1
|
Poirier P. Impact of Bariatric Surgery on Coronary Microvascular Function: When Lower Weight Means Better Flow! JACC Cardiovasc Imaging 2024; 17:1317-1319. [PMID: 39365238 DOI: 10.1016/j.jcmg.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada; Laval University, Faculty of Pharmacy, Quebec, Canada.
| |
Collapse
|
2
|
Yang H, Teng H, Luo P, Fu R, Wang X, Qin G, Gao M, Ren J. The role of left ventricular hypertrophy measured by echocardiography in screening patients with ischaemia with non-obstructive coronary arteries: a cross-sectional study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1657-1666. [PMID: 37237153 DOI: 10.1007/s10554-023-02879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Many patients with ischaemia with non-obstructive coronary arteries (INOCA) have a poor prognosis. This study aims to explore the diagnostic value of left ventricular hypertrophy (LVH)-related ultrasound parameters in INOCA patients. The study group consisted of 258 patients with INOCA in this retrospective cross-sectional study, and these patients were free of obstructive coronary artery disease, previous revascularization, atrial fibrillation, ejection fraction < 50%, major distortions of left ventricular geometry, suspected non-ischaemic causes. Control individuals were matched 1:1 with study group according to age, sex, cardiovascular risk factors, and time of hospital stay. According to left ventricular mass index (LVMI) and relative wall thickness, left ventricular geometry was composed of concentric hypertrophy, eccentric hypertrophy, concentric remodeling and normal geometry. LVH-related parameters, left ventricular geometry, demographic characteristics, laboratory parameters and other echocardiographic indicators were compared between the two groups. Subgroup analysis was performed based on sex. LVMI in the study group was higher than that in the control group (86.86 ± 18.83 g/m2 vs 82.25 ± 14.29 g/m2, P = 0.008). The ratio of LVH was higher in the study group (20.16% vs 10.85%, P = 0.006). After subgroup analysis based on sex, LVMI differences (85.77 ± 18.30 g/m2 vs 81.59 ± 14.64 g/m2, P = 0.014) and the ratio of LVH differences (25.00% vs 14.77%, P = 0.027) still existed in females between the two groups. There was no difference in the constituent ratio of left ventricular geometry between the two groups (P = 0.157). Sex-based subgroup analysis showed no difference in the constituent ratio of left ventricular geometry between the two groups in females (P = 0.242). The degree of LVH in the study group was higher than that in the control group, suggesting that LVH may play an important role in the occurrence and development of INOCA. Moreover, LVH-related ultrasound parameters may be of higher diagnostic value for female INOCA patients than for male INOCA patients.
Collapse
Affiliation(s)
- Hao Yang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Hua Teng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Peng Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ruqian Fu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaoting Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Guang Qin
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Min Gao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jianli Ren
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
3
|
Markousis-Mavrogenis G, Bacopoulou F, Mavragani C, Voulgari P, Kolovou G, Kitas GD, Chrousos GP, Mavrogeni SI. Coronary microvascular disease: The "Meeting Point" of Cardiology, Rheumatology and Endocrinology. Eur J Clin Invest 2022; 52:e13737. [PMID: 34939183 DOI: 10.1111/eci.13737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exertional chest pain/dyspnea or chest pain at rest are the main symptoms of coronary artery disease (CAD), which are traditionally attributed to insufficiency of the epicardial coronary arteries. However, 2/3 of women and 1/3 of men with angina and 10% of patients with acute myocardial infarction have no evidence of epicardial coronary artery stenosis in X-ray coronary angiography. In these cases, coronary microvascular disease (CMD) is the main causative factor. AIMS To present the pathophysiology of CMD in Cardiology, Rheumatology and Endocrinology. MATERIALS-METHODS The pathophysiology of CMD in Cardiology, Rheumatology and Endocrinology was evaluated. It includes impaired microvascular vasodilatation, which leads to inability of the organism to deal with myocardial oxygen needs and, hence, development of ischemic pain. CMD, observed in inflammatory autoimmune rheumatic and endocrine/metabolic disorders, brings together Cardiology, Rheumatology and Endocrinology. Causative factors include persistent systemic inflammation and endocrine/metabolic abnormalities influencing directly the coronary microvasculature. In the past, the evaluation of microcirculation was feasible only with the use of invasive techniques, such as coronary flow reserve assessment. Currently, the application of advanced imaging modalities, such as cardiovascular magnetic resonance (CMR), can evaluate CMD non-invasively and without ionizing radiation. RESULTS CMD may present with a variety of symptoms with 1/3 to 2/3 of them expressed as typical chest pain in effort, more commonly found in women during menopause than in men. Atypical presentation includes chest pain at rest or exertional dyspnea,but post exercise symptoms are not uncommon. The treatment with nitrates is less effective in CMD, because their vasodilator action in coronary micro-circulation is less pronounced than in the epicardial coronary arteries. DISCUSSION Although both classic and new medications have been used in the treatment of CMD, there are still many questions regarding both the pathophysiology and the treatment of this disorder. The potential effects of anti-rheumatic and endocrine medications on the evolution of CMD need further evaluation. CONCLUSION CMD is a multifactorial disease leading to myocardial ischemia/fibrosis alone or in combination with epicardial coronary artery disease. Endothelial dysfunction/vasospasm, systemic inflammation, and/or neuroendocrine activation may act as causative factors and bring Cardiology, Rheumatology and Endocrinology together. Currently, the application of advanced imaging modalities, and specifically CMR, allows reliable assessment of the extent and severity of CMD. These measurements should not be limited to "pure cardiac patients", as it is known that CMD affects the majority of patients with autoimmune rheumatic and endocrine/metabolic disorders.
Collapse
Affiliation(s)
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Clio Mavragani
- Pathophysiology Department, University of Athens, Athens, Greece
| | | | - Genovefa Kolovou
- Onassis Cardiac Surgery Hospital, Athens, Greece.,Epidemiology Department, University of Manchester, Manchester, UK
| | - George D Kitas
- Epidemiology Department, University of Manchester, Manchester, UK
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | |
Collapse
|
4
|
Liu J, Li J, Yu J, Xia C, Pu H, He W, Li X, Zhou X, Tong N, Peng L. Regional Fat Distributions Are Associated With Subclinical Right Ventricular Dysfunction in Adults With Uncomplicated Obesity. Front Cardiovasc Med 2022; 9:814505. [PMID: 35548430 PMCID: PMC9081765 DOI: 10.3389/fcvm.2022.814505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/22/2022] [Indexed: 01/05/2023] Open
Abstract
Objective Obesity is a prominent public health problem that has increased cardiovascular mortality risks. However, the specific effects of obesity, independent of comorbidities, on cardiac structure and function have not been well clarified, especially those effects on the right ventricle (RV). Cardiovascular magnetic resonance (CMR) tissue tracking can assess detailed RV mechanical features. This study aimed to evaluate RV strain using CMR in uncomplicated obese adults and assess its association with fat distributions. Methods A total of 49 obese patients and 30 healthy controls were included. The RV global systolic function and strain parameters based on CMR were assessed. Body fat distributions were measured with dual X-ray absorptiometry. RV function indices of obese patients were compared with those of healthy controls. Correlations among related body fat distribution parameters and RV function indices were conducted with multivariable linear regression. Results Compared with healthy controls, the obese group had impaired RV strain with lower global longitudinal peak strain (PS), longitudinal peak systolic strain rate (PSSR), circumferential and longitudinal peak diastolic strain rates (PDSR) (all P < 0.05), while LV and RV ejection fractions were not significantly different between the two groups (P > 0.05). Multivariable linear regression analysis demonstrated that android fat% was independently associated with longitudinal PS (β = −0.468, model R2 = 0.219), longitudinal PDSR (β = −0.487, model R2 = 0.237), and circumferential PSSR (β = −0.293, model R2 = 0.086). Trunk fat% was independently associated with longitudinal PSSR (β = −0.457, model R2 = 0.209). In addition, the strongest correlations of circumferential PDSR were BMI and gynoid fat% (β = −0.278, β = 0.369, model R2 = 0.324). Conclusions Extensive subclinical RV dysfunction is found in uncomplicated obese adults. BMI, as an index of overall obesity, is independently associated with subclinical RV dysfunction. In addition, central obesity (android fat and trunk fat distributions) has a negative effect on subclinical RV function, while peripheral obesity (gynoid fat distribution) may have a positive effect on it. Clinical Trials Registration Effect of lifestyle intervention on metabolism of obese patients based on smart phone software (ChiCTR1900026476).
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Jianqun Yu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Huaxia Pu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenzhang He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Nanwei Tong
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Liqing Peng
| |
Collapse
|
5
|
Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F. Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 2021; 8:742178. [PMID: 34671656 PMCID: PMC8520939 DOI: 10.3389/fcvm.2021.742178] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Overlapping pandemics of lifestyle-related diseases pose a substantial threat to cardiovascular health. Apart from coronary artery disease, metabolic disturbances linked to obesity, insulin resistance and diabetes directly compromise myocardial structure and function through independent and shared mechanisms heavily involving inflammatory signals. Accumulating evidence indicates that metabolic dysregulation causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed, elevated systemic levels of pro-inflammatory cytokines and metabolic substrates induce an inflammatory state in different cardiac cells and lead to subcellular alterations thereby promoting maladaptive myocardial remodeling. At the cellular level, inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation and microvascular disease. In cardiometabolic patients, myocardial inflammation is maintained by innate immune cell activation mediated by pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic low-grade inflammation progressively alters metabolic processes in the heart, leading to a metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved ejection fraction (HFpEF). In accordance with preclinical data, observational studies consistently showed increased inflammatory markers and cardiometabolic features in patients with HFpEF. Future treatment approaches of MC may target inflammatory mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we review current evidence on inflammatory processes involved in the development of MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects stratified by cell type.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Li MM, Zheng YL, Wang WD, Lin S, Lin HL. Neuropeptide Y: An Update on the Mechanism Underlying Chronic Intermittent Hypoxia-Induced Endothelial Dysfunction. Front Physiol 2021; 12:712281. [PMID: 34512386 PMCID: PMC8430344 DOI: 10.3389/fphys.2021.712281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial dysfunction (ED) is a core pathophysiological process. The abnormal response of vascular endothelial (VE) cells to risk factors can lead to systemic consequences. ED caused by intermittent hypoxia (IH) has also been recognized. Neuropeptide Y (NPY) is an important peripheral neurotransmitter that binds to different receptors on endothelial cells, thereby causing ED. Additionally, hypoxia can induce the release of peripheral NPY; however, the involvement of NPY and its receptor in IH-induced ED has not been determined. This review explains the definition of chronic IH and VE function, including the relationship between ED and chronic IH-related vascular diseases. The results showed that that the effect of IH on VE injury is mediated by the VE-barrier structure and endothelial cell dysfunction. These findings offer new ideas for the prevention and treatment of obstructive sleep apnea syndrome and its complications.
Collapse
Affiliation(s)
- Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Ferdinand KC, Samson R. Nonobstructive Coronary Artery Disease in Women: Risk Factors and Noninvasive Diagnostic Assessment. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2019. [DOI: 10.15212/cvia.2017.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Mohy-Ud-Din H, Boutagy NE, Stendahl JC, Zhuang ZW, Sinusas AJ, Liu C. Quantification of intramyocardial blood volume with 99mTc-RBC SPECT-CT imaging: A preclinical study. J Nucl Cardiol 2018; 25:2096-2111. [PMID: 28695406 PMCID: PMC5985225 DOI: 10.1007/s12350-017-0970-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/13/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Currently, there is no established non-invasive imaging approach to directly evaluate myocardial microcirculatory function in order to diagnose microvascular disease independent of co-existing epicardial disease. In this work, we developed a methodological framework for quantification of intramyocardial blood volume (IMBV) as a novel index of microcirculatory function with SPECT/CT imaging of 99mTc-labeled red blood cells (RBCs). METHODS Dual-gated myocardial SPECT/CT equilibrium imaging of 99mTc-RBCs was performed on twelve canines under resting conditions. Five correction schemes were studied: cardiac gating with no other corrections (CG), CG with attenuation correction (CG + AC), CG + AC with scatter correction (CG + AC + SC), dual cardiorespiratory gating with AC + SC (DG + AC + SC), and DG + AC + SC with partial volume correction (DG + AC + SC + PVC). Quantification of IMBV using each approach was evaluated in comparison to those obtained from all corrections. The in vivo SPECT estimates of IMBV values were validated against those obtained from ex vivo microCT imaging of the casted hearts. RESULTS The estimated IMBV with all corrections was 0.15 ± 0.03 for the end-diastolic phase and 0.11 ± 0.03 for the end-systolic phase. The cycle-dependent change in IMBV (ΔIMBV) with all corrections was 23.9 ± 8.6%. Schemes that applied no correction or partial correction resulted in significant over-estimation of IMBV and significant under-underestimation of ΔIMBV. Estimates of IMBV and ΔIMBV using all corrections were consistent with values reported in the literature using invasive techniques. In vivo SPECT estimates of IMBV strongly correlated (R2 ≥ 0.70) with ex vivo measures for the various correction schemes, while the fully corrected scheme yielded the smallest bias. CONCLUSIONS Non-invasive quantification of IMBV is feasible using 99mTc-RBCs SPECT/CT imaging, however, requires full compensation of physical degradation factors.
Collapse
Affiliation(s)
- Hassan Mohy-Ud-Din
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Shaukat Khanum Memorial Cancer Hospital and Research Center, 7-A, Block R-3, Johar Town, Lahore, 54000, Pakistan.
| | - Nabil E Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John C Stendahl
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Bhattacharjee R, Khalyfa A, Khalyfa AA, Mokhlesi B, Kheirandish-Gozal L, Almendros I, Peris E, Malhotra A, Gozal D. Exosomal Cargo Properties, Endothelial Function and Treatment of Obesity Hypoventilation Syndrome: A Proof of Concept Study. J Clin Sleep Med 2018; 14:797-807. [PMID: 29734990 DOI: 10.5664/jcsm.7110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/09/2018] [Indexed: 01/19/2023]
Abstract
STUDY OBJECTIVES Longitudinal studies support the usage of positive airway pressure (PAP) therapy in treating obstructive sleep apnea (OSA) to improve cardiovascular disease. However, the anticipated benefit is not ubiquitous. In this study, we elucidate whether PAP therapy leads to immediate improvements on endothelial function, a subclinical marker of cardiovascular status, by examining the effect of circulating exosomes, isolated from patients before and after PAP therapy, on naive endothelial cells. METHODS We isolated plasma-derived circulating exosomes from 12 patients with severe OSA and obesity hypoventilation syndrome (OHS) before and after 6 weeks of PAP therapy, and examined their effect on cultured endothelial cells using several in vitro reporter assays. RESULTS We found that circulating exosomes contributed to the induction and propagation of OSA/OHS-related endothelial dysfunction (ie, increased permeability and disruption of tight junctions along with increased adhesion molecule expression, and reduced endothelial nitric oxide synthase expression), and promoted increased monocyte adherence. Further, when comparing exosomes isolated before and after PAP therapy, the disturbances in endothelial cell function were attenuated with treatment, including an overall cumulative decrease in endothelial permeability in all 12 subjects by 10.8% (P = .035), as well as detection of a subset of 4 differentially expressed exosomal miRNAs, even in the absence of parallel changes in systemic blood pressure or metabolic function. CONCLUSIONS Circulating exosomes facilitate important intercellular signals that modify endothelial phenotype, and thus emerge as potential fundamental contributors in the context of OSA/OHS-related endothelial dysfunction. Exosomes may not only provide candidate biomarkers, but are also a likely and plausible mechanism toward OSA/OHS-induced cardiovascular disease. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov, Title: AVAPS-AE Efficacy Study, URL: https://clinicaltrials.gov/ct2/show/NCT01368614, Identifier: NCT01368614.
Collapse
Affiliation(s)
- Rakesh Bhattacharjee
- Division of Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, The University of California San Diego, San Diego, California
| | - Abdelnaby Khalyfa
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division University of Chicago, Chicago, Illinois
| | - Ahamed A Khalyfa
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division University of Chicago, Chicago, Illinois
| | - Babak Mokhlesi
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Leila Kheirandish-Gozal
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division University of Chicago, Chicago, Illinois
| | | | - Eduard Peris
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division University of Chicago, Chicago, Illinois
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, California
| | - David Gozal
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Effect of Exercise Intervention on Flow-Mediated Dilation in Overweight and Obese Adults: Meta-Analysis. Int J Vasc Med 2017; 2017:7532702. [PMID: 29098086 PMCID: PMC5643022 DOI: 10.1155/2017/7532702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
The objective of this meta-analysis is to summarize the effect of exercise intervention on flow-mediated dilatation (FMD) in overweight and obese adults. We searched four electronic databases (PubMed/Medline, Scopus, and CINAHL) through June 2016 for relevant studies pertaining to the effectiveness of exercise intervention on FMD. Seventeen of the 91 studies identified met the inclusion criteria. Comprehensive Meta-Analysis software (version 3) was used to compute the standardized mean difference effect size (ES) and 95% CI using a random effects model. We calculated 34 ESs. We found that exercise intervention had medium and positive effects on FMD, with an overall ES of 0.522 (95% CI = 0.257, 0.786). Heterogeneity of ESs was observed (Qb = 239, p ≤ 0.001, I2 = 86.19), and the effect was moderated by comorbidity (Qb = 6.39, df = 1, p = 0.011). A large ES for the combination exercise, low intensity exercise, and comorbidity subgroups (ES = 0.82~1.24) was found. We conclude that while exercise intervention significantly improves FMD in overweight and obese adults, the effect may depend on the different characteristics of exercise intervention and on participants' demographics.
Collapse
|
11
|
|
12
|
Morley JE, Taylor A. Is It Time to Retire Santa Claus? J Am Med Dir Assoc 2016; 17:1069-1072. [PMID: 27886867 DOI: 10.1016/j.jamda.2016.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Affiliation(s)
- John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine, St. Louis, MO.
| | | |
Collapse
|