed lupin (Lupinus angustifolius L.) is a legume, largely produced in Australia, which is used both for human food and animal fodder. There is a growing interest in plant proteins-derived products due to benefits for the ecosystem and lower production costs compared to traditional animal sources of protein. This review aimed to summarize major and minor chemical components in Lupinus angustifolius L., and potential health benefits of this plant and product thereof. In particular, the protein fraction of Lupinus and their biological properties are described. L. angustifolius seed and proteins by-products can be used as a valuable source of high value-added compounds for diverse food products with the goal to maximize its economic value.
Collapse
|
8
|
Eldin SMS, Shawky E, Ghareeb DA, El Sohafy SM, Sallam SM. Metabolomics and chemometrics depict the changes in the chemical profile of white lupine (Lupinus albus L.) bioactive metabolites during seed germination. Food Chem 2023; 418:135967. [PMID: 36965385 DOI: 10.1016/j.foodchem.2023.135967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
The current study attempts to illustrate how the chemical and biological profile of white lupine seeds varies throughout the course of various germination days using UHPLC-QqQ-MS combined to chemometrics. Abscisic acid showed maximum level in the un-germinated seeds and started to decline with seed germination accompanied by an increase in the levels of gibberellins which were undetectable in un-germinated seeds. Coumaronochromones were the most prevalent constituents detected in un-germinated seeds while day 2 sprouts showed significant accumulation of flavones. The levels of alkaloids showed significant increase upon germination of the seeds reaching its maximum in day 14 sprouts. The OPLS model coefficients plot indicated that lupinalbin D and F, apigenin hexoside, kaempferol hexoside, albine, and hydoxylupanine showed strong positive correlation to the alpha amylase inhibitory activity of the tested samples while lupinalbin A, lupinisoflavone, lupinic acid and multiflorine were positively correlated to the inhibition of alpha glycosidase activity. The results obtained indicated that seed germination has a profound effect on the chemical profile as well as the in-vitro antidiabetic activity of lupine seeds.
Collapse
Affiliation(s)
- Safa M Shams Eldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Doaa A Ghareeb
- Bio‑Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samah M El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Shaimaa M Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
9
|
De-La-Cruz-Yoshiura S, Vidaurre-Ruiz J, Alcázar-Alay S, Encina-Zelada CR, Cabezas DM, Correa MJ, Repo-Carrasco-Valencia R. Sprouted Andean grains: an alternative for the development of nutritious and functional products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2083158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shigeki De-La-Cruz-Yoshiura
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Julio Vidaurre-Ruiz
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Sylvia Alcázar-Alay
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Christian R. Encina-Zelada
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Dario M. Cabezas
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - María Jimena Correa
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Facultad de Ciencias Exactas-UNLP, la Plata, Argentina
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| |
Collapse
|
10
|
Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, Jubaidi FF, Budin SB. Therapeutic Approach of Flavonoid in Ameliorating Diabetic Cardiomyopathy by Targeting Mitochondrial-Induced Oxidative Stress. Int J Mol Sci 2021; 22:11616. [PMID: 34769045 PMCID: PMC8583796 DOI: 10.3390/ijms222111616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 46300, Malaysia;
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| |
Collapse
|
11
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
12
|
Lemon Balm Extracts Prevent Breast Cancer Progression In Vitro and In Ovo on Chorioallantoic Membrane Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6489159. [PMID: 32351599 PMCID: PMC7178502 DOI: 10.1155/2020/6489159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently diagnosed malignant pathology, representing the primary cause of cancer death in women. Natural products are an appealing strategy to limit the progression of the disease. Targeting angiogenesis in breast cancer may positively impact on poor prognosis of breast cancer. As source of natural compounds, we investigated the leaves of Melissa officinalis L. (MO), known as lemon balm, an aromatic plant that spontaneously grows in the South and Western areas of Romania, being traditionally recommended as anxiolytic, antispasmodic, or as digestive remedy. Our aim was to investigate the phytochemical profiling and the antiangiogenic and chemopreventive bioactivity of MO from Banat region, on breast cancer. Two ethanolic extracts of MO (MOE96 and MOE70) and one methanolic extract (MOM80) were subjected to polyphenol and triterpene profiling by HPLC-MS, and the antioxidant capacity was evaluated. The antiangiogenic potential was investigated using the chorioallantoic membrane assay (CAM). The MTT(3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide) assay was used to investigate the cytotoxic effects on MCF-7 and MDA-MB-231breast cancer cells, as well as on MCF-10A normal breast epithelial cells, while apoptosis was performed by DAPI staining. Rosmarinic acid (RA) and ursolic acid (UA) were revealed as dominant phytocompounds. The highest concentration in phytochemicals were found in MOM80; MOE96 was more concentrated in UA, while MOE70 extracted more RA. MOE96 inhibited cancer progression and angiogenesis in the in ovo CAM model using MDA-MB-231 cells, inhibiting breast cancer progression and angiogenesis for the MDA-MB-231 breast cancer cell line; no secondary tumoral areas were registered, indicative for a preventive effect against breast tumor cell invasiveness. The highest cell inhibitory activity was also exhibited by MOE96, in particular against the estrogen receptor positive MCF7 breast cancer cell line, with no cytotoxic effect on healthy cells. The estrogen receptor positive MCF7 cell line proved to be more sensitive to the extract antiproliferative activity than the triple negative MDA-MB-231 breast cancer cell line. Nevertheless, the chemopreventive potential of MOE96 extract is phenotype-dependent and is rather related to the apoptosis and antiangiogenic effects suggesting a multitargeted mechanism of action due to its multiple compound composition next to a concentration ratio of RA : UA in favor of UA.
Collapse
|
13
|
Mazumder K, Nabila A, Aktar A, Farahnaky A. Bioactive Variability and In Vitro and In Vivo Antioxidant Activity of Unprocessed and Processed Flour of Nine Cultivars of Australian lupin Species: A Comprehensive Substantiation. Antioxidants (Basel) 2020; 9:E282. [PMID: 32230703 PMCID: PMC7222189 DOI: 10.3390/antiox9040282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this present investigation was to analyze bioactive compounds, as well as demonstrate the antioxidant activities of nine cultivars of Australian lupin species accompanied by observing the effect of domestic heat processing on their antioxidant activities adopting in vivo and in vitro approaches. Gas chromatography mass spectroscopy (GC-MS) analysis was performed for profiling bioactive compounds present in lupin cultivars. Multiple assay techniques involving quantification of polyphenolics, flavonoids and flavonol, electron transfer (ET) based assay, hydrogen atom transfer (HAT)-based assay and in vivo assays were performed. The major compounds found were hexadecanoic acid methyl ester, 9,12-octadecadienoic acid methyl ester, methyl stearate, lupanine,13-docosenamide and 11-octadecenoic acid (Z)- methyl ester. Mandelup was found to show excellent antioxidant activity. Moreover, Jurien, Gunyidi and Barlock had strong antioxidant activity. Both positive and negative impacts of heat processing were observed on antioxidant activity. Heating and usage of excess water during processing were the key determinants of loss of antioxidants. Negligible loss of antioxidant activity was observed in most of the assays whereas inhibition of both lipid peroxidation (33.53%) and hemolysis of erythrocytes (37.75%) were increased after processing. In addition, in vitro and in vivo antioxidant assays are found to show statistically significant (* p < 0.05 and ** p < 0.01) results, which are supported by the presence of a number of antioxidant compounds in GC-MS analysis.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga NSW 2127, Australia
| | - Afia Nabila
- Department of Pharmacy, Faculty of Basic Medicine and Health Sciences, University of Science and Technology Chittagong, Foy's Lake, Chittagong 4202, Bangladesh
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Asgar Farahnaky
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga NSW 2127, Australia
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne VIC 3083, Australia
| |
Collapse
|